首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the occurrence of entomopathogenic fungi in 1080 soil samples representing multiple locations and conditions in Korea. Entomopathogenic fungi were isolated from soils using a selective medium containing dodine and antibiotics. Following an initial identification based on morphology, the fungal isolates were more precisely identified by the sequence of their nuclear ribosomal RNA (rRNA) internal transcribed spacer (ITS) regions. As a result, entomopathogenic fungi were found to occur in 32% (342 isolates) of the soil samples studied. The most abundant species were Beauveria spp. (125 isolates) and Metarhizium spp. (82 isolates). Entomopathogenic fungi were more often recovered from natural mountain and riparian soils than from agricultural habitats. The pathogenicity of isolated fungi was evaluated by using wax moth Galleria mellonella L. (Lepidoptera: Pyralidae) larvae. It was determined that 60% (207 isolates) of the isolates were pathogenic using this model. These entomopathogenic fungi may, therefore, have potential use against a variety of agricultural pests. This is the first study of the isolation and distribution of entomopathogenic fungi in representative sampling locations throughout Korea.  相似文献   

2.
《Biological Control》2010,55(3):197-205
The selective media most commonly used for isolating hyphomycetous species of entomopathogenic fungi from non-sterile substrates rely on N-dodecylguanidine monoacetate (dodine) as the selective fungicide. Although these media are effective for isolating many species of Metarhizium and Beauveria from soil, they are inefficient media for isolation of an important Metarhizium species, Metarhizium acridum, from non-sterile soil. Our current study was directed to formulating a dodine-free selective medium that is efficient for isolating naturally occurring Beauveria spp. and Metarhizium spp., especially M. acridum, from soil. The selective medium (designated CTC medium) consists of potato dextrose agar plus yeast extract (PDAY) supplemented with chloramphenicol, thiabendazole and cycloheximide. In comparisons with selective media previously reported in the literature, the CTC medium afforded colonies that were larger and had both earlier and more abundant conidiation of entomopathogenic fungi, features which greatly facilitated identification of the emerging entomopathogenic fungi. In addition to efficient re-isolation of M. acridum, this medium also is an effective tool for selective isolation of Metarhizium brunneum, Metarhizium robertsii, Beauveria bassiana and Beauveria brongniartii from non-sterile field-collected soil samples inoculated (spiked) with fresh conidia in the laboratory.  相似文献   

3.
Although Turkey is the first among all hazelnut-producing countries, yield per unit area of this crop is low in comparison to other countries, mainly because many insect species seriously damage hazelnut trees and their fruit. To find effective and safe biocontrol agents, we conducted a survey study to isolate entomopathogenic fungi from the hazelnut-growing region of Turkey and characterized the isolated strains in detail. In addition, we determined the effectiveness of seven selected strains from this region against Melolontha melolontha (Coleoptera: Scarabaeidae) which is one of the most serious pests of hazelnut. In 2006 and 2007, 301 soil samples were collected randomly and analyzed for presence of entomopathogenic fungi using the Galleria bait method. Entomopathogenic fungi were found to occur in 20.59% of the soil samples studied. Based on morphology, ITS sequence and partial sequencing of the 18S (SSU rDNA) and EF1-α genes, the isolates were identified as Metarhizium anisopliae var. anisopliae, Metarhizium sp., Beauveria bassiana, Beauveria cf. bassiana, Isaria fumosorosea and Evlachovaea sp. Metarhizium anisopliae var. anisopliae was isolated from 34 sites and was the most frequent and abundant entomopathogenic species recovered. All the isolates tested were pathogenic to M. melolontha. M. anisopliae var. anisopliae KTU-27 and Evlachovaea sp. KTU-36 produced the highest insecticidal activity (86.6%) within 15 days after inoculation. Our results suggest that entomopathogenic fungi could be good biocontrol agents against M. melolontha, and are discussed with respect to ecology of fungi in relation to habitat in order to evaluate biocontrol potential of these isolates. This is the first study of the distribution of entomopathogenic fungi in the hazelnut-growing region of Turkey and of their pathogenicities against M. melolontha.  相似文献   

4.
White grub larvae are important soil-dwelling pests in many regions of Mexico as they attack many important crops such as maize. The use of synthetic chemicals is currently the main control strategy, but they are not always effective; thus, other alternatives are needed. Microbial control using entomopathogenic fungi represents an important alternative strategy, and species within the genera Beauveria and Metarhizium are considered amongst the most promising candidates. Seventeen Beauveria spp. and two Metarhizium spp. isolates were obtained in surveys of white grub larvae from different regions of Guanajuato, Mexico. All isolates were capable of infecting healthy larvae of the white grub Phyllophaga polyphilla in laboratory assays, but mortality never exceeded 50 %. Isolates were identified using morphological and molecular methods. Based on elongation factor1-α and ITS partial gene sequence data, all Beauveria isolates were identified as Beauveria pseudobassiana. Elongation factor1-α and β-tubulin sequence data identified the Metarhizium isolates to be Metarhizium pingshaense. In contrast, three additional Metarhizium isolates obtained the previous year in the same region were identified as M. pingshaense, Metarhizium anisopliae and Metarhizium robertsii. Microsatellite genotyping showed that all B. pseudobassiana isolates were the same haplotype. Enterobacterial Repetitive Intergenic Consensus fingerprinting information confirmed no significant variation amongst the B. pseudobassiana isolates. The ecological role of these isolates and their impact on white grub larvae populations are discussed.  相似文献   

5.
Entomopathogenic fungi are important natural enemies of insects. However, there is little information on the insect‐suppressive potential of these fungi and possible effects of farming management on this. Meanwhile, changes in natural landscapes due to agricultural intensification have caused considerable biodiversity loss and consequent decay of ecosystem services. However, the adoption of practices such as agroforestry in agroecosystems can foster abiotic and biotic conditions that conserve biodiversity, consequently restoring the provision of ecosystems services. Here, we assessed the effect of management systems (agroforestry or full‐sun) on the pest‐suppressive potential of entomopathogenic fungi in Brazilian coffee plantations. We used the insect bait method coupled with survival analyses to assess the speed of kill by entomopathogenic fungi and their presence in soil samples from both farming systems. We found that insects exposed to agroforestry soils died more quickly than insects exposed to full‐sun soils. Of the fungi isolated from the bait insects, Metarhizium was found most frequently, followed by Beauveria. Meanwhile, Fusarium was frequently isolated as primary or secondary infections. We propose that the differential survival of insects is indicative of a greater suppressive potential by entomopathogenic fungi in agroforestry, and that this could be promoted by the diversified landscape, microclimatic stability, and reduced soil disturbance in agroforestry systems. Furthermore, our results provide a useful demonstration of the potential use of the insect bait method to investigate pest‐suppressive potential through bait insect mortality, and we term this the “bait survival technique.”  相似文献   

6.
Entomopathogenic fungi from the genera Beauveria and Metarhizium, were isolated from soil using the Galleria mellonella baiting method, and from infected white grub larvae from a diversity of cropping systems in Puebla and Guanajuato, Mexico. Isolates were identified to species level using Bloc and Elongation Factor 1-α sequence information. Although widespread, Beauveria bassiana (41 isolates) was only isolated from soil and not from infected white grubs. In contrast, Beauveria pseudobassiana (six isolates) was predominantly isolated from white grub larvae (only one isolate from soil). Haplotype analysis of B. bassiana Bloc sequences identified 25 haplotypes indicating substantial genetic diversity; neither geographical origin nor crop type explained this genetic variation. Metarhizium brunneum (three isolates) and Metarhizium robertsii (17 isolates) were also only isolated from soil, while Metarhizium anisopliae (six isolates) and Metarhizium pingshaense (four isolates) were only isolated from white grub larvae. M. anisopliae was only found infecting Paranomala species while M. pingshaense was only found infecting Phyllophaga species. Species diversity in Metarhizium was influenced by crop type. Our results showed that entomopathogenic fungi species could co-exist in the same soil ecosystem but in separate niches. The potential ecological roles of these species are discussed.  相似文献   

7.
Entomopathogenic fungi are used for biological control of insect pests. Metarhizium brunneum Petch (Hypocreales) has potential to control Diabrotica virgifera virgifera LeConte (Chrysomelidae), which is a major pest of maize in North America and has recently invaded Europe. The inundative application of an entomopathogenic fungal strain in biological control results in high densities of fungal propagules in the soil which can potentially affect soil microbial communities and their multiple functions in soil. The objective of the present study was to assess potential effects of M. brunneum on soil fungal and prokaryotic communities in a pot experiment over a time course of 4 months using high-throughput sequencing (HTS) of ribosomal markers. The application of M. brunneum formulated as fungus colonised barley kernels (FCBK) led to a significant increase of the applied strain in soil, as assessed by cultivation-dependent (plating on selective medium followed by genotyping of Metarhizium isolates) and cultivation-independent (HTS of ribosomal markers) approaches. Data revealed that soil fungal and prokaryotic community structures did not change after the application of M. brunneum. Temporal changes of the fungal and prokaryotic communities were observed and the prokaryotic communities showed minor changes to barley kernels (BK), the matrix of the formulation. Results of this study are in accordance with other investigations lacking any evidence for adverse effects on microbial communities caused by applied entomopathogenic fungi.  相似文献   

8.
Fungal entomopathogens rely on cellular heterogeneity during the different stages of insect host infection. Their pathogenicity is exhibited through the secretion of secondary metabolites, which implies that the infection life history of this group of environmentally important fungi can be revealed using metabolomics. Here metabolomic analysis in combination with ex vivo insect tissue culturing shows that two generalist isolates of the genus Metarhizium and Beauveria, commonly used as biological pesticides, employ significantly different arrays of secondary metabolites during infectious and saprophytic growth. It also reveals that both fungi exhibit tissue specific strategies by a distinguishable metabolite secretion on the insect tissues tested in this study. In addition to showing the important heterogeneous nature of these two entomopathogens, this study also resulted in the discovery of several novel destruxins and beauverolides that have not been described before, most likely because previous surveys did not use insect tissues as a culturing system. While Beauveria secreted these cyclic depsipeptides when encountering live insect tissues, Metarhizium employed them primarily on dead tissue. This implies that, while these fungi employ comparable strategies when it comes to entomopathogenesis, there are most certainly significant differences at the molecular level that deserve to be studied.  相似文献   

9.
Understanding habitat selection of fungal entomopathogens is critical to improve the efficacy, persistence and cost of these fungi as microbial insecticides. This study sought to determine the prevalence of Metarhizium and Beauveria spp. isolated from the rhizosphere of strawberry, blueberry, grape and Christmas tree crops in the Willamette Valley of Oregon. Entomopathogenic fungi were assigned to thirteen species based on molecular phylogenetic criteria. Four species of Metarhizium were isolated including Metarhizium brunneum, Metarhizium guizhouense, Metarhizium robertsii, and Metarhizium flavoviride var. pemphigi. Nine Beauveria species were isolated including, Beauveria brongniartii, an undescribed species referred to as Clade C and seven phylogenetic species of Beauveria bassiana. Strawberries and blueberries were significantly associated with M. brunneum and Christmas trees with M. guizhouense and M. robertsii. Grapes were significantly associated with B. bassiana phylogenetic species Bbas-16. All of the Metarhizium isolates screened were pathogenic to Otiorhynchus sulcatus larvae in laboratory bioassays but only M. brunneum and M. robertsii caused significant levels of infection. The study results suggest that certain species of Metarhizium and Beauveria are significantly associated with the strawberry, blueberry and Christmas tree rhizosphere and could potentially provide better control of O. sulcatus.  相似文献   

10.
Heat and cold are environmental abiotic factors that restrict the use of entomopathogenic fungi as agents for biological control of insects. The thermotolerance and cold activity of 60 entomopathogenic fungal isolates, including five species of Beauveria and one isolate of Engyodontium albus (=Beauveria alba) were examined as to tolerance of temperatures that might be encountered during field use. In addition, cold activity of eight Metarhizium spp. isolates was evaluated. The isolates were from various geographic regions, arthropod hosts or substrates. High variability in conidial thermotolerance was found among the Beauveria spp. isolates after exposure to 45 °C for 2 h, as evidenced by low (0-20%), medium (20-60%), or high germination (60-80%). The thermal death point (0% germination) for three rather thermotolerant B. bassiana isolates (CG 138, GHA and ARSEF 252) was 46 °C for 6 h. At low temperatures (5 °C), with few exceptions (e.g. CG 66, UFPE 479, CG 227, CG 02), most of the B. bassiana isolates germinated well (ca. 100%). On the other hand, only one isolate of Metarhizium sp. was cold-active (i.e. ARSEF 4343 from Macquarie Island, 54.4°S, Australia). This probably is a M. frigidum isolate. The E. albus isolate (UFPE 3138) was the most susceptible isolate to both heat and cold stress. Isolates ARSEF 252 and GHA of B. bassiana, on the other hand, presented exceptionally high thermotolerance and cold activity. Some isolates with high cold activity, however, were thermosensitive (e.g. ARSEF 1682) and others with high thermotolerance had low cold activity (e.g. CG 227). An attempt to correlate the latitude of origin with thermotolerance or cold activity indicated that B. bassiana isolates from higher latitudes were more cold-active than isolates from nearer the equator, but there was not a similar correlation for heat.  相似文献   

11.
The emerald ash borer (EAB) is an exotic forest pest that has killed millions of ash trees in the United States and Canada, resulting in an ecological disaster and billions of dollars in economic losses of urban landscape and forest trees. The beetle was first detected in Michigan in 2002 and has spread through much of the Eastern and Midwestern U.S., reaching Minnesota in 2009. Since then, it has spread across the state and poses a great risk to the more than 1 billion ash trees in Minnesota. The larval stage of EAB creates wounds on trees as they feed on the inner bark, causing disruption of water and sap flow that results in tree death. The fungal community associated with EAB larval galleries is poorly understood and the role these fungi may play in tree death is not known. This study describes fungi isolated from EAB larval galleries sampled throughout the main geographic areas of Minnesota where ash is affected by EAB. Fungal cultures were identified by extracting genomic DNA and sequencing the ITS region of the rDNA. Results from 1126 isolates reveal a diverse assemblage of fungi and three functional guilds comprised of canker pathogens, wood decay, and entomopathogenic fungi. The most common canker-associated genera were Cytospora followed by Phaeoacremonium, Paraconiothyrium, Coniothyrium, Nectria, Diplodia, and Botryosphaeria. Fungi in the Basidiomycota were nearly all wood decay causing fungi and many were species of pioneer colonizing genera including Sistotrema, Irpex, Peniophora, Phlebia and Ganoderma. Some of these fungi seriously affect urban trees, having the potential to cause rapid wood decay resulting in hazardous tree situations. Several entomopathogenic genera with the potential for biological control of EAB were also isolated from galleries. Purpureocillium was the most commonly isolated genus, followed by Beauveria, Clonostachys, Lecanicillium, Akanthomyces, Cordyceps, Microcera, Tolypocladium, and Pochonia. The results identify important fungal functional guilds that are occupying a new niche in ash trees resulting from EAB and include fungi that may accelerate decline in tree health, increase hazard tree situations, or may provide options for biological control of this destructive invasive insect.  相似文献   

12.
Metarhizium is a genus of entomopathogenic fungi that was initially classified into three species and varieties. More recently, DNA sequencing has improved the phylogenetic resolution of Metarhizium which now includes 30 species. The insect host ranges vary within the genus and some species such as M. robertsii have broad host ranges, while others such as M. acridum show a narrow host range and are restricted to the order Orthoptera. Metarhizium spp. are ubiquitous naturally occurring soil inhabiting fungi, and some are rhizosphere colonisers and their diversity has been attributed to various selective factors (habitat type, climatic conditions, specific associations with plants and insect hosts). Metarhizium have been used for the biological control of insect pests that affect economically important agricultural crops and have been tested under laboratory and field conditions for the control of insect vectors of human disease, showing the effectiveness of the fungus against the target pest. In Mexico, Metarhizium species have been used for the control of insect pests such as the spittlebug (Hemiptera: Cercopidae), and locusts (Orthoptera) that affect crops such as corn, bean and sugarcane. Biosafety studies, such as dermal and intragastric tests in mammalian models have also been carried out to ensure safety to humans and other animals. Metarhizium shows great promise as an alternative to chemical insecticides that has relatively low impact on human health and the environment. Key features of Metarhizium for biocontrol of insects are outlined with special reference to their utility in Mexico.  相似文献   

13.
Thaumastocoris peregrinus Carpintero & Dellapé (Heteroptera: Thaumastocoridae) is a sap‐sucking insect that feeds on leaves of Eucalyptus. In Uruguay, it was detected in 2008 causing significant economic losses in Eucalyptus plantations. At present, there is no efficient control for this pest; thus, the use of biological control agents seems to be an environmentally friendly alternative to reduce the damage caused by this insect. The aims of this study were to isolate and identify the species of entomopathogenic fungi that naturally infect T. peregrinus in Uruguay and to characterize and select the most virulent isolates towards this pest. Individuals of T. peregrinus were collected in eight Eucalyptus plantations infested by the pest. The entomopathogenic fungi were isolated and identified by observation of their micromorphological characteristics, and their identity was confirmed by molecular methods. The pathogenicity and virulence against T. peregrinus of the isolated entomopathogenic fungi were evaluated. Isolates causing the highest insect mortality were selected to evaluate the effect of temperature and water activity on conidial viability. Entomopathogenic fungi were found in very low number with the prevalence of less than 3%. Isolates corresponded to Beauveria, Fusarium, Isaria, Lecanicillium, Paecilomyces, Pochonia, Purpureocillium and Simplicillium genera. Two species, B. pseudobassiana and L. muscarium, were first recorded in Uruguay. Among all the tested species, an isolate of B. bassiana (FI 2403) showed the highest virulence followed by an isolate of B. pseudobassiana. The isolate of B. bassiana presented the highest percentage of spore germination at the three temperatures and the highest viability at low water activities. Isolate FI 2403 was selected as a promissory candidate for the development of a commercial formulation against T. peregrinus.  相似文献   

14.
The entomopathogenic fungus Metarhizium anisopliae and sister species are some of the most widely used biological control agents for insects. Availability of specific monitoring and quantification tools are essential for the investigation of environmental factors influencing their environmental distribution. Naturally occurring as well as released Metarhizium strains in the environment traditionally are monitored with cultivation-dependent techniques. However, specific detection and quantification may be limited due to the lack of a defined and reliable detection range of such methods. Cultivation-independent PCR-based detection and quantification tools offer high throughput analyses of target taxa in various environments. In this study a cultivation-independent PCR-based method was developed, which allows for specific detection and quantification of the defined Metarhizium clade 1, which is formed by the species Metarhizium majus, Metarhizium guizhouense, Metarhizium pingshaense, Metarhizium anisopliae, Metarhizium robertsii and Metarhiziumbrunneum, formerly included in the M. anisopliae cryptic species complex. This method is based on the use of clade-specific primers, i.e. Ma 1763 and Ma 2097, that are positioned within the internal transcribed spacer regions 1 and 2 of the nuclear ribosomal RNA gene cluster, respectively. BLAST similarity searches and empirical specificity tests performed on target and non-target species, as well as on bulk soil DNA samples, demonstrated specificity of this diagnostic tool for the targeted Metarhizium clade 1. Testing of the primer pair in qPCR assays validated the diagnostic method for specific quantification of Metarhizium clade 1 in complex bulk soil DNA samples that significantly correlated with cultivation-dependent quantification. The new tool will allow for highly specific and rapid detection and quantification of the targeted Metarhizium clade 1 in the environment. Habitat with high Metarhizium clade 1 densities can then be analyzed for habitat preferences in greater detail using cultivation-dependent techniques and genetic typing of isolates.  相似文献   

15.
European corn borer (Ostrinia nubilalis) is an important maize pest which is treated mainly by synthetic pesticides with many negative effects for ecosystem and human health. Soil borne entomopathogenic fungi of species belonging to Beauveria genus may provide an alternative strategy for biological control of this pest. In this article, we report results of virulence testing of 46 soil isolates of Beauveria spp. against O. nubilalis in relation to isolates origin and haplotype. All strains were collected from soil using Galleria mellonella bait method. Conidia suspension with concentration 107 conidia in ml was used for virulence test against 4th instar larvae of O. nubilalis at temperature 25°C. After 14 days, mortality of larvae was in the range 34%–96%. Median lethal time LT50 was estimated to 5.5–21.3 days. Mortality was not in relation to habitat or any other environmental parameter of sites where isolates came from. Differences among species were insignificant. Isolates were divided into 8 genetic lineages and 14 haplotypes using sequencing of ITS and Bloc nuclear regions. None of the lineages showed higher mortality than others. Despite more or less virulent isolates being found in each lineage, the three most virulent isolates belonged to the same lineage Beauveria bassiana A3. The four most virulent isolates were compared to commercial isolate GHA to assess medium lethal concentration. LC50 were estimated in range 7.5 × 104 to 9.5 × 105. Three of the four isolates showed equal or greater efficiency than strain GHA.  相似文献   

16.
Exploratory activities were done in Syria, Turkey, Iran, Uzbekistan, Kazakhstan, The Kyrghyz Republic, and Russia to locate entomopathogenic fungi of Eurygaster integriceps. Isolates from the entomopathogenic genera Beauveria, Paecilomyces, and Verticillium were collected. Beauveria bassiana was the most commonly recovered species. Thirty-one isolates of the 221 recovered were examined at 20, 25, 30, and 35 °C for 20 days for growth and sporulation. Growth and sporulation were generally highest at 25 °C. None of the isolates grew at 35 °C, and at 30 °C growth was retarded with no conidia being produced. Single- and multiple-concentration bioassays were conducted on greenhouse-grown wheat plants and in pine litter to evaluate virulence of fungi from several sources to E. integriceps. When tested at a single concentration, mortality after 15 days ranged from 66 to >95% in the litter assays and 50 to 91% in the plant assays. There was a distinct concentration response for most of the isolates tested in the multiple-concentration assay, particularly in the in-litter environment. In litter, mortality tended to develop earlier than in on-plant assays. Several isolates of B. bassiana and one Metarhizium anisopliae displayed consistently high virulence against E. integriceps and were more virulent than two commercial strains. Our results demonstrate the potential of entomopathogenic fungi for management of E. integriceps in overwintering sites and in wheat fields.  相似文献   

17.
The distribution of entomopathogenic fungi in various geographical areas of Punjab, Pakistan, is poorly understood. The present study was planned to explore the occurrence and diversity of entomopathogenic fungi from soils collected from cultivated and non‐cultivated habitats. The detailed survey of different habitats (crop fields, fruits, vegetables, forests) was conducted to collect soil samples and the associated fungi were isolated using Galleria bait method. Among 210 soil samples, 168 fungal isolates were recovered and identified, with 98 from forests, 32 from vegetables, 30 from field crops and 8 from fruits. The major entomopathogenic fungi recovered from these samples were Beauveria bassiana, Metarhizium anisopliae, Paecilomyces lilacinus, B. brongniartii, P. chlamydosporia and Lecanicillium attenuatum. The diversity of entomopathogenic fungi was greater in soil samples from forests compared to crop fields, vegetables and fruits, respectively. The geographical attributes (altitude, longitude, latitude) greatly influenced the occurrence of entomopathogenic fungi with the highest number of isolates found from >600 m altitude, 33°–34′N latitude, and 73°74′E longitude from soil samples. The results of the surveys clearly indicated that the entomopathogenic fungi are distributed in the soils which may be used in successful IPM programs in future.  相似文献   

18.

Background  

The entomopathogenic fungi of the genus Beauveria are cosmopolitan with a variety of different insect hosts. The two most important species, B. bassiana and B. brongniartii, have already been used as biological control agents of pests in agriculture and as models for the study of insect host - pathogen interactions. Mitochondrial (mt) genomes, due to their properties to evolve faster than the nuclear DNA, to contain introns and mobile elements and to exhibit extended polymorphisms, are ideal tools to examine genetic diversity within fungal populations and genetically identify a species or a particular isolate. Moreover, mt intergenic region can provide valuable phylogenetic information to study the biogeography of the fungus.  相似文献   

19.
The occurrence of entomopathogenic fungi was investigated in irrigated vegetable fields and citrus orchards soils, over a nine-month period (April-December 1999),using the Galleria bait method (GBM). Entomopathogenic fungi were found to occur in 33.6% of the soil samples studied, with positive samples yielding 70 fungal isolates, belonging to 20 species from 13 genera. Conidiobolus coronatus was the most frequent and abundant entomopathogenic species recovered, comprising 31.4% of the total number of isolates. Soil pH, soil moisture content and the geographical location had minor or no effect on the isolation of entomopathogenic fungi in the fields studied. On the other hand, organic matter content of soil, and vegetation type were found to significantly affect the occurrence of entomopathogenic fungi in soil habitats, with orchard fields yielding larger numbers of isolates than vegetable fields. Using Koch's postulates the pathogenicity of fungal isolates to Galleria larvae was found to range from 16–100% (mortality rate). Isolates of C. coronatus proved to be the most virulent isolates recovered. The effect of media and temperature on mycelial growth rate, conidial production and conidial germination of six entomopathogenic fungal species (C. coronatus, Entomophaga grylli, Erynia castrans, Hirsutella jonesii, Paecilomyces farinosus and Sporodiniella umbellata) was also studied. Mycelial growth rate, spore production and spore germination were significantly affected by media, temperature and isolates. In view of the present results, C. coronatus appears to be a good candidate for pest control in agricultural soils, as it has a wide tolerance to agricultural practices, has frequently been isolated from both vegetable and orchard fields, and is characterized by high mycelial growth rate, conidial production and conidial germination.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

20.
Destruxins (DTXs) are cyclic depsipeptides produced by many Metarhizium isolates that have long been assumed to contribute to virulence of these entomopathogenic fungi. We evaluated the virulence of 20 Metarhizium isolates against insect larvae and measured the concentration of DTXs A, B, and E produced by these same isolates in submerged (shaken) cultures. Eight of the isolates (ARSEF 324, 724, 760, 1448, 1882, 1883, 3479, and 3918) did not produce DTXs A, B, or E during the five days of submerged culture. DTXs were first detected in culture medium at 2–3 days in submerged culture. Galleria mellonella and Tenebrio molitor showed considerable variation in their susceptibility to the Metarhizium isolates. The concentration of DTXs produced in vitro did not correlate with percent or speed of insect kill. We established endophytic associations of M. robertsii and M. acridum isolates in Vigna unguiculata (cowpeas) and Cucumis sativus (cucumber) plants. DTXs were detected in cowpeas colonized by M. robertsii ARSEF 2575 12 days after fungal inoculation, but DTXs were not detected in cucumber. This is the first instance of DTXs detected in plants endophytically colonized by M. robertsii. This finding has implications for new approaches to fungus-based biological control of pest arthropods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号