首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
爬行动物的体温依赖于外界热环境的变化,本研究以荒漠沙蜥(Phrynocephalus przewalskii)为对象,收集其冬眠前活动期间的体温与地面和离地10 cm的空气温度,研究爬行动物体温节律性变化与环境温度的关系.研究结果表明,荒漠沙蜥在环境温度高于20℃后开始外出活动,其体温随着地面温度和空气温度的上升而逐步...  相似文献   

2.
温度对中国林蛙卵孵化和孵出热耐受性的影响   总被引:6,自引:0,他引:6       下载免费PDF全文
为了解中国林蛙(Rana chensinensis)卵的孵化率、发育起点温度、发育有效积温、孵化后蝌蚪的成活率和蝌蚪的热耐受性,将当天产出的中国林蛙卵采集回实验室,分别置于5个不同温度(10℃、15℃、20℃、25℃和30℃)下孵化,观察和测量记录卵的孵化率、孵化3d后蝌蚪的成活率、全长及每个温度下卵的发育历期。利用温度梯度装置观察记录孵化10d后蝌蚪的最适温度、逃避温度和致死温度。光照周期设为14L∶10D,湿度设为85%。结果表明,温度对中国林蛙卵的孵化率影响显著;孵化3d后蝌蚪的成活率随着温度的升高而降低,30℃下孵化的蝌蚪在2d之内全部死亡;温度对中国林蛙卵孵化3d后蝌蚪全长的影响极显著,蝌蚪的全长随着温度的升高而增加;应用直线回归法和直接最优化法计算中国林蛙卵的发育起点温度和有效积温,分别为0.51℃、65.29日度和0.38℃、65.52日度,直接最优化法优于直线回归法。经过4个不同温度(10℃、15℃、20℃和25℃)孵化10d后蝌蚪的最适温度分别为(13.2±1.6)℃、(15.7±1.9)℃、(17.3±2.1)℃和(19.5±2.3)℃;逃避温度分别为(28.8±1.4)℃、(30.2±1.6)℃、(31.6±1.3)℃和(33.1±1.8)℃;致死温度分别为(32.9±1.7)℃、(33.8±1.5)℃、(35.2±1.2)℃和(36.7±0.9)℃。经过不同温度孵化10d后蝌蚪的最适温度、逃避温度和致死温度都存在显著差异。  相似文献   

3.
    
The thermoregulatory behavior of the giant keyhole limpet Megathura crenulata was determined in a horizontal thermal gradient during the day at 18.9 °C and 18.3 °C for the night. The final preferendum determined for giant keyhole limpets was of 18.6±1.2 °C.Limpets' displacement velocity was 10.0±3.9 cm h−1 during the light phase and 8.4±1.6 cm h−1 during the dark phase. The thermotolerance (measured as CTMax at 50%) was determined in a keyhole limpet in three acclimation temperatures 17, 20, and 23 °C. Limpets were subjected to water increasing temperatures at a rate of 1 °C every 30 min, until they detached from the substrate. The critical thermal maximum at 50% was 27.2, 27.9 and 28.3 °C respectively.  相似文献   

4.
    
Preferential temperature as a physiological feature is crucial for spiders, since it determines the selection of key habitats for their survival and reproduction. In this work, we study the daily and geographical variation of the preferential temperature of the spider Sicarius thomisoides subjected to different degrees of daily thermal oscillation in their habitats. Preferred temperatures differ between coastal and inland populations, but in both cases, there is a marked bimodality in the daily pattern of temperature preference, with two peaks per day that would be given by the changes in the hours of activity. These nocturnal spiders select higher temperatures in the evening (active period) and select lower temperatures during late morning (resting period). In laboratory, spiders have preferred temperatures that differ from those found in their habitats, so they must tolerate or compensate non-preferred temperatures by active thermoregulation in natural conditions.  相似文献   

5.
    
Preferred temperature (Tpref) has been measured in over 100 species of aquatic and 300 species of terrestrial ectotherms as a metric for assessing behavioural thermoregulation in variable environments and, as such, has been linked to ecological processes ranging from individual behaviour to population and community dynamics. Due to the asymmetric shape of performance curves, Tpref is typically lower than the optimal temperature (Topt, where physiological performance is at its peak), and the degree of this mismatch increases with variability in Tb. Intertidal ectotherms experience huge variability in Tb on a daily basis and therefore provide a good system to test whether the relationship between Tpref and variation in Tb holds in more extreme environments. A review of the literature, however, only revealed comparisons between Tpref and Topt for five intertidal species and measurements of Tpref for 23 species. An analysis of this limited literature for intertidal ectotherms showed a positive relationship between acclimation temperature and Tpref. There was, however, great variation in the methodologies employed to make these assessments. Factors contributing to behavioural thermoregulation in intertidal ectotherms including small body size; low mobility; interactions among individuals; endogenous clocks; metabolic effects; thermal sensitivity; sampling of the thermal environment and recent acclimation history were considered to varying degrees when measuring Tpref, confounding comparisons between species. The methodologies used to measure Tpref in intertidal ectotherms were reviewed in light of each of these factors, and methodologies proposed to standardize approaches. Given the theoretical predictions about the relationships between Tpref and variability in Tb, the spatial and temporal thermal variability experienced by intertidal ectotherms provides numerous opportunities to test these expectations if assessed in a standardized manner, and can potentially provide insights into the value of behavioural thermoregulation in the more thermally variable environments predicted to occur in the near future.  相似文献   

6.
An inverse and unusual relationship was found between preferred temperature and acclimation temperature in the bullseye puffer, Sphoeroides annulatus. The final preferendum temperature (PT) was 26.8 °C. The critical thermal maxima (CTMax) were 37.7, 38.8, 40.0, 40.8 and 41.3 °C where the temperatures of acclimation were 19, 22, 25, 28 and 31 °C±1 °C, respectively, and the endpoint of CTMax was loss of the righting response. The acclimation response ratio presented an interval of 0.22-0.38; these values are in agreement with results for other subtropical and tropical fishes. The temperature significantly affected the oxygen consumption of bullseye puffer juveniles. The oxygen consumption rate (OCR) increased significantly with an increment in the temperature from 19 to 31 °C. The range of the temperature coefficient Q10 in bullseye puffer individuals was lowest between 25 and 28 °C, at 1.37. The optimal temperature for growth was 26 °C. The results of this study will be useful for optimizing the culture of bullseye puffer juveniles in controlled conditions.  相似文献   

7.
    
《Journal of Asia》2021,24(3):597-605
  相似文献   

8.
    
Locomotor and physiological performance of ectotherms are affected by temperature. Thermoregulation is achieved by changes in behavior and the selection of micro-habitats with adequate temperatures to maintain the body temperature (Tb) within a range of preference. Apart from this temperature dependence at spatial scales, ectotherms are also affected by temperature at temporal scale. For instance, ectotherms can only be active some months of the year, particularly in temperate environments. Tarantulas are ectotherms that live in burrows most of their life. Nevertheless, after the sexual maturation molt, males leave their refugia and start a wandering life searching for females to mate. The reproductive period varies among species. In some species walking males are seen in late spring or early summer, while in other species males are only seen during fall or winter. Apart from the differences in lifestyles after maturation, tarantulas exhibit sexual dimorphisms in longevity and body mass, having smaller, shorter-lived males. Thus, to optimize energetic budgets, decreasing thermoregulation costs, we hypothesize and examine a putative correlation between an individual's preferred body temperature (Tpref) and the environmental temperature during the reproductive period. Hence, we characterize Tpref in seven tarantula species and analyze which factors (i.e., time of day, body mass, and sex) correlated with it. Furthermore, we assess putative correlated evolution of Tpref with ambient temperature (minima, mean, and maxima) during the reproductive period by means of phylogenetic independent contrasts. We did not find differences in thermal preferences between sexes; and only one species, Acanthoscurria suina, exhibited diel differences in Tpref. We found evidence of correlated evolution between Tpref and minimum temperature during the reproductive period among all seven species studied herein. Our results show that the reproductive period is constrained by thermal preferences, dictating when males can start their wandering life to mate.  相似文献   

9.
To investigate the effects of age on thermal sensitivity, preferred ambient temperature (T pref) was compared between old (71–76 years) and young (21–30 years) groups, each consisting of six male subjects in summer and winter. The air temperature (T a) was set at either 20° C or 40° C at commencement. The subject was directed to adjust theT a for 45 min by manipulating a remote control switch to the level at which he felt most comfortable. In the older group, theT pref was significantly lower in trials starting at 20° C than that starting at 40° C in summer. The fluctuation ofT pref (temperature difference between maximum and minimumT a during the last 10 min) was significantly wider in the older group in both summer and winter. Repetition of the same experiment on each subject showed a poorer reproducibility ofT pref in the older group than in the younger group in summer. Tympanic and esophageal temperatures of the older group kept falling throughout the trial starting at 20° C in summer. These results suggest that thermal sensitivity is decreased with advancing age and that thermal perception in the elderly, especially to cold, is less sensitive in summer.  相似文献   

10.
How salmonids adjust to the cost of chronic exposure to warm water in nature, particularly in habitats where areas of cold water are unavailable, is largely unknown. In the hot dry climate of southern California, oversummering juvenile steelhead, Oncorhynchus mykiss, can experience a continual warm-water environment. Studies were performed in three streams (34°N) during the summers of 2002–2004 to assess how steelhead (10–28 cm total length) exploit the thermal environment and to develop an understanding of how existing preference and heat tolerance information reported for the species relate to the actual temperatures the local population experiences. Analyses of achievable body temperatures, an index of observed body temperatures, and behavioral time budgets, indicate steelhead did not behaviorally thermoregulate. Findings from associated field surveys suggest areas of cold water were not available. Steelhead held focal points at temperatures (17.4–24.8°C) that were at times higher than the temperature preferences and heat tolerances reported for the species. Oversummering juvenile steelhead accept an elevated body temperature and remain active and forage throughout the day, apparently as a means for coping with warm water at the southern extent of their range. The relatively high body temperatures that steelhead accept appear to represent a compromise in exchange for maintaining an expanded geographic (latitudinal) range.  相似文献   

11.
    
Effect of rearing temperature on growth and thermal tolerance of Schizothorax (Racoma) kozlovi Nikolsky larvae and juveniles was investigated. The fish (start at 12 d post hatch) were reared for nearly 6 months at five constant temperatures of 10, 14, 18, 22 and 26 °C. Then juvenile fish being acclimated at three temperatures of 14, 18 and 22 °C were chosen to determine their critical thermal maximum (CTMax) and lethal thermal maximum (LTMax) by using the dynamic method. Growth rate of S. kozlovi larvae and juveniles was significantly influenced by temperature and fish size, exhibiting an increase with increased rearing temperature, but a decline with increased fish size. A significant ontogenetic variation in the optimal temperatures for maximum growth were estimated to be 24.7 °C and 20.6 °C for larvae and juveniles of S. kozlovi, respectively. The results also demonstrated that acclimation temperature had marked effects on their CTMax and LTMax, which ranged from 32.86 °C to 34.54 °C and from 33.79 °C to 34.80 °C, respectively. It is suggested that rearing temperature must never rise above 32 °C for its successful aquaculture. Significant temperature effects on the growth rate and thermal tolerance both exhibit a plasticity pattern. Determination of critical heat tolerance and optima temperature for maximum growth of S. kozlovi is of ecological significance in the conservation and aquaculture of this species.  相似文献   

12.
The thermoregulatory behavior of the wavy turban snail Megastrea (Lithopoma) undosa was determined in a horizontal thermal gradient and was 16.31 in day cycle and 14.4 °C in night cycle. Displacement velocity of adults was 29.3±4.2 cm h−1 during the light phase and 26.1±3.2 cm h−1 during the dark phase. The critical thermal maxima of the wavy turban snail were determined. As a measure of thermal tolerance, snails were subjected to increasing water temperatures at a rate of 1 °C every 30 min until they were detached from the substrate. The critical thermal maximum at 50% was 29.7 °C.  相似文献   

13.
To make laboratory studies of thermal resistance in ectotherms more ecologically relevant, temperature changes that reflect conditions experienced by individuals in nature should be used. Here we describe an assay that is useful for quantifying multiple measures of thermal resistance of individual adult flies. We use this approach to assess upper and lower thermal limits and functional thermal scope for Drosophila melanogaster and also show that the method can be used to (1) detect a previously described latitudinal cline for cold tolerance in D. melanogaster populations collected along the east coast of Australia, (2) demonstrate that acclimation at variable temperatures during development increases tolerance to both low and high thermal stresses and therefore increases thermal scope compared to acclimation at a constant temperature, (3) show that temperate populations adapted to variable thermal environments have wider thermal limits compared to those from the less variable tropics, at least when flies were reared under constant temperature conditions and (4) demonstrate that different measures of cold resistance are often not strongly correlated. Based on our findings, we suggest that the method could be routinely used in evaluating thermal responses potentially linked to ecological processes and evolutionary adaptation.  相似文献   

14.
Synopsis The final preferred temperatures (FPTs) of adult premigratory and migratory life-history phases of American eels, Anguilla rostrata, were determined by chronic tests in a horizontal thermal gradient. Mean FPTs were between 17 and 20°C and were not significantly different between life-history phases, acclimation temperatures, illumination regimes, photoperiods or sexual maturation states. Thermal behavior of eels was highly variable, both among individuals of the various test groups and among repeated tests of single individuals. Light inhibited behavioral thermoregulation by promoting shelter-seeking. The following inferences are drawn from the laboratory findings and observations of migrating A. rostrata and A. anguilla (European eels) in the North Atlantic: (1) decreasing temperatures may initiate downstream migration of silver eels, (2) eels may select temperatures close to their FPT in thermally stratified environments, but will tolerate higher and lower temperatures depending on illumination or other physical constraints, (3) the oceanic phase of the migration to the Sargasso Sea may take place at relatively shallow depths in the open ocean, probably within the upper 1000 meters. The strong eurythermality observed in eels may facilitate their occupation of and migration through thermally diverse and unpredictable habitats.  相似文献   

15.
外温动物主要利用外热源,选择活动时间和冷热斑块之间穿梭等行为途径进行体温调节,以维持相对较高且稳定的体温。环境温度通过影响体温而影响动物的生理功能和行为表现.过高或过低的体温对动物有害甚至能导致其死亡,在极端高、低体温之间,相对较高的体温有利于动物较好地表达其生理功能和行为表现。[第一段]  相似文献   

16.
Synopsis The final thermal preferendum of Tecopa pupfish Cyprinodon nevadensis amargosae collected from a thermal spring was determined in the laboratory in spatial and temporal thermal gradients. Temperatures chosen centred around 30°C — a value close to those reported for other warmwater species in the literature. Upper limits to final preferenda and thermal tolerance in all species of fish are proposed.  相似文献   

17.
The purpose of this study was to validate the accuracy and acceptability of the new VitalSense® telemetric physiological monitoring system (Mini Mitter Co., Inc., Bend, OR). It consists of a receiver/monitor and a thermistor-based ingestible capsule for core body temperature measurement. For comparison, each subject was also monitored with a standard thermistor probe inserted 11 cm beyond the anal sphincter (Mini-Logger® Series 2000). Both the measurement systems have specified accuracy of ±0.1 °C.

Ten volunteers, four females, six males, mean age 51.1±11.8 years, gave informed consent to wear the two systems for the duration of the passage of the temperature capsule through their digestive tracts. Minute-by-minute comparisons were made between the temperatures recorded by the two systems. Parameters reported include: average transit time of the capsule; temperature at each minute of the experiment; mean difference in temperature at each time point; correlation coefficient for the two temperature measurements; and number of missed data points for each system.

Mean capsule transit time was 48.6±35.5 h with a range of 12.4–136.2 h. The mean temperature for all subjects was 36.93 °C±0.15 °C and 36.96 °C±0.16 °C for the capsule and rectal probe respectively, with no significant difference between the means. The mean difference between readings (capsule–rectal probe) was 0.04 °C±0.03 °C. There was a significant correlation between the capsule and rectal probe temperatures, R2=0.80,p<0.05 and R2=0.90,p<0.05 for all data points and quiescent periods respectively. Of the average 2916±2132 data points per subject, there was a significant (p<0.05) difference in data points lost, 105±120 with VitalSense vs. 449±697 with the rectal probe. The percentage of missing data points was 3.1%±2.5% for the capsule (monitor out of the one-meter range of the capsule) and 11.4%±15.9% for the rectal probe (primarily due to probe slippage, but also due to removal for personal hygiene). The data support the finding that the VitalSense core body temperature monitoring system is at least as accurate as rectal probe monitors and the subjects found it to be much more acceptable.  相似文献   


18.
The present study aims to understand the effects of interindividual differences in thermal comfort on the relationship between the preferred temperature and the thermoregulatory responses to ambient cooling. Thirteen young women subjects chose the preferred ambient temperature (preferred Ta) in a climate chamber and were categorized into the H group (preferring ≥29 °C; n=6) and the M group (preferring <29 °C; n=7). The H group preferred warmer sensations than the M group (P<0.05) and the average of preferred Ta was 27.6 °C and 30.2 °C in the M group and H group, respectively. Then all subjects were exposed to temperature variations in the climate chamber. During Ta variations from 33 °C to 25 °C, the H group felt colder than the M group, although no difference was noted in the Tsk (mean skin temperature) and Ts-hand between the 2 groups. From the view of the relationship between the Tsk and thermal sensation, although the thermal sensitivity to the Tsk was almost similar in the H and M groups, the H group might have lower threshold to decreasing Ta than the M group.  相似文献   

19.
20.
多疣壁虎的体温调节及运动能力热依赖性   总被引:4,自引:2,他引:4  
胡凌君  杜卫国 《动物学报》2007,53(2):227-232
本文测定了多疣壁虎(Gekko japonicus)的野外活动体温、喜好体温以及运动能力热依赖性,探讨夜行性蜥蜴的体温调节及其对动物功能表达的作用。在自然条件下,多疣壁虎的活动体温存在明显的月份间差异,但无性别和年龄间的差异。在实验室条件下,怀卵雌体(29.8℃)和幼体(29.9℃)的喜好体温显著高于非怀卵雌体(28.5℃)和雄体(28.2℃)。体温能显著影响多疣壁虎的运动能力,在15℃-34℃范围内,其平均跑速随体温上升而加快,超过34℃后则随体温升高而减慢。多疣壁虎的平均跑速及其热敏感性无显著的年龄组间差异。在夜间活动期,雄体、非怀卵雌体和幼体的体温调节有效度低,而怀卵雌体的体温调节有效度则较高。结果显示怀卵雌体的体温调节较非怀卵雌体和雄体更精确  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号