首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MOTIVATION: Clustering of individuals into populations on the basis of multilocus genotypes is informative in a variety of settings. In population-genetic clustering algorithms, such as BAPS, STRUCTURE and TESS, individual multilocus genotypes are partitioned over a set of clusters, often using unsupervised approaches that involve stochastic simulation. As a result, replicate cluster analyses of the same data may produce several distinct solutions for estimated cluster membership coefficients, even though the same initial conditions were used. Major differences among clustering solutions have two main sources: (1) 'label switching' of clusters across replicates, caused by the arbitrary way in which clusters in an unsupervised analysis are labeled, and (2) 'genuine multimodality,' truly distinct solutions across replicates. RESULTS: To facilitate the interpretation of population-genetic clustering results, we describe three algorithms for aligning multiple replicate analyses of the same data set. We have implemented these algorithms in the computer program CLUMPP (CLUster Matching and Permutation Program). We illustrate the use of CLUMPP by aligning the cluster membership coefficients from 100 replicate cluster analyses of 600 chickens from 20 different breeds. AVAILABILITY: CLUMPP is freely available at http://rosenberglab.bioinformatics.med.umich.edu/clumpp.html.  相似文献   

2.
MOTIVATION: Clustering algorithms are widely used in the analysis of microarray data. In clinical studies, they are often applied to find groups of co-regulated genes. Clustering, however, can also stratify patients by similarity of their gene expression profiles, thereby defining novel disease entities based on molecular characteristics. Several distance-based cluster algorithms have been suggested, but little attention has been given to the distance measure between patients. Even with the Euclidean metric, including and excluding genes from the analysis leads to different distances between the same objects, and consequently different clustering results. RESULTS: We describe a new clustering algorithm, in which gene selection is used to derive biologically meaningful clusterings of samples by combining expression profiles and functional annotation data. According to gene annotations, candidate gene sets with specific functional characterizations are generated. Each set defines a different distance measure between patients, leading to different clusterings. These clusterings are filtered using a resampling-based significance measure. Significant clusterings are reported together with the underlying gene sets and their functional definition. CONCLUSIONS: Our method reports clusterings defined by biologically focused sets of genes. In annotation-driven clusterings, we have recovered clinically relevant patient subgroups through biologically plausible sets of genes as well as new subgroupings. We conjecture that our method has the potential to reveal so far unknown, clinically relevant classes of patients in an unsupervised manner. AVAILABILITY: We provide the R package adSplit as part of Bioconductor release 1.9 and on http://compdiag.molgen.mpg.de/software.  相似文献   

3.
MOTIVATION: Over the last decade, a large variety of clustering algorithms have been developed to detect coregulatory relationships among genes from microarray gene expression data. Model-based clustering approaches have emerged as statistically well-grounded methods, but the properties of these algorithms when applied to large-scale data sets are not always well understood. An in-depth analysis can reveal important insights about the performance of the algorithm, the expected quality of the output clusters, and the possibilities for extracting more relevant information out of a particular data set. RESULTS: We have extended an existing algorithm for model-based clustering of genes to simultaneously cluster genes and conditions, and used three large compendia of gene expression data for Saccharomyces cerevisiae to analyze its properties. The algorithm uses a Bayesian approach and a Gibbs sampling procedure to iteratively update the cluster assignment of each gene and condition. For large-scale data sets, the posterior distribution is strongly peaked on a limited number of equiprobable clusterings. A GO annotation analysis shows that these local maxima are all biologically equally significant, and that simultaneously clustering genes and conditions performs better than only clustering genes and assuming independent conditions. A collection of distinct equivalent clusterings can be summarized as a weighted graph on the set of genes, from which we extract fuzzy, overlapping clusters using a graph spectral method. The cores of these fuzzy clusters contain tight sets of strongly coexpressed genes, while the overlaps exhibit relations between genes showing only partial coexpression. AVAILABILITY: GaneSh, a Java package for coclustering, is available under the terms of the GNU General Public License from our website at http://bioinformatics.psb.ugent.be/software  相似文献   

4.
OPTICS is a density-based clustering algorithm that performs well in a wide variety of applications. For a set of input objects, the algorithm creates a reachability plot that can either be used to produce cluster membership assignments, or interpreted itself as an expressive two-dimensional representation of the clustering structure of the input set, even if the input set is embedded in higher dimensions. The focus of this work is a visualization method that can be applied for comparing two, independent hierarchical clusterings by assigning colors to all entries of the input database. We give two applications related to macromolecular structural properties: the first is a sequence-based clustering of the SwissProt database that is evaluated using NCBI taxonomy identifiers, and the second application involves clustering locations of specific atoms in the serine protease enzyme family—and the clusters are evaluated using SCOP structural classifications.  相似文献   

5.
Summary Multivariate analysis of plant community data has three goals: summarization of redundancy, identification of outliers, and elueidation of relationships. The first two are handled conveniently by initial fast clustering, and the third by subsequent ordination and hierarchical clustering, and perhaps table arrangement.Initial clustering algorithms should achieve withincluster homogeneity and require minimal computer resources. However, algorithmic uniqueness and a hierarchy are not needed. Computing time should be proportional to the amount of data, with no higher dependencies on the number of samples. A method is presented here meeting these requirements, called composite clustering and implemented in a FORTRAN program called COMPCLUS. The computer time required for COMPCLUS clustering is on the order of the time required merely to read the data, regardless of the number of samples.Several large field data sets were analyzed effectively by using COMPCLUS to reduce redundancy and identify outliers, and then ordinating the resulting composite clusters by detrended correspondence analysis (DECORANA). Various clusterings of the same data set can be compared using a percent mutual matches (PMM) index, and a matrix of such values can be ordinated for simultaneous comparison of a number of clusterings.This paper benefited at many points from discussions with Mark O. Hill and Robert H. Whittaker. Mark Hill suggested condensed data storage. This work was done under a National Science Foundation grant to Robert Whittaker. I also appreciate technical assistance from Timothy F. Mason and Steven B. Singer.  相似文献   

6.
MOTIVATION: The biologic significance of results obtained through cluster analyses of gene expression data generated in microarray experiments have been demonstrated in many studies. In this article we focus on the development of a clustering procedure based on the concept of Bayesian model-averaging and a precise statistical model of expression data. RESULTS: We developed a clustering procedure based on the Bayesian infinite mixture model and applied it to clustering gene expression profiles. Clusters of genes with similar expression patterns are identified from the posterior distribution of clusterings defined implicitly by the stochastic data-generation model. The posterior distribution of clusterings is estimated by a Gibbs sampler. We summarized the posterior distribution of clusterings by calculating posterior pairwise probabilities of co-expression and used the complete linkage principle to create clusters. This approach has several advantages over usual clustering procedures. The analysis allows for incorporation of a reasonable probabilistic model for generating data. The method does not require specifying the number of clusters and resulting optimal clustering is obtained by averaging over models with all possible numbers of clusters. Expression profiles that are not similar to any other profile are automatically detected, the method incorporates experimental replicates, and it can be extended to accommodate missing data. This approach represents a qualitative shift in the model-based cluster analysis of expression data because it allows for incorporation of uncertainties involved in the model selection in the final assessment of confidence in similarities of expression profiles. We also demonstrated the importance of incorporating the information on experimental variability into the clustering model. AVAILABILITY: The MS Windows(TM) based program implementing the Gibbs sampler and supplemental material is available at http://homepages.uc.edu/~medvedm/BioinformaticsSupplement.htm CONTACT: medvedm@email.uc.edu  相似文献   

7.
Inferring the structure of populations has many applications for genetic research. In addition to providing information for evolutionary studies, it can be used to account for the bias induced by population stratification in association studies. To this end, many algorithms have been proposed to cluster individuals into genetically homogeneous sub-populations. The parametric algorithms, such as Structure, are very popular but their underlying complexity and their high computational cost led to the development of faster parametric alternatives such as Admixture. Alternatives to these methods are the non-parametric approaches. Among this category, AWclust has proven efficient but fails to properly identify population structure for complex datasets. We present in this article a new clustering algorithm called Spectral Hierarchical clustering for the Inference of Population Structure (SHIPS), based on a divisive hierarchical clustering strategy, allowing a progressive investigation of population structure. This method takes genetic data as input to cluster individuals into homogeneous sub-populations and with the use of the gap statistic estimates the optimal number of such sub-populations. SHIPS was applied to a set of simulated discrete and admixed datasets and to real SNP datasets, that are data from the HapMap and Pan-Asian SNP consortium. The programs Structure, Admixture, AWclust and PCAclust were also investigated in a comparison study. SHIPS and the parametric approach Structure were the most accurate when applied to simulated datasets both in terms of individual assignments and estimation of the correct number of clusters. The analysis of the results on the real datasets highlighted that the clusterings of SHIPS were the more consistent with the population labels or those produced by the Admixture program. The performances of SHIPS when applied to SNP data, along with its relatively low computational cost and its ease of use make this method a promising solution to infer fine-scale genetic patterns.  相似文献   

8.
With the increasing number of studies focusing on PIWI-interacting RNA (piRNAs), it is now pertinent to develop efficient tools dedicated towards piRNA analysis. We have developed a novel cluster prediction tool called PILFER (PIrna cLuster FindER), which can accurately predict piRNA clusters from small RNA sequencing data. PILFER is an open source, easy to use tool, and can be executed even on a personal computer with minimum resources. It uses a sliding-window mechanism by integrating the expression of the reads along with the spatial information to predict the piRNA clusters. We have additionally defined a piRNA analysis pipeline incorporating PILFER to detect and annotate piRNAs and their clusters from raw small RNA sequencing data and implemented it on publicly available data from healthy germline and somatic tissues. We compared PILFER with other existing piRNA cluster prediction tools and found it to be statistically more accurate and superior in many aspects such as the robustness of PILFER clusters is higher and memory efficiency is more. Overall, PILFER provides a fast and accurate solution to piRNA cluster prediction.  相似文献   

9.
MOTIVATION: Bioinformatics clustering tools are useful at all levels of proteomic data analysis. Proteomics studies can provide a wealth of information and rapidly generate large quantities of data from the analysis of biological specimens. The high dimensionality of data generated from these studies requires the development of improved bioinformatics tools for efficient and accurate data analyses. For proteome profiling of a particular system or organism, a number of specialized software tools are needed. Indeed, significant advances in the informatics and software tools necessary to support the analysis and management of these massive amounts of data are needed. Clustering algorithms based on probabilistic and Bayesian models provide an alternative to heuristic algorithms. The number of clusters (diseased and non-diseased groups) is reduced to the choice of the number of components of a mixture of underlying probability. The Bayesian approach is a tool for including information from the data to the analysis. It offers an estimation of the uncertainties of the data and the parameters involved. RESULTS: We present novel algorithms that can organize, cluster and derive meaningful patterns of expression from large-scaled proteomics experiments. We processed raw data using a graphical-based algorithm by transforming it from a real space data-expression to a complex space data-expression using discrete Fourier transformation; then we used a thresholding approach to denoise and reduce the length of each spectrum. Bayesian clustering was applied to the reconstructed data. In comparison with several other algorithms used in this study including K-means, (Kohonen self-organizing map (SOM), and linear discriminant analysis, the Bayesian-Fourier model-based approach displayed superior performances consistently, in selecting the correct model and the number of clusters, thus providing a novel approach for accurate diagnosis of the disease. Using this approach, we were able to successfully denoise proteomic spectra and reach up to a 99% total reduction of the number of peaks compared to the original data. In addition, the Bayesian-based approach generated a better classification rate in comparison with other classification algorithms. This new finding will allow us to apply the Fourier transformation for the selection of the protein profile for each sample, and to develop a novel bioinformatic strategy based on Bayesian clustering for biomarker discovery and optimal diagnosis.  相似文献   

10.
The large variety of clustering algorithms and their variants can be daunting to researchers wishing to explore patterns within their microarray datasets. Furthermore, each clustering method has distinct biases in finding patterns within the data, and clusterings may not be reproducible across different algorithms. A consensus approach utilizing multiple algorithms can show where the various methods agree and expose robust patterns within the data. In this paper, we present a software package - Consense, written for R/Bioconductor - that utilizes such an approach to explore microarray datasets. Consense produces clustering results for each of the clustering methods and produces a report of metrics comparing the individual clusterings. A feature of Consense is identification of genes that cluster consistently with an index gene across methods. Utilizing simulated microarray data, sensitivity of the metrics to the biases of the different clustering algorithms is explored. The framework is easily extensible, allowing this tool to be used by other functional genomic data types, as well as other high-throughput OMICS data types generated from metabolomic and proteomic experiments. It also provides a flexible environment to benchmark new clustering algorithms. Consense is currently available as an installable R/Bioconductor package (http://www.ohsucancer.com/isrdev/consense/).  相似文献   

11.
Finding subtypes of heterogeneous diseases is the biggest challenge in the area of biology. Often, clustering is used to provide a hypothesis for the subtypes of a heterogeneous disease. However, there are usually discrepancies between the clusterings produced by different algorithms. This work introduces a simple method which provides the most consistent clusters across three different clustering algorithms for a melanoma and a breast cancer data set. The method is validated by showing that the Silhouette, Dunne's and Davies-Bouldin's cluster validation indices are better for the proposed algorithm than those obtained by k-means and another consensus clustering algorithm. The hypotheses of the consensus clusters on both the data sets are corroborated by clear genetic markers and 100 percent classification accuracy. In Bittner et al.'s melanoma data set, a previously hypothesized primary cluster is recognized as the largest consensus cluster and a new partition of this cluster into two subclusters is proposed. In van't Veer et al.'s breast cancer data set, previously proposed "basal” and "luminal A” subtypes are clearly recognized as the two predominant clusters. Furthermore, a new hypothesis is provided about the existence of two subgroups within the "basal” subtype in this data set. The clusters of van't Veer's data set is also validated by high classification accuracy obtained in the data set of van de Vijver et al.  相似文献   

12.
Model-based clustering and data transformations for gene expression data.   总被引:20,自引:0,他引:20  
MOTIVATION: Clustering is a useful exploratory technique for the analysis of gene expression data. Many different heuristic clustering algorithms have been proposed in this context. Clustering algorithms based on probability models offer a principled alternative to heuristic algorithms. In particular, model-based clustering assumes that the data is generated by a finite mixture of underlying probability distributions such as multivariate normal distributions. The issues of selecting a 'good' clustering method and determining the 'correct' number of clusters are reduced to model selection problems in the probability framework. Gaussian mixture models have been shown to be a powerful tool for clustering in many applications. RESULTS: We benchmarked the performance of model-based clustering on several synthetic and real gene expression data sets for which external evaluation criteria were available. The model-based approach has superior performance on our synthetic data sets, consistently selecting the correct model and the number of clusters. On real expression data, the model-based approach produced clusters of quality comparable to a leading heuristic clustering algorithm, but with the key advantage of suggesting the number of clusters and an appropriate model. We also explored the validity of the Gaussian mixture assumption on different transformations of real data. We also assessed the degree to which these real gene expression data sets fit multivariate Gaussian distributions both before and after subjecting them to commonly used data transformations. Suitably chosen transformations seem to result in reasonable fits. AVAILABILITY: MCLUST is available at http://www.stat.washington.edu/fraley/mclust. The software for the diagonal model is under development. CONTACT: kayee@cs.washington.edu. SUPPLEMENTARY INFORMATION: http://www.cs.washington.edu/homes/kayee/model.  相似文献   

13.
Synopsis Data matrices of fish stomach contents frequently contain many zeros, and nonzero values often do not follow usually encountered statistical distributions. Therefore, many common methods of statistical analysis are inappropriate for such data. A method of repeated k-means cluster analysis is proposed for exploratory analysis of data sets on fish stomach contents. Objective rules are proposed for setting the clustering parameters, so the arbitrariness and subjectivity common in interpreting hierarchical clustering methods is avoided. Because the clusters are nonhierarchical, the analysis method also requires much less computer time and memory. Application of the method is illustrated with a data set of 1771 stomachs of cod (Gadus morhua), feeding on 38 different prey types. The results of the clusterings reveal that nine types of prey may account for the systematic information about the diet of cod in this sample from the northern Grand Bank in Spring of 1979. The results are also used to test specific hypotheses about size selectivity of the predator, spatial variation of feeding, environmental influences on diet, and relative preferences among prey taxa.  相似文献   

14.
15.
While clustering genes remains one of the most popular exploratory tools for expression data, it often results in a highly variable and biologically uninformative clusters. This paper explores a data fusion approach to clustering microarray data. Our method, which combined expression data and Gene Ontology (GO)-derived information, is applied on a real data set to perform genome-wide clustering. A set of novel tools is proposed to validate the clustering results and pick a fair value of infusion coefficient. These tools measure stability, biological relevance, and distance from the expression-only clustering solution. Our results indicate that a data-fusion clustering leads to more stable, biologically relevant clusters that are still representative of the experimental data.  相似文献   

16.
Consensus clustering involves combining multiple clusterings of the same set of objects to achieve a single clustering that will, hopefully, provide a better picture of the groupings that are present in a dataset. This Letter reports the use of consensus clustering methods on sets of chemical compounds represented by 2D fingerprints. Experiments with DUD, IDAlert, MDDR and MUV data suggests that consensus methods are unlikely to result in significant improvements in clustering effectiveness as compared to the use of a single clustering method.  相似文献   

17.
Standard clustering algorithms when applied to DNA microarray data often tend to produce erroneous clusters. A major contributor to this divergence is the feature characteristic of microarray data sets that the number of predictors (genes) in such data far exceeds the number of samples by many orders of magnitude, with only a small percentage of predictors being truly informative with regards to the clustering while the rest merely add noise. An additional complication is that the predictors exhibit an unknown complex correlational configuration embedded in a small subspace of the entire predictor space. Under these conditions, standard clustering algorithms fail to find the true clusters even when applied in tandem with some sort of gene filtering or dimension reduction to reduce the number of predictors. We propose, as an alternative, a novel method for unsupervised classification of DNA microarray data. The method, which is based on the idea of aggregating results obtained from an ensemble of randomly resampled data (where both samples and genes are resampled), introduces a way of tilting the procedure so that the ensemble includes minimal representation from less important areas of the gene predictor space. The method produces a measure of dissimilarity between each pair of samples that can be used in conjunction with (a) a method like Ward's procedure to generate a cluster analysis and (b) multidimensional scaling to generate useful visualizations of the data. We call the dissimilarity measures ABC dissimilarities since they are obtained by aggregating bundles of clusters. An extensive comparison of several clustering methods using actual DNA microarray data convincingly demonstrates that classification using ABC dissimilarities offers significantly superior performance.  相似文献   

18.
19.
Metabolomics and other omics tools are generally characterized by large data sets with many variables obtained under different environmental conditions. Clustering methods and more specifically two-mode clustering methods are excellent tools for analyzing this type of data. Two-mode clustering methods allow for analysis of the behavior of subsets of metabolites under different experimental conditions. In addition, the results are easily visualized. In this paper we introduce a two-mode clustering method based on a genetic algorithm that uses a criterion that searches for homogeneous clusters. Furthermore we introduce a cluster stability criterion to validate the clusters and we provide an extended knee plot to select the optimal number of clusters in both experimental and metabolite modes. The genetic algorithm-based two-mode clustering gave biological relevant results when it was applied to two real life metabolomics data sets. It was, for instance, able to identify a catabolic pathway for growth on several of the carbon sources. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. J. A. Hageman and R. A. van den Berg contributed equally to this paper.  相似文献   

20.
Clustering is an important tool in microarray data analysis. This unsupervised learning technique is commonly used to reveal structures hidden in large gene expression data sets. The vast majority of clustering algorithms applied so far produce hard partitions of the data, i.e. each gene is assigned exactly to one cluster. Hard clustering is favourable if clusters are well separated. However, this is generally not the case for microarray time-course data, where gene clusters frequently overlap. Additionally, hard clustering algorithms are often highly sensitive to noise. To overcome the limitations of hard clustering, we applied soft clustering which offers several advantages for researchers. First, it generates accessible internal cluster structures, i.e. it indicates how well corresponding clusters represent genes. This can be used for the more targeted search for regulatory elements. Second, the overall relation between clusters, and thus a global clustering structure, can be defined. Additionally, soft clustering is more noise robust and a priori pre-filtering of genes can be avoided. This prevents the exclusion of biologically relevant genes from the data analysis. Soft clustering was implemented here using the fuzzy c-means algorithm. Procedures to find optimal clustering parameters were developed. A software package for soft clustering has been developed based on the open-source statistical language R. The package called Mfuzz is freely available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号