首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As global temperatures continue to rise, so too will the nest temperatures of many species of turtles. Yet for most turtle species, including the estuarine diamondback terrapin (Malaclemys terrapin), there is limited information on embryonic sensitivity to elevated temperature. We incubated eggs of M. terrapin at three, mean temperatures (31, 34, 37 °C) under two thermal exposure regimes (constant or semi-naturally fluctuating temperature) and measured hatching success, developmental rate, and hatchling size. Hatching success was 100% at 31 °C and 67% at 34 °C, respectively; at 37 °C, all eggs failed early in the incubation period. These values were unaffected by exposure regime. The modeled LT50 (temperature that was lethal to 50% of the test population) was 34.0 °C in the constant and 34.2 °C in the fluctuating thermal regime, reflecting a steep decline in survival between 33 and 35 °C. Hatchlings having been incubated at a constant 34 °C hatched sooner than those incubated at 31 °C under either constant or fluctuating temperature. Hatchlings were smaller in straight carapace length (CL) and width after having been incubated at 34 °C compared to 31 °C. Larger (CL) hatchlings resulted from fluctuating temperature conditions relative to constant temperature conditions, regardless of mean temperature. Based upon recent temperatures in natural nests, the M. terrapin population studied here appears to possess resiliency to several degrees of elevated mean nest temperatures, beyond which, embryonic mortality will likely sharply increase. When considered within the mosaic of challenges that Maryland's M. terrapin face as the climate warms, including ongoing habitat losses due to sea level rise and impending thermal impacts on bioenergetics and offspring sex ratios, a future increase in embryonic mortality could be a critical factor for a population already experiencing ecological and physiological challenges due to climate change.  相似文献   

2.
Paedomorphosis, the presence of ancestral larval and juvenile traits that occur at the descendent adult stage, is an evolutionary phenomenon that shaped morphological evolution in many vertebrate lineages, including tailed amphibians. Among salamandrid species, paedomorphic and metamorphic phenotypes can be observed within single populations (facultative paedomorphosis). Despite wide interest in facultative paedomorphosis and polymorphism produced by heterochronic changes (heterochronic polymorphism), the studies that investigate intraspecific morphological variation in facultative paedomorphic species are largely missing. By quantifying the cranium size and development (bone development and remodeling), we investigated the variation at multiple levels (i.e., between sexes, populations and species) of two facultatively paedomorphic European newt species: the alpine and the smooth newt. The pattern of variation between paedomorphs (individuals keeping larval traits at the adult stage) and metamorphs (metamorphosed adult individuals) varied between species and among populations within a single species. The patterns of variation in size and skull formation appear to be more uniform in the alpine than in the smooth newt, indicating that developmental constraints differed between species (more pronounced in alpine than in smooth newt). Our study shows that the cranial skeleton provides detailed insight in the pattern of variation and divergence in heterochronic polymorphism within and between species and open new questions related to heterochronic polymorphism and evolution of cranial skeleton.  相似文献   

3.
Studies examining the effects of incubation temperature fluctuation on the phenotype of hatchling reptiles have shown species variation. To examine whether incubation temperature fluctuation has a key role in influencing the phenotype of hatchling Chinese skinks (Plestiodon chinensis), we incubated eggs produced by 20 females under five thermal regimes (treatments). Eggs in three treatments were incubated in three incubators, one set constant at 27 °C and two ramp-programmed at 27±3 °C and 27±5 °C on a cycle of 12 h (+) and 12 h (−). The remaining eggs were incubated in two chambers: one inside a room where temperatures varied from 23.0 to 31.1 °C, with a mean of 27.0 °C; the other outside the room where temperatures varied from 20.2 to 35.3 °C, with a mean of 26.1 °C. We found that: (1) for eggs at a given embryonic stage at ovipositon, the mean rather than the variance of incubation temperatures determined the length of incubation; (2) most (egg mass, embryonic stage at oviposition, incubation length and all examined hatchling traits except tail length and locomotor performance) of the examined variables were affected by clutch; and (3) body mass was the only hatchling trait that differed among the five treatments, but the differences were tiny. These findings suggest that incubation temperature fluctuation has no direct role in influencing incubation length and hatchling phenotype in P. chinensis.  相似文献   

4.
Freshly-laid eggs of the Chinese three-keeled pond turtle (Chinemys reevesii) from captive cohorts in Hunan, Shanghai and Jiangxi were incubated at four constant temperatures of 24, 26, 28 and 30 °C to assess the effects of incubation temperature and cohort origin on incubation duration and hatchling phenotypes. Eggs from the three cohorts differed in size and shape. Egg mass and width were greatest in the Hunan cohort, smallest in the Jiangxi cohort, with the Shanghai cohort in between. Incubation duration decreased with increasing temperature and differed among the cohorts, with longer incubation duration for eggs from the Jiangxi cohort than those from the Hunan or Shanghai cohorts. Incubation temperatures significantly affected hatchling size and hatchlings from 30 °C were smaller than those from the lower temperatures in terms of carapace size and body mass. When incubated at a common temperature, hatchlings from the Hunan and Shanghai cohorts were larger than those from the Jiangxi cohort. The swimming capacity of hatchlings was affected by incubation temperature, but did not differ among the cohorts. The characteristics of eggs and hatchlings were similar among the Hunan and Shanghai cohorts, but they differed significantly from the Jiangxi cohort.  相似文献   

5.
Wang L  Du W G  Shen J W  Zhu L J 《农业工程》2010,30(2):81-84
Freshly-laid eggs of the Chinese three-keeled pond turtle (Chinemys reevesii) from captive cohorts in Hunan, Shanghai and Jiangxi were incubated at four constant temperatures of 24, 26, 28 and 30 °C to assess the effects of incubation temperature and cohort origin on incubation duration and hatchling phenotypes. Eggs from the three cohorts differed in size and shape. Egg mass and width were greatest in the Hunan cohort, smallest in the Jiangxi cohort, with the Shanghai cohort in between. Incubation duration decreased with increasing temperature and differed among the cohorts, with longer incubation duration for eggs from the Jiangxi cohort than those from the Hunan or Shanghai cohorts. Incubation temperatures significantly affected hatchling size and hatchlings from 30 °C were smaller than those from the lower temperatures in terms of carapace size and body mass. When incubated at a common temperature, hatchlings from the Hunan and Shanghai cohorts were larger than those from the Jiangxi cohort. The swimming capacity of hatchlings was affected by incubation temperature, but did not differ among the cohorts. The characteristics of eggs and hatchlings were similar among the Hunan and Shanghai cohorts, but they differed significantly from the Jiangxi cohort.  相似文献   

6.
Flexible-shelled eggs of the Chinese skink (Eumeces chinensis) were used to determine the routes of water exchange with the environment and the effects of water exchange on hatchling traits. Eggs were incubated under three different hydric conditions at 28 °C. One group (ground eggs) was half-buried in incubation substrate. The second group (upper eggs) rested on the ground eggs but did not contact the substrate directly, and the third group was placed on a plastic platform above the substrate. Ground and upper eggs increased in mass and hatched successfully, while all eggs resting on the plastic platform lost mass and died within a week. Hence, E. chinensis eggs cannot sustain water balance through exchange of water vapor in air alone, but can absorb water from the substrate and other eggs and develop well. Water gained by upper eggs was only 20% of that absorbed by ground eggs, but hatchlings from the two treatments did not differ in morphology or locomotor performance. Therefore, the degree of water exchange of E. chinesis eggs has little effect on embryonic development and hatchling traits. The insensitivity of the eggs to variations in water exchange may be an adaptation against extreme hydric conditions in a species that deposits its eggs close to the soil surface.Communicated by I.D. Hume  相似文献   

7.
在24℃、27℃、30℃和33℃条件下孵化乌龟(Chinemysreevesii)卵,检测温度对胚胎利用卵内能量和矿物质的影响。孵化温度显著影响乌龟胚胎的能量利用。卵在温和温度下(27℃和30℃)比在高温(33℃)和低温(24℃)孵化有较高的干物质、脂肪和能量转化率。因而,27℃和30℃新生幼体的总能量高于33℃和24℃下孵出的幼体。新生幼体内剩余卵黄随温度升高而增大。27℃下新生幼体的躯干能量显著高于其它温度。此外,孵化温度显著影响乌龟胚胎钙代谢,但对镁和钾代谢影响微弱。24℃下胚胎从卵黄和卵壳吸收的总钙量小于其它温度条件下胚胎,与之相对应,24℃下孵出卵卵壳内残留较多的钙。由此可见,温和温度(27-30℃)可提高胚胎能量转化效率,促进胚胎从卵黄和卵壳吸收较多的矿物质,有利于孵出发育良好的乌龟幼体  相似文献   

8.
Incubation temperature and the amount of water taken up by eggs from the substrate during incubation affects hatchling size and morphology in many oviparous reptiles. The Brisbane river turtle Emydura signata lays hard-shelled eggs and hatchling mass was unaffected by the amount of water gained or lost during incubation. Constant temperature incubation of eggs at 24 °C, 26 °C, 28 °C and 31 °C had no effect on hatchling mass, yolk-free hatchling mass, residual yolk mass, carapace length, carapace width, plastron length or plastron width. However, hatchlings incubated at 26 °C and 28 °C had wider heads than hatchlings incubated at 24 °C and 31 °C. Incubation period varied inversely with incubation temperature, while the rate of increase in oxygen consumption during the first part of incubation and the peak rate of oxygen consumption varied directly with incubation temperature. The total amount of oxygen consumed during development and hatchling production cost was significantly greater at 24 °C than at 26 °C, 28 °C and 31 °C. Hatchling mass and dimensions and total embryonic energy expenditure was directly proportional to initial egg mass. Accepted: 18 March 1998  相似文献   

9.
吴美仙  赵波  张文  陆洪良 《生态学报》2014,34(19):5398-5404
用3个恒定温度(24、26和28℃)孵化黄喉拟水龟南方种群卵,检测孵化温度对孵化期、孵化成功率和孵出幼体特征的影响。孵化温度显著影响孵化期和孵化成功率、以及幼体的性别、大小和早期生长。黄喉拟水龟幼体的性别取决于孵化温度(属TSDⅠa型),26℃和28℃孵出幼体偏雄性,30℃孵出幼体都是雌性。随着孵化温度的升高,孵化期呈非线性缩短,而孵化成功率略微增加。较高温度下孵出的幼体较大且具有较好的功能表现,但生长较慢。低温孵出幼体较小,但胚后生长速率较快。低温孵出幼体较小可能与胚胎发育期长、总代谢消耗大有关;而生长速率快则可能是因为低温产生的雄性幼体生长快于高温产生的雌性幼体。与已报道的黄喉拟水龟北方种群卵孵化结果相比较,26℃和28℃条件下南方种群卵的孵化期和产生1∶1性比的关键温度较大。这种地理上的变异可能反映不同种群对当地热环境适应性上的差异。  相似文献   

10.
不同孵化湿度下的乌龟卵孵化成功率及新生幼体特征   总被引:9,自引:1,他引:9  
杜卫国  郑荣泉 《动物学报》2004,50(1):133-136
A total of 51 Chinese three-keeled pond turtle Chinemys reevesii eggs were incubated on wet and dry substrates (water potentials of - 12 kPa and - 300 kPa, respectively) at 30℃ to assess the influence of the hydric environments on egg survival and hatchling traits. Eggs incubated in the dry condition lost weight, whereas those incubated in the wet condition did not. The hydric environments did not affect incubation lengths (60.3 vs 60.7 days) as well as hatching successes (69.2% vs 88.0% ). Except for wet body mass and carapace width, which were larger for hatchlings from the -12 kPa treatment than from the -300 kPa treatment, the hydric environments did not affect most hatchling traits. These unaffected traits included dry body mass, carapace length, tail length, limb length, hatehling components (carcass, residual yolk and fat bodies), swimming performance and critical thermal minimum. In conclusion, within the water potential of -12 to -300 kPa, hydric environments have little effect on embryonic development and hatchling traits in Chinese three-keeled pond turtles [Acta Zoologica Sinica 50 (1) : 133 - 136, 2004].  相似文献   

11.
朱灵君  杜卫国  孙波  张永普 《生态学报》2010,30(18):4848-4854
在围栏条件下,比较升温和对照处理北草蜥(Takydromus septentrionalis)繁殖、卵孵化及幼体特征的差异,以揭示升温对其繁殖生活史特征的作用。升温处理对北草蜥母体体温有显著影响,但并不影响其繁殖输出。升温显著影响卵孵化期和幼体的运动能力,但不影响幼体大小等形态特征。升温条件下孵出的幼体运动能力较弱。结果表明,北草蜥母体能耐受短期的环境增温,维持相对恒定的繁殖输出;升温能影响幼体的功能表现,进而可能改变后代适合度。  相似文献   

12.
Phenotypic plasticity may allow an organism to adjust its phenotype to environmental needs. However, little is known about environmental effects on offspring biochemical composition and turnover rates, including energy budgets and developmental costs. Using the tropical butterfly Bicyclus anynana and employing a full-factorial design with two oviposition and two developmental temperatures, we explore the consequences of temperature variation on egg and hatchling composition, and the associated use and turnover of energy and egg compounds. At the lower temperature, larger but fewer eggs were produced. Larger egg sizes were achieved by provisioning these eggs with larger quantities of all compounds investigated (and thus more energy), whilst relative egg composition was rather similar to that of smaller eggs laid at the higher temperature. Turnover rates during embryonic development differed across developmental temperatures, suggesting an emphasis on hatchling quality (i.e. protein content) at the more stressful lower temperature, but on storage reserves (i.e. lipids) at the higher temperature. These differences may represent adaptive maternal effects. Embryonic development was much more efficient at the lower temperature, providing a possible mechanism underlying the temperature-size rule.  相似文献   

13.
Although the effects of constant temperatures on hatchling traits have been extensively studied in reptiles, the effects of fluctuating temperatures remain poorly understood. Eggs of the Chinese three-keeled pond turtle (Chinemys reevesii) were incubated at a constant temperatures (28 °C) and two fluctuating temperatures (28±3 °C and 28±6 °C) to test for the influence of thermal environment on incubation duration, hatchling traits, and post-hatching growth. Incubation duration was shorter at constant temperature than at fluctuating temperatures. The sex ratio of hatchlings varied among temperature treatments, with more females from 28±6 °C than from 28 °C. The size and mass were greater for hatchlings from a constant temperature than from fluctuating ones, but this difference in body size disappeared when the hatchlings were 3 months old. In addition, the swimming ability, survival, and growth of hatchlings from fluctuating temperatures did not differ from those of hatchlings from constant temperature, when they were kept at an artificial environment without food scarcity or predation. Therefore, the thermal environments with various temperature fluctuations used in this study do not significantly affect fitness-related hatchling traits in this species.  相似文献   

14.
用 6种温湿度条件孵化安徽宿州乾山山地麻蜥 (Eremiasbrenchleyi)卵 ,观测孵化卵质量变化、胚胎利用卵内物质和能量以及孵出幼体特征。卵在产出后 1h内收集 ,共设置 3× 2种温湿度处理 (温度分别为2 7、 30和 33℃ ;湿度分别为 - 2 2 0、 0kPa)。每隔 5d称卵重 ,直至幼体孵出。幼体经测量、称重后 ,解剖、分离为躯干、剩余卵黄和脂肪体三组分 ,用于成分测试。卵从环境中吸水导致质量增加 ,孵化温、湿度及其相互作用显著影响孵化卵的质量变化 :同一温度下 ,高湿度 (0kPa)孵化卵的终末质量大于低湿度 (- 2 2 0kPa)孵化卵 ;同一湿度下 ,低温 (2 7和 30℃ )孵化卵的终末质量大于高温 (33℃ )孵化卵。温度显著影响孵化期 ,随温度的升高孵化期缩短 ;湿度及其与温度的相互作用对孵化期无显著影响。孵化温湿度对孵化成功率无显著影响。温度显著影响胚胎对卵内物质的动用、幼体大小、质量以及剩余卵黄质量 ;除剩余卵黄外 ,湿度及其与温度的相互作用不影响山地麻蜥孵出幼体几乎所有的被检测特征。 33℃孵出幼体的大小和质量均显著小于 2 7和 30℃ ,并特征性地具有较大的剩余卵黄。因此 ,33℃不适宜孵化山地麻蜥卵。 2 7℃和 30℃中孵出幼体躯干发育良好 ,各项被测定的特征指标极其相似。  相似文献   

15.
The ability of hatchling turtles to detect environmental temperature differences and to effectively select preferred temperature is a function that critically impacts survival. In some turtle species, temperature preference may be influenced by embryonic and post-hatching conditions, such as egg-incubation and acclimation temperature. We tested for effects of embryonic incubation temperature (27.5 °C, 30 °C) and acclimation temperature (20 °C, 25 °C) on the selected temperature and movement patterns of 32 Chrysemys picta bellii (Reptilia: Emydidae) hatchlings in an aquatic thermal gradient of 14-34 °C and in single-temperature (20 °C, 25 °C) control tests. Among 10-11 month old hatchlings, acclimation temperature and egg-incubation temperature influenced temperature selection and movement patterns. Acclimation temperature affected activity and movement: in thermal gradient and single-temperature control tests, 25 °C-acclimated turtles relocated between chambers significantly more frequently than individuals acclimated to 20 °C. Acclimation temperature also affected temperature selection: 20 °C-acclimated turtles selected a specific temperature during gradient tests, but 25 °C-acclimated turtles did not. Among 20 °C-acclimated turtles, egg-incubation temperature was inversely related to selected temperature: hatchling turtles incubated at 27.5 °C selected the warmest temperature available (34 °C); individuals incubated at 30 °C selected the coldest temperature (14 °C). These results suggest that interactions of environmental conditions may influence post-hatching thermoregulatory behavior in C. picta bellii, a factor that ultimately affects fitness.  相似文献   

16.
The triggering of transitory egg desertion in fasting and incubating blue petrels (Halobaena caerulea, nocturnal burrowing seabirds living in the subantarctic region) was investigated by continuously monitoring both body temperature (T sto) and egg temperature (T egg) with a telemetry system, and by measuring body mass (BM) loss. The birds were kept captive in their burrow and incubated day and night without any interruption; there was no day-night cycle in T sto and T egg, which averaged 39.9 °C and 32.0 °C, respectively. There was no evidence of hypothermia as a way to save energy in this fasting situation. Egg desertion occurred at night and was an abrupt and definitive phenomenon reflected by a simultaneous fall in T egg and a peak in T sto. After egg desertion, a distinct day-night cycle of body temperature was observed, T sto being 0.6 °C higher during night-time (P < 0.05), probably reflecting increased nocturnal activity. BM at egg desertion averaged 166.7 ± 3.8 g in telemetered birds and 164.4 ± 1.6 g in␣a group of free-living birds. Throughout fasting, the␣specific daily BM loss remained at 46 ± 1 g · kg−1 · day−1, but increased sharply below a critical BM of 160.0 ± 2.5 g. Thus, fasting incubating blue petrels spontaneously desert their egg when reaching a BM threshold. This BM is very close to a critical value in fasting birds and mammals that corresponds to a critical depletion of fat stores and to a shift from lipid to protein utilization. This strongly suggests that such a metabolic shift triggers behavioural changes leading to egg desertion and refeeding, which is of great relevance to the understanding of the long-term control of food intake and BM. Accepted: 16 July 1998  相似文献   

17.
Carbon dioxide (CO2) is considered to be an important factor during incubation of eggs. Effects attributed to higher CO2 concentrations during experiment might be due to confounding effects of other environmental conditions, such as incubation temperature. To disentangle effects of eggshell temperature (EST) and CO2 concentration, an experiment was conducted. A total of 630 Cobb 500 hatching eggs from 37 to 45 wk commercial breeder flocks were collected and incubated according to treatments. The experiment was setup as a complete randomized 2 × 3 factorial design, resulting in 6 treatments. From day 8 of incubation onward, broiler eggs were exposed to one of two EST (37.8 or 38.9 °C) and one of three CO2 concentrations (0.1, 0.4 or 0.8%). Eggs were incubated in climate-respiration chambers and metabolic heat production was determined continuously. At day 18 of incubation and at 6 h after hatching, embryo and chicken quality were determined by evaluation of organ weights, navel condition, blood metabolites and hepatic glycogen. Hatching time and chicken length at 6 h after hatching showed an interaction between EST and CO2 concentration (both P = 0.001). Furthermore, no effect of CO2 concentration was found on embryo development or chicken quality. Metabolic heat production between day 8 and 18 of incubation was not affected by either EST or CO2. At day 18 of incubation, an EST of 38.9 °C resulted in a higher egg weight loss, longer embryos, higher yolk free body mass (YFBM) and lower heart weight than an EST of 37.8 °C (all P < 0.008). At 6 h after hatching, an EST of 38.9 °C resulted in a higher residual yolk weight and lower YFBM, liver weight and heart weight than an EST of 37.8 °C (all P < 0.003). Lactate, uric acid and hepatic glycogen were not affected by EST at either day 18 of incubation or at hatch. Glucose was not affected by EST at day 18 of incubation, but at hatch, it was higher at an EST of 37.8 °C than at an EST of 38.9 °C (P = 0.02). It can be concluded that effects of CO2 concentration (at concentrations ≤0.8%) on embryonic development and chicken quality appear to be limited when EST is maintained at a constant level. Moreover, a higher EST from day 8 of incubation onward appears to negatively affect chicken quality at hatch.  相似文献   

18.
The effect of incubation temperature on embryonic development and offspring traits has been widely reported for many species. However, knowledge remains limited about how such effects vary across populations. Here, we investigated whether incubation temperature (26, 28, and 30 °C) differentially affects the embryonic development of Asian yellow pond turtle (Mauremys mutica) eggs originating from low‐latitude (Guangzhou, 23°06′N) and high‐latitude (Haining, 30°19′N) populations in China. At 26 °C, the duration of incubation was shorter in the high‐latitude population than in the low‐latitude population. However, this pattern was reversed at 30 °C. As the incubation temperature increased, hatching success increased in the low‐latitude population but slightly decreased in the high‐latitude population. Hatchlings incubated at 30 °C were larger and righted themselves more rapidly than those incubated at 26 °C in the low‐latitude population. In contrast, hatchling traits were not influenced by incubation temperature in the high‐latitude population. Overall, 30 °C was a suitable developmental temperature for embryos from the low‐latitude population, whereas 26 and 28 °C were suitable for those from the high‐latitude population. This interpopulation difference in suitable developmental temperatures is consistent with the difference in the thermal environment of the two localities. Therefore, similarly to posthatching individuals, reptile embryos from different populations might have evolved diverse physiological strategies to benefit from the thermal environment in which they develop. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 114 , 35–43.  相似文献   

19.
Ørjan Totland 《Oecologia》1999,120(2):242-251
Discovering temperature effects on the performance of tundra plants is important in the light of expected climate change. In this 4-year study on alpine Ranunculus acris, I test the hypothesis that temperature influences flowering phenology, reproductive success, growth, population dynamics, and phenotypic selection on quantitative traits, by experimental warming using open-top chambers (OTCs). Warming significantly advanced flowering phenology in only one season. Seed number and weight were significantly increased by warming during the first three seasons, but not in the fourth. Plants inside OTCs produced bigger leaves than control plants in the fourth season, but leaf number was unaffected by the OTC treatment. Despite increased seed number and weight, the density of flowering plants decreased inside OTCs compared to control plots, possibly because of a higher graminoid cover inside OTCs. Phenotypic-selection regression showed a significant selection differential and gradient in the direction of larger leaf sizes in control plants, whereas no selection on leaf size was detected on warmed plants. The direction and strength of selection on flowering time, flower number, and leaf number did not differ between control and warmed plants. The results suggest that increased reproductive output of R. acris may not be sufficient to maintain current population density under a denser vegetation cover. Received: 1 December 1998 / Accepted: 14 April 1999  相似文献   

20.
环境因子对农业土壤有机碳分解的影响   总被引:84,自引:8,他引:84  
为研究环境因子对有机C在农业土壤中分解的影响 ,在不同温度、水分及土壤质地下进行小麦和水稻秸秆及其根培养实验 ,结果表明 ,在同样的水热条件下 ,秸秆有机C的分解量大于根的分解量 .在温度较低情况下 ,升高温度促进了有机C的分解 ;而在温度较高的情况下 ,升高温度对有机C分解的促进作用降低 .在非淹水条件下 ,温度对有机C分解的影响随着时间的延长而逐步减小 .淹水条件下培养一周后 ,温度对有机C分解的影响不随时间而变化 .当含水量为 30 0 g·kg-1和 5 0 0 g·kg-1时 ,有机C分解较快 ,而在 2 0 0 g·kg-1和淹水条件下则分解较慢 ,空白对照培养结果的趋势是分解速率随水分含量的增加而加快 .培养实验的第一个月内 ,小麦秸秆有机C的分解量与土壤粘粒含量呈负相关  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号