首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present 151 SNPs (single nucleotide polymorphisms) identified in Tatra and Alpine chamois individuals after genotyping with the Bovine SNP50 Genotyping BeadChip (Illumina®). Population structure analysis based on the identified 151 SNPs as well as a subset of 48 SNPs were able to give information about geographic origin of each individual making the markers suitable for future evaluation and monitoring of the genetic status of the Tatra and Alpine chamois. Our study demonstrates how it is possible to quickly identify informative SNPs in non-model organisms based on a SNP marker panel created for a related domestic species.  相似文献   

2.
The identification of individuals’ breed of origin has several practical applications in livestock and is useful in different biological contexts such as conservation genetics, breeding and authentication of animal products. In this paper, penalized multinomial regression was applied to identify the minimum number of single nucleotide polymorphisms (SNPs) from high-throughput genotyping data for individual assignment to dairy sheep breeds reared in Sicily. The combined use of penalized multinomial regression and stability selection reduced the number of SNPs required to 48. A final validation step on an independent population was carried out obtaining 100% correctly classified individuals. The results using independent analysis, such as admixture, Fst, principal component analysis and random forest, confirmed the ability of these methods in selecting distinctive markers. The identified SNPs may constitute a starting point for the development of a SNP based identification test as a tool for breed assignment and traceability of animal products.  相似文献   

3.
Single nucleotide polymorphisms (SNPs) are becoming more commonly used as molecular markers in conservation studies. However, relatively few studies have employed SNPs for species with little or no existing sequence data, partly due to the practical challenge of locating appropriate SNP loci in these species. Here we describe an application of SNP discovery via shotgun cloning that requires no pre-existing sequence data and is readily applied to all taxa. Using this method, we isolated, cloned and screened for SNP variation at 90 anonymous sequence loci (51 kb total) from the banded wren (Thryothorus pleurostictus), a Central American species with minimal pre-existing sequence data and a documented paucity of microsatellite allelic variation. We identified 168 SNPs (a mean of one SNP/305 bp, with SNPs unevenly distributed across loci). Further characterization of variation at 41 of these SNP loci among 256 individuals including 37 parent–offspring families suggests that they provide substantial information for defining the genetic mating system of this species, and that SNPs may be generally useful for this purpose when other markers are problematic.  相似文献   

4.
G C S Kuhn 《Heredity》2015,115(1):1-2
Recent years have seen considerable progress in applying single nucleotide polymorphisms (SNPs) to population genetics studies. However, relatively few have attempted to use them to study the genetic differentiation of wild bird populations and none have examined possible differences of exonic and intronic SNPs in these studies. Here, using 144 SNPs, we examined population genetic differentiation in the saker falcon (Falco cherrug) across Eurasia. The position of each SNP was verified using the recently sequenced saker genome with 108 SNPs positioned within the introns of 10 fragments and 36 SNPs in the exons of six genes, comprising MHC, MC1R and four others. In contrast to intronic SNPs, both Bayesian clustering and principal component analyses using exonic SNPs consistently revealed two genetic clusters, within which the least admixed individuals were found in Europe/central Asia and Qinghai (China), respectively. Pairwise D analysis for exonic SNPs showed that the two populations were significantly differentiated and between the two clusters the frequencies of five SNP markers were inferred to be influenced by selection. Central Eurasian populations clustered in as intermediate between the two main groups, consistent with their geographic position. But the westernmost populations of central Europe showed evidence of demographic isolation. Our work highlights the importance of functional exonic SNPs for studying population genetic pattern in a widespread avian species.  相似文献   

5.
Information about relatedness between individuals in wild populations is advantageous when studying evolutionary, behavioural and ecological processes. Genomic data can be used to determine relatedness between individuals either when no prior knowledge exists or to confirm suspected relatedness. Here we present a set of 96 SNPs suitable for inferring relatedness for brown bears (Ursus arctos) within Scandinavia. We sequenced reduced representation libraries from nine individuals throughout the geographic range. With consensus reads containing putative SNPs, we applied strict filtering criteria with the aim of finding only high-quality, highly-informative SNPs. We tested 150 putative SNPs of which 96% were validated on a panel of 68 individuals. Ninety-six of the validated SNPs with the highest minor allele frequency were selected. The final SNP panel includes four mitochondrial markers, two monomorphic Y-chromosome sex-determination markers, three X-chromosome SNPs and 87 autosomal SNPs. From our validation sample panel, we identified two previously known parent-offspring dyads with reasonable accuracy. This panel of SNPs is a promising tool for inferring relatedness in the brown bear population in Scandinavia.  相似文献   

6.
7.
Extensive genomic resources are available in the model legume Medicago truncatula. Here, we present the discovery and design of the first array of single‐nucleotide polymorphism (SNP) markers in M. truncatula through large‐scale Sanger resequencing of genomic fragments spanning the genome, in a diverse panel of 16 M. truncatula accessions. Both anonymous fragments and fragments targeting candidate genes for flowering phenology and symbiosis were surveyed for nucleotide variation in almost 230 kb of unique genomic regions. A set of 384 SNP markers was designed for an Illumina's GoldenGate assay, genotyped on a collection of 192 inbred lines (CC192) representing the geographical range of the species and used to survey the diversity of two natural populations. Finally, 86% of the tested SNPs were of high quality and exhibited polymorphism in the CC192 collection. Even at the population level, we detected polymorphism for more than 50% of the selected SNPs. Analysis of the allele frequency spectrum in the CC192 showed a reduced ascertainment bias, mostly limited to very rare alleles (frequency <0.01). The substantial polymorphism detected at the species and population levels, the high marker quality and the potential to survey large samples of individuals make this set of SNP markers a valuable tool to improve our understanding of the effect of demographic and selective factors that shape the natural genetic diversity within the selfing species Medicago truncatula.  相似文献   

8.
Next-generation sequencing has transformed the fields of ecological and evolutionary genetics by allowing for cost-effective identification of genome-wide variation. Single nucleotide polymorphism (SNP) arrays, or “SNP chips”, enable very large numbers of individuals to be consistently genotyped at a selected set of these identified markers, and also offer the advantage of being able to analyse samples of variable DNA quality. We used reduced representation restriction-aided digest sequencing (RAD-seq) of 31 birds of the threatened hihi (Notiomystis cincta; stitchbird) and low-coverage whole genome sequencing (WGS) of 10 of these birds to develop an Affymetrix 50 K SNP chip. We overcame the limitations of having no hihi reference genome and a low quantity of sequence data by separate and pooled de novo assembly of each of the 10 WGS birds. Reads from all individuals were mapped back to these de novo assemblies to identify SNPs. A subset of RAD-seq and WGS SNPs were selected for inclusion on the chip, prioritising SNPs with the highest quality scores whose flanking sequence uniquely aligned to the zebra finch (Taeniopygia guttata) genome. Of the 58,466 SNPs manufactured on the chip, 72% passed filtering metrics and were polymorphic. By genotyping 1,536 hihi on the array, we found that SNPs detected in multiple assemblies were more likely to successfully genotype, representing a cost-effective approach to identify SNPs for genotyping. Here, we demonstrate the utility of the SNP chip by describing the high rates of linkage disequilibrium in the hihi genome, reflecting the history of population bottlenecks in the species.  相似文献   

9.
Information about the genetic diversity and population structure in elite breeding material is of fundamental importance for the improvement of crops. The objectives of our study were to (a) examine the population structure and the genetic diversity in elite maize germplasm based on simple sequence repeat (SSR) markers, (b) compare these results with those obtained from single nucleotide polymorphism (SNP) markers, and (c) compare the coancestry coefficient calculated from pedigree records with genetic distance estimates calculated from SSR and SNP markers. Our study was based on 1,537 elite maize inbred lines genotyped with 359 SSR and 8,244 SNP markers. The average number of alleles per locus, of group specific alleles, and the gene diversity (D) were higher for SSRs than for SNPs. Modified Roger’s distance (MRD) estimates and membership probabilities of the STRUCTURE matrices were higher for SSR than for SNP markers but the germplasm organization in four heterotic pools was consistent with STRUCTURE results based on SSRs and SNPs. MRD estimates calculated for the two marker systems were highly correlated (0.87). Our results suggested that the same conclusions regarding the structure and the diversity of heterotic pools could be drawn from both markers types. Furthermore, although our results suggested that the ratio of the number of SSRs and SNPs required to obtain MRD or D estimates with similar precision is not constant across the various precision levels, we propose that between 7 and 11 times more SNPs than SSRs should be used for analyzing population structure and genetic diversity.  相似文献   

10.
The objectives of this study were to develop breed-specific single nucleotide polymorphisms (SNPs) in five pig breeds sequenced with Illumina's Genome Analyzer and to investigate their usefulness for breed assignment purposes. DNA pools were prepared for Duroc, Landrace, Large White, Pietrain and Wild Boar. The total number of animals used for sequencing was 153. SNP discovery was performed by aligning the filtered reads against Build 7 of the pig genome. A total of 313,964 high confidence SNPs were identified and analysed for the presence of breed-specific SNPs (defined in this context as SNPs for which one of the alleles was detected in only one breed). There were 29,146 putative breed-specific SNPs identified, of which 4441 were included in the PorcineSNP60 beadchip. Upon re-examining the genotypes obtained using the beadchip, 193 SNPs were confirmed as being breed specific. These 193 SNPs were subsequently used to assign an additional 490 individuals from the same breeds, using the sequenced individuals as reference populations. In total, four breed assignment tests were performed. Results showed that for all methods tested 99% of the animals were correctly assigned, with an average probability of assignment of at least 99.2%, indicating the high utility of breed-specific markers for breed assignment and traceability. This study provides a blueprint for the way next-generation sequencing technologies can be used for the identification of breed-specific SNPs, as well as evidence that these SNPs may be a powerful tool for breed assignment and traceability of animal products to their breeds of origin.  相似文献   

11.
The advances in genotyping technology provide an opportunity to use genomic tools in crop breeding. As compared to field selections performed in conventional breeding programmes, genomics‐based genotype screen can potentially reduce number of breeding cycles and more precisely integrate target genes for particular traits into an ideal genetic background. We developed a whole‐genome single nucleotide polymorphism (SNP) array, RICE6K, based on Infinium technology, using representative SNPs selected from more than four million SNPs identified from resequencing data of more than 500 rice landraces. RICE6K contains 5102 SNP and insertion–deletion (InDel) markers, about 4500 of which were of high quality in the tested rice lines producing highly repeatable results. Forty‐five functional markers that are located inside 28 characterized genes of important traits can be detected using RICE6K. The SNP markers are evenly distributed on the 12 chromosomes of rice with the average density of 12 SNPs per 1 Mb and can provide information for polymorphisms between indica and japonica subspecies as well as varieties within indica and japonica groups. Application tests of RICE6K showed that the array is suitable for rice germplasm fingerprinting, genotyping bulked segregating pools, seed authenticity check and genetic background selection. These results suggest that RICE6K provides an efficient and reliable genotyping tool for rice genomic breeding.  相似文献   

12.
We present results from a screen for de novo variable nuclear loci using a genomic library approach in Sceloporus undulatus, the eastern fence lizard. We tested amplification success for 77 primer pairs in S. undulatus, Sceloporus occidentalis and Sceloporus grammicus. Many loci amplified in all three species suggesting that our primers will be useful for developing sequencing or single nucleotide polymorphism (SNP) genotyping markers in other sceloporine lizards. We also sequenced 19 loci, containing 158 variable sites, for 91 S. undulatus individuals. We report high levels of nucleotide variation in this species with an average of 38 SNPs per kilobase.  相似文献   

13.
Although single nucleotide polymorphisms (SNPs) are commonly used in human genetics, they have only recently been incorporated into genetic studies of non‐model organisms, including cetaceans. SNPs have several advantages over other molecular markers for studies of population genetics: they are quicker and more straightforward to score, cross‐laboratory comparisons of data are less complicated, and they can be used successfully with low‐quality DNA. We screened portions of the genome of one of the most abundant cetaceans in U.S. waters, the common bottlenose dolphin (Tursiops truncatus), and identified 153 SNPs resulting in an overall average of one SNP every 463 base pairs. Custom TaqMan® Assays were designed for 53 of these SNPs, and their performance was tested by genotyping a set of bottlenose dolphin samples, including some with low‐quality DNA. We found that in 19% of the loci examined, the minor allele frequency (MAF) estimated during initial SNP ascertainment using a DNA pool of 10 individuals differed significantly from the final MAF after genotyping over 100 individuals, suggesting caution when making inferences about MAF values based on small data sets. For two assays, we also characterized the basis for unusual clustering patterns to determine whether their data could still be utilized for further genetic studies. Overall results support the use of these SNPs for accurate analysis of both poor and good‐quality DNA. We report the first SNP markers and genotyping assays for use in population and conservation genetic studies of bottlenose dolphins.  相似文献   

14.
Detection and utilization of genetic variation available in the germplasm collection for crop improvement have been the prime activities of breeders. Here a set of ICARDA barley germplasm collection comprising of 185 cultivated (Hordeum vulgare L.) and 38 wild (H. spontaneum L.) genotypes originated from 30 countries of four continents was genotyped with 68 single nucleotide polymorphism (SNP) and 45 microsatellite or simple sequence repeat (SSR) markers derived from genes (expressed sequence tags, ESTs). As two SNP markers provided 2 and 3 datapoints, a total of 71 SNPs were surveyed that yielded a total of 143 alleles. The number of SSR alleles per locus ranged from 3 to 22 with an average of 7.9 per marker. Average PIC (polymorphism information content) value for SSR and SNP markers were recorded as 0.63 and 0.38, respectively. Heterogeneity was recorded at both SNP and SSR loci in an average of 5.72 and 12.42% accessions, respectively. Genetic similarity matrices for SSR and SNP allelic data were highly correlated (r = 0.75, P < 0.005) and therefore allelic data for both markers were combined and analyzed for understanding the genetic relationships among the germplasm surveyed. Majority of clusters/subclusters were found to contain genotypes from the same geographic origins. While comparing the genetic diversity, the accessions coming from Middle East Asia and North East Asia showed more diversity as compared to that of other geographic regions. Majority of countries representing Africa, Middle East Asia, North East Asia and Arabian Peninsula included the genotypes that contained rare alleles. As expected, spontaneum accessions, as compared to vulgare accessions, showed a higher number of total alleles, higher number of alleles per locus, higher effective number of alleles and higher allelic richness and a higher number of rare alleles were observed. In summary, the examined ICARDA germplasm set showed ample natural genetic variation that can be harnessed for future breeding of barley as climate change and sustainability have become important throughout all growing areas of the world, drought/heat tolerance being the most important ones.  相似文献   

15.
We identified ~13 000 putative single nucleotide polymorphisms (SNPs) by comparison of repeat‐masked BAC‐end sequences from the cattle RPCI‐42 BAC library with whole‐genome shotgun contigs of cattle genome assembly Btau 1.0. Genotyping of a subset of these SNPs was performed on a panel containing 186 DNA samples from 18 cattle breeds including 43 trios. Of 1039 SNPs confirmed as polymorphic in the panel, 998 had minor allele frequency ≥0.25 among unrelated individuals of at least one breed. When Btau 4.0 became available, 974 of these validated SNPs were assigned in silico to known cattle chromosomes, while 41 SNPs were mapped to unassigned sequence scaffolds, yielding one SNP every ~3 Mbp on average. Twenty‐four SNPs identified in Btau 1.0 were not mapped to Btau 4.0. Of the 1015 SNPs mapped to Btau 4.0, 959 SNPs had nucleotide bases identical in Btau 4.0 and Btau 1.0 contigs, whereas 56 bases were changed, resulting in the loss of the in silico SNP in Btau 4.0. Because these 1039 SNPs were all directly confirmed by genotyping on the multi‐breed panel, it is likely that the original polymorphisms were correctly identified. The 1039 validated SNPs identified in this study represent a new and useful resource for genome‐wide association studies and applications in animal breeding.  相似文献   

16.
The optimal management of the commercially important, but mostly over‐exploited, pelagic tunas, albacore (Thunnus alalunga Bonn., 1788) and Atlantic bluefin tuna (BFT; Thunnus thynnus L., 1758), requires a better understanding of population structure than has been provided by previous molecular methods. Despite numerous studies of both species, their population structures remain controversial. This study reports the development of single nucleotide polymorphisms (SNPs) in albacore and BFT and the application of these SNPs to survey genetic variability across the geographic ranges of these tunas. A total of 616 SNPs were discovered in 35 albacore tuna by comparing sequences of 54 nuclear DNA fragments. A panel of 53 SNPs yielded FST values ranging from 0.0 to 0.050 between samples after genotyping 460 albacore collected throughout the distribution of this species. No significant heterogeneity was detected within oceans, but between‐ocean comparisons (Atlantic, Pacific and Indian oceans along with Mediterranean Sea) were significant. Additionally, a 17‐SNP panel was developed in Atlantic BFT by cross‐species amplification in 107 fish. This limited number of SNPs discriminated between samples from the two major spawning areas of Atlantic BFT (FST = 0.116). The SNP markers developed in this study can be used to genotype large numbers of fish without the need for standardizing alleles among laboratories.  相似文献   

17.
Simple molecular marker assays underpin routine plant breeding and research activities in many laboratories worldwide. With the rapid growth of single nucleotide polymorphism (SNP) resources for many important crop plants, the availability of routine, low-tech marker assays for genotyping SNPs is of increased importance. In this study, we demonstrate that temperature-switch PCR (TSP) supports the rapid development of robust, allele-specific PCR markers for codominant SNP genotyping on agarose gel. A total of 87 TSP markers for assessing gene diversity in barley were developed and used to investigate the efficacy for marker development, assay reliably and genotyping accuracy. The TSP markers described provide good coverage of the barley genome, are simple to use, easy to interpret and score, and are amenable to assay automation. They provide a resource of informative SNP markers for assessing genetic relationships among individuals, populations and gene pools of cultivated barley (Hordeum vulgare L.) and its wild relative H. spontaneum K. Koch. TSP markers provide opportunities to use available SNP resources for marker-assisted breeding and plant genetic research, and to generate information that can be integrated with SNP data from different sources and studies. TSP markers are expected to provide similar advantages for any animal or plant species. M. J. Hayden and T. Tabone contributed equally to this work.  相似文献   

18.
Single nucleotide polymorphisms or SNPs are the most abundant form of genetic variation in the genome of plants and animals. Microsatellites are hypervariable regions of genome, while their flanking regions are assumed to be as conserved as the average of the genome. In the present study, flanking sequences of 10 microsatellite loci were compared in different cultivars of Vitis to determine the existing polymorphism. For every microsatellite, about 8 homozygous cultivars (regarding the microsatellite genotype) were chosen for sequencing. A total of 45 different varieties of Vitis and 91 sequences were analysed. Sequence polymorphisms were detected for all the microsatellite flanking regions studied, including single nucleotide polymorphisms (SNPs), insertions and deletions. The number of identified changes varied considerably among the loci with a frequency of one polymorphism every 41 nucleotides, being VVMD5 the most polymorphic one. A number of SNPs were used to design SNP markers, which were scored by dideoxy single base primer extension and capillary electrophoresis methodology. These SNP markers were employed to genotype 21 cultivars of Vitis vinifera and 4 varieties of other Vitis species. The utility of the markers developed as well as their utility for varietal identification and pedigree studies is discussed, using a similar study carried out with the 10 microsatellites as a reference.  相似文献   

19.
Single nucleotide polymorphisms (SNPs) are attractive DNA markers due to their abundance and potential for use in automated high-throughput genotyping. Numerous SNP genotyping assays have been developed, but it is unclear which assays are best suited and most efficient for various types of plant improvement research. The objective of this study was to compare the accuracy, efficiency, and cost of four SNP genotyping assays: single-base extension (SBE), allele-specific primer extension (ASPE), oligonucleotide ligation (OL), and direct hybridization (DH). All four assay methods used the same Luminex 100 flow cytometer platform. Fifty-eight F2-derived soybean [Glycine max (L.) Merr.] lines from a cross between inbred lines G99-G725 and N00-3350 were genotyped at four SNPs. SBE and ASPE clearly differentiated between the two homozygotes and the heterozygote at each SNP. Results were in agreement with those identified using the SNaPshot minisequencing assay as a control. In contrast, the OL and DH assays were unable to differentiate between genotypes at some of the SNPs. However, when the cost per data point for the four different assays was compared, the cost of OL and DH was only about 70% of that for SBE, with DH requiring the least time of the four assays. On the basis of cost and labor, ASPE is more cost-effective and simpler than SBE, and would therefore be a good method for genetic mapping and diversity studies which require a large number of markers and a high level of multiplexing. DH appears to be the most economical assay for marker-assisted selection, though optimization for DH would be required for some SNP markers.  相似文献   

20.
Single nucleotide polymorphisms (SNPs) are rapidly becoming the marker of choice in population genetics due to a variety of advantages relative to other markers, including higher genomic density, data quality, reproducibility and genotyping efficiency, as well as ease of portability between laboratories. Advances in sequencing technology and methodologies to reduce genomic representation have made the isolation of SNPs feasible for nonmodel organisms. RNA‐seq is one such technique for the discovery of SNPs and development of markers for large‐scale genotyping. Here, we report the development of 192 validated SNP markers for parentage analysis in Tripterygion delaisi (the black‐faced blenny), a small rocky‐shore fish from the Mediterranean Sea. RNA‐seq data for 15 individual samples were used for SNP discovery by applying a series of selection criteria. Genotypes were then collected from 1599 individuals from the same population with the resulting loci. Differences in heterozygosity and allele frequencies were found between the two data sets. Heterozygosity was lower, on average, in the population sample, and the mean difference between the frequencies of particular alleles in the two data sets was 0.135 ± 0.100. We used bootstrap resampling of the sequence data to predict appropriate sample sizes for SNP discovery. As cDNA library production is time‐consuming and expensive, we suggest that using seven individuals for RNA sequencing reduces the probability of discarding highly informative SNP loci, due to lack of observed polymorphism, whereas use of more than 12 samples does not considerably improve prediction of true allele frequencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号