首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Proteomic analysis of parasitized Plutella xylostella larvae plasma   总被引:1,自引:0,他引:1  
Insects use their innate immunity to defend themselves against foreign invaders, such as microorganisms, nematodes and parasites. Cotesia plutellae, an endoparasitoid wasp that parasitizes the diamondback moth Plutella xylostella, uses several strategies to attack the host immune system, such as injection of viruses, venom, and serosal membrane-derived cells denoted teratocytes. However, the proteome profiles related to these immune deficiency systems have yet to be clearly defined. In this study, we investigate differences in protein expression patterns in parasitized P. xylostella larvae, with a view to identifying parasitism-specific factors. Using 2D polyacrylamide gel electrophoresis, proteins in the host plasma were assessed every 48 h after parasitism by C. plutellae. A large number of protein spots (350 in total) were detected, and approximately 50 spots were differentially expressed in the parasitized P. xylostella larvae every 48 h. In total, 26 potential candidates, including P. xylostella Serpin 2 (pxSerpin 2), translationally controlled tumor protein, signal transduction histidine kinase, apolipophorin-III, and fatty-acid binding protein were identified through quadrupole time-of-flight tandem mass spectrometry and sequence homology analysis. These proteins were classified into the following functional groups: immunity, signaling, lipid metabolism, energy metabolism, amino acid/nucleotide metabolism, and others. The pxSerpin 2 gene was cloned, and its expression profile investigated during the course of parasitism. Real-time PCR analysis of pxSerpin 2 revealed a poor correlation between the mRNA level and protein abundance. Our results clearly suggest that parasitism-specific proteins participate in suppression of the host immune response.  相似文献   

5.
《Journal of Asia》2007,10(3):181-191
Polydnavirus is a group of animal DNA virus mutually associated with some ichneumonoid wasp. Its relatively large size of genome has been considered as a major source of the parasitoid function to manipulate developmental and immunological processes of target parasitized insects. Cotesia plutellae bracovirus (CpBV) is a polydnavirus derived from C. plutellae, which parasitizes the diamondback moth, Plutella xylostella. Parasitized P. xylostella exhibits altered physiological symptoms in development and immune reactions. Though several other parasitic factors such as ovarian proteins, venom, and teratocytes are identified, CpBV has been more focused on elucidating various host physiological alterations occurring due to the parasitism, which has driven the CpBV genome project. CpBV attains a typical bracovirus structure by its single unit membrane envelope, in which multiple nucleocapsids are enclosed. Its genome DNAs are segmented and located on the genome of C. plutellae. Its replication begins at adult tissue development during pupal stage. An apparent genome size is 471 kb estimated from 27 segments separated on 5% agarose gel. A current work on the genome has been completely sequenced 24 genomic segments and analyzed their genomic structure. The aggregated genome size is 351, 299 bp long and exhibits an average GC content of approximately 34.6%. Average coding density is about 32.3% and 125 putative open reading frames are predicted. Though more than half (52.5%) of predicted genes are annotated as hypothetical, the annotated CpBV genes share amino acid sequence homologies with those of other bracoviral genomes. The annotated genes are classified into the known bracoviral families, in which a family of protein tyrosine phosphatase is the largest including 36 ORFs, suggesting a significant role during parasitization. In addition, 8 and 7 ORFs encode Iκβ-like and EP1-like, respectively. Some predicted genes are known only in Cotesia-associated bracoviral genomes. Finally, two homologous genes, CpBV15α/β, are unique in CpBV genome, which are not matched to any other known polydnaviral genes. Their homology with malarian circumsporozoite toxin and eukaryotic translation inhibition factors suggests their function in host translation inhibitory factor. This review discusses CpBV genes on their putative physiological functions based on the molecular interactions between the host-parasite.  相似文献   

6.
7.
【目的】本研究旨在筛选小菜蛾Plutella xylostella应对玫烟色棒束孢Isaria fumosorosea侵染的免疫应答及其网络调控基因,以进一步探讨小菜蛾对玫烟色棒束孢的防御机制。【方法】采用第二代高通量测序技术RNA-seq,对处理后12 h的感染玫烟色棒束孢和健康(平行对照)的小菜蛾4龄幼虫转录组进行了测序,通过生物信息学分析对得到的差异基因进行了功能注释和分类,对差异基因参与的信号通路进行了分析。【结果】在感菌和健康小菜蛾幼虫转录组两个表达谱里,分别获得了12 346 987和12 315 210个clean reads,有60.93%和61.26%的reads分别能比对到参考基因库里,其中完美匹配(perfect match)的比例分别为32.15%和32.73%。共得到351个显著差异表达基因(differentially expressed unigenes,DEUs),上调表达基因有275个,下调表达基因有76个,与免疫防御反应潜在相关的基因有156个。GO(Gene Ontology)富集分析有102个DEUs分布到46个GO term里,KEGG(Kyoto Encyclopedia of Genes and Genomes)pathway富集分析结果显示,有132个DEUs显著富集在13个代谢通路(pathway)里。【结论】这些差异表达基因中,大部分编码潜在的与免疫识别及调控相关的基因,集中在能量代谢、疾病反应和防御反应等相关通路。研究结果为挖掘与玫烟色棒束孢侵染相关的小菜蛾免疫应答候选基因提供了重要数据库,也为阐明小菜蛾对玫烟色棒束孢的免疫机制奠定理论基础。  相似文献   

8.
Polydnaviruses (PDVs) are a group of insect DNA viruses, which exhibit a mutual symbiotic relationship with their specific host wasps. Moreover, most encapsidated genes identified so far in PDVs share homologies with insect‐originated genes, but not with virus‐originated genes. In the meantime, PDVs associated with 2 wasp genera Cotesia and Glytapanteles encode some genes presumably originated from other viruses. Cotesia plutellae bracovirus (CpBV) encodes 4 genes homologous to baculoviral p94: CpBV‐E94k1, CpBV‐E94k2, CpBV‐E94k3, and CpBV‐E94k4. This study was conducted to predict the origin of CpBV‐E94ks by comparing their sequences with those of baculoviral orthologs and to determine the physiological functions by their transient expressions in nonparasitized larvae and subsequent specific RNA interference. Our phylogenetic analysis indicated that CpBV‐E94ks were clustered with other E94ks originated from different PDVs and shared high similarity with betabaculoviral p94s. These 4 CpBV genes were expressed during most developmental stages of the larvae of Plutella xylostella parasitized by C. plutellae. Expression of these 4 E94ks was mainly detected in hemocytes and fat body. Subsequent functional analysis by in vivo transient expression showed that all 4 viral genes significantly inhibited both host immune and developmental processes. These results suggest that CpBV‐E94ks share an origin with betabaculoviral p94s and play parasitic roles in suppressing host immune and developmental processes.  相似文献   

9.
10.
Abstract Cotesia plutellae (Kurdjumov) (Hymenoptera: Braconidae), a solitary braconid endoparasitoid wasp, parasitizes the diamondback moth Plutella xylostella (L.) (Lepidoptera: Yponomeutidae) by suppressing the host defense response, thereby resulting in successful parasitization. During parasitization, ovarian calyx fluid is also delivered into the haemocoel of the host along with the wasp egg. The effect of calyx fluid constituents on haemocyte‐spreading behaviour of P. xylostella is analysed by measuring F‐actin development in the haemocytes. For this purpose, the calyx fluid of C. plutellae is separated into ovarian protein and C. plutellae bracovirus (CpBV). The ovarian protein consists of a wide range of molecular weight proteins, which are apparently different from those of CpBV. When nonparasitized P. xylostella haemocytes are incubated with either ovarian protein or CpBV for 1 or 2 h, haemocytes lose their responsiveness to a cytokine, plasmatocyte‐spreading peptide, in a dose‐dependent manner for each calyx component and fail to exhibit haemocyte‐spreading behaviour. Some CpBV genes are expressed within 1 h of parasitization. The inhibition of haemocyte‐spreading could be explained by measuring F‐actin contents, in which parasitization by C. plutellae inhibits F‐actin development in the haemocytes of P. xylostella. Either ovarian protein or CpBV could inhibit F‐actin development in the nonparasitized haemocytes. In addition, co‐incubation of ovarian protein and CpBV results in significant additive inhibition of both haemocyte‐spreading and F‐actin development in the haemocytes in response to cytokine. These results suggest that both components of C. plutellae calyx fluid function in a synergistic manner, leading to immunosuppression during the early stage of parasitization.  相似文献   

11.
12.
13.
14.
15.
16.
Parasitoid wasps are among the most diverse insects on earth with many species causing major mortality in host populations. Parasitoids introduce a variety of factors into hosts to promote parasitism, including symbiotic viruses, venom, teratocytes and wasp larvae. Polydnavirus‐carrying wasps use viruses to globally suppress host immunity and prevent rejection of developing parasites. Although prior results provide detailed insights into the genes viruses deliver to hosts, little is known about other products. RNAseq and proteomics were used to characterize the proteins secreted by venom glands, teratocytes and larvae from Microplitis demolitor, which carries M. demolitor bracovirus (MdBV). These data revealed that venom glands and teratocytes secrete large amounts of a small number of products relative to ovaries and larvae. Venom and teratocyte products exhibited almost no overlap with one another or MdBV genes, which suggested that M. demolitor effector molecules are functionally partitioned according to their source. This finding was well illustrated in the case of MdBV and teratocytes. Many viral proteins have immunosuppressive functions that include disruption of antimicrobial peptide production, yet this study showed that teratocytes express high levels of the antimicrobial peptide hymenoptaecin, which likely compensates for MdBV‐mediated immunosuppression. A second key finding was the prevalence of duplications among genes encoding venom and teratocyte molecules. Several of these gene families share similarities with proteins from other species, while also showing specificity of expression in venom glands or teratocytes. Overall, these results provide the first comprehensive analysis of the proteins a polydnavirus‐carrying wasp introduces into its host.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号