首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The bacteria of the sulphur cycle   总被引:5,自引:0,他引:5  
This paper concentrates on the bacteria involved in the reductions and oxidations of inorganic sulphur compounds under anaerobic conditions. The genera of the dissimilatory sulphate-reducing bacteria known today are discussed with respect to their different capacities to decompose and oxidize various products of fermentative degradations of organic matter. The utilization of molecular hydrogen and formate by sulphate reducers shifts fermentations towards the energetically more favourable formation of acetate. Since acetate amounts to about two-thirds of the degradation products of organic matter, the complete anaerobic oxidation of acetate by several genera of the sulphate-reducing bacteria is an important function for terminal oxidation in sulphate-sufficient environments. The results of pure culture studies agree well with ecological investigations of several authors who showed the significance of sulphate reduction for the complete oxidation of organic matter in anaerobic marine habitats. In the dissimilatory sulphur-reducing bacteria of the genus Desulfuromonas the oxidation of acetate is linked to the reduction of elemental sulphur. Major characteristics of the anaerobic, sulphide-oxidizing phototrophic green and purple sulphur bacteria as well as of some facultative anoxygenic cyanobacteria, are given. By the formation of elemental sulphur and sulphate, these bacteria establish sulphur cycles with the sulphide-forming bacteria. In view of the morphological diversity of the sulphate-reducing bacteria and question of possible evolutionary relations to phototrophic sulphur bacteria is raised.  相似文献   

3.
A hallmark of the SUP05 clade of marine Gammaproteobacteria is the ability to use energy obtained from reduced inorganic sulfur to fuel autotrophic fixation of carbon using RuBisCo. However, some SUP05 also have the genetic potential for heterotrophic growth, raising questions about the roles of SUP05 in the marine carbon cycle. We used genomic reconstructions, physiological growth experiments and proteomics to characterize central carbon and energy metabolism in Candidatus Thioglobus singularis strain PS1, a representative from the SUP05 clade that has the genetic potential for autotrophy and heterotrophy. Here, we show that the addition of individual organic compounds and 0.2 μm filtered diatom lysate significantly enhanced the growth of this bacterium. This positive growth response to organic substrates, combined with expression of a complete TCA cycle, heterotrophic pathways for carbon assimilation, and methylotrophic pathways for energy conversion demonstrate strain PS1's capacity for heterotrophic growth. Further, our inability to verify the expression of RuBisCO suggests that carbon fixation was not critical for growth. These results highlight the metabolic diversity of the SUP05 clade that harbours both primary producers and consumers of organic carbon in the oceans and expand our understanding of specific pathways of organic matter oxidation by the heterotrophic SUP05.  相似文献   

4.
Desulphurising enzymes remove the sulphur moiety from an organosulphur molecule leaving the carbon skeleton intact. Two kinds of desulphurisation reaction are recognised. The dibenzothiophene (DBT)-specific pathway desulphurises DBT to inorganic sulphite and 2- hydroxybiphenyl (HBP), and the benzothiophene (BTH)-specific pathway desulphurises BTH to 2-(2-hydroxyphenyl)ethan 1-al (HPEal) and probably inorganic sulphite. The DBT-desulphurisation pathway was originally identified in Rhodococcus erythropolis strain IGTS8 (ATCC 53968), and the BTH-desulphurisation pathway in Gordonia sp. strain 213E (NCIMB 40816). These organisms do not further metabolise the organic product of desulphurisation.In this article current knowledge of the biochemistry and genetics of the desulphurisation enzymes is reviewed. The need for separate, DBT- and BTH-specific desulphurisation routes is rationalised in terms of the chemical differences between the two compounds. The desulphurisation pathway is compared with other microbial DBT- degrading enzyme systems. Finally some comments are made concerning the application of desulphurisation enzymes for fuel desulphurisation and on the relevance of these enzymes to the ecology of the mycolata (sensu Chun et al, 1996).  相似文献   

5.
Methanotrophs are a group of phylogenetically diverse microorganisms characterized by their ability to utilize methane as their sole source of carbon and energy. Early studies suggested that growth on methane could be stimulated with the addition of some small organic acids, but initial efforts to find facultative methanotrophs, i.e., methanotrophs able to utilize compounds with carbon-carbon bonds as sole growth substrates were inconclusive. Recently, however, facultative methanotrophs in the genera Methylocella, Methylocapsa, and Methylocystis have been reported that can grow on acetate, as well as on larger organic acids or ethanol for some species. All identified facultative methanotrophs group within the Alphaproteobacteria and utilize the serine cycle for carbon assimilation from formaldehyde. It is possible that facultative methanotrophs are able to convert acetate into intermediates of the serine cycle (e.g. malate and glyoxylate), because a variety of acetate assimilation pathways convert acetate into these compounds (e.g. the glyoxylate shunt of the tricarboxylic acid cycle, the ethylmalonyl-CoA pathway, the citramalate cycle, and the methylaspartate cycle). In this review, we summarize the history of facultative methanotrophy, describe scenarios for the basis of facultative methanotrophy, and pose several topics for future research in this area.  相似文献   

6.
Sulphur is a key constituent in a wide variety of biologically important compounds, ranging from amino acids and coenzymes to antibiotics and pesticides. In analogy with the more widely studied metabolism of aromatic or aliphatic hydrocarbons and amines, the intial step in metabolism of sulphur compounds is commonly oxygenation on sulphur. While sulphur oxygenation in vivo has been known for many years, it is only within the past decade that many of the enzymes responsible have been identified, and molecularlevel details have become available. This review focuses on the molecular aspects of enzymatic sulphur oxygenation, and considers mono and dioxygenases active on inorganic sulphur, organic thiols, thioethers, thioesters and thiones. Information from very diverse areas of the literature is brought together, and the implications of sulphur oxygenation reactions to drug design, as well as to environmental and toxicological areas, are mentioned.  相似文献   

7.
The rapid development of nanotechnology requires a more thorough understanding of the potential health effects caused by nanoparticles (NPs). As a programmed cell death, autophagy is one of the biological effects induced by NPs, which maintain intracellular homeostasis by degrading damaged organelles and removing aggregates of defective proteins through lysosomes. Currently, autophagy has been shown to be associated with the development of several diseases. A significant number of research have demonstrated that most NPs can regulate autophagy, and their regulation of autophagy is divided into induction and blockade. Studying the autophagy regulation by NPs will facilitate a more comprehensive understanding of the toxicity of NPs. In this review, we will illustrate the effects of different types of NPs on autophagy, including inorganic NPs, organic NPs, and organic/inorganic hybrid NPs. The potential mechanisms by which NPs regulate autophagy are highlighted, including organelle damage, oxidative stress, inducible factors, and multiple signaling pathways. In addition, we list the factors influencing NPs-regulated autophagy. This review may provide basic information for the safety assessment of NPs.  相似文献   

8.
Metabolism of sulfate-reducing prokaryotes   总被引:1,自引:0,他引:1  
Dissimilatory sulfate reduction is carried out by a heterogeneous group of bacteria and archaea that occur in environments with temperatures up to 105 °C. As a group together they have the capacity to metabolize a wide variety of compounds ranging from hydrogen via typical organic fermentation products to hexadecane, toluene, and several types of substituted aromatics. Without exception all sulfate reducers activate sulfate to APS; the natural electron donor(s) for the ensuing APS reductase reaction is not known. The same is true for the reduction of the product bisulfite; in addition there is still some uncertainty as to whether the pathway to sulfide is a direct six-electron reduction of bisulfite or whether it involves trithionate and thiosulfate as intermediates. The study of the degradation pathways of organic substrates by sulfate-reducing prokaryotes has led to the discovery of novel non-cyclic pathways for the oxidation of the acetyl moiety of acetyl-CoA to CO2. The most detailed knowledge is available on the metabolism ofDesulfovibrio strains, both on the pathways and enzymes involved in substrate degradation and on electron transfer components and terminal reductases. Problems encountered in elucidating the flow of reducing equivalents and energy transduction are the cytoplasmic localization of the terminal reductases and uncertainties about the electron donors for the reactions catalyzed by these enzymes. New developments in the study of the metabolism of sulfate-reducing bacteria and archaea are reviewed.  相似文献   

9.
Fungi are well known for their metabolic versatility, whether it is the degradation of complex organic substrates or the biosynthesis of intricate secondary metabolites. The vast majority of studies concerning fungal metabolic pathways for sulfur assimilation have focused on conventional sources of sulfur such as inorganic sulfur ions and sulfur-containing biomolecules. Less is known about the metabolic pathways involved in the assimilation of so-called “alternative” sulfur sources such as sulfides, sulfoxides, sulfones, sulfonates, sulfate esters and sulfamates. This review summarizes our current knowledge regarding the structural diversity of sulfur compounds assimilated by fungi as well as the biochemistry and genetics of metabolic pathways involved in this process. Shared sequence homology between bacterial and fungal sulfur assimilation genes have lead to the identification of several candidate genes in fungi while other enzyme activities and pathways so far appear to be specific to the fungal kingdom. Increased knowledge of how fungi catabolize this group of compounds will ultimately contribute to a more complete understanding of sulfur cycling in nature as well as the environmental fate of sulfur-containing xenobiotics.  相似文献   

10.
A key component of the oxidative biogeochemical sulphur cycle involves the utilization by bacteria of reduced inorganic sulphur compounds as electron donors to photosynthetic or respiratory electron transport chains. The SoxAX protein of the photosynthetic bacterium Rhodovulum sulfidophilum is a heterodimeric c-type cytochrome that is involved in the oxidation of thiosulphate and sulphide. The recently solved crystal structure of the SoxAX complex represents the first structurally characterized example of a productive electron transfer complex between haemoproteins where both partners adopt the c-type cytochrome fold. The packing of c-type cytochrome domains both within SoxA and at the interface between the subunits of the complex has been compared with other examples and found to be unique.  相似文献   

11.
SO2emissions arising by burning of coal represent an important ecological problem. Therefore, in international scale it is worked today in the development of techniques for solving this problem. A possibility consists in the microbial conversion of sulphur compounds of coal before its burning into compounds which not produce SO2 by burning. Sulphur is bound in inorganic and organic form in coal. The composition may strongly differ in dependence on the kind of coal and its deposit. For the bioconversion of different sulphur compounds specific microorganisms were used. The paper gives an overview about the situation and the tendencies of the research in this field and also some informations of our own research.  相似文献   

12.
13.
Laccases and their occurrence in prokaryotes   总被引:15,自引:0,他引:15  
Laccases are copper-containing proteins that require O(2) to oxidize phenols, polyphenols, aromatic amines, and different non-phenolic substrates by one-electron transfer, resulting in the formation of reactive radicals. Although their specific physiological functions are not completely understood, there are several indications that laccases are involved in the morphogenesis of microorganisms (e.g., fungal spore development, melanization) and in the formation and/or degradation of complex organic substances such as lignin or humic matter. Owing to their high relative non-specific oxidation capacity, laccases are useful biocatalysts for diverse biotechnological applications. To date, laccases have been found only in eukaryotes (fungi, plants); however, databank searches and experimental data now provide evidence for their distribution in prokaryotes. This survey shows that laccase-like enzymes occur in many gram-negative and gram-positive bacteria. Corresponding genes have been found in prokaryotes that are thought to have branched off early during evolution, e.g., the extremely thermophilic Aquifex aeolicus and the archaeon Pyrobaculum aerophilum. Phylogenetically, the enzymes are members of the multi-copper protein family that have developed from small-sized prokaryotic azurins to eukaryotic plasma proteins.  相似文献   

14.
Acinetobacter sp. strain ADP1 is a nutritionally versatile soil bacterium closely related to representatives of the well-characterized Pseudomonas aeruginosa and Pseudomonas putida. Unlike these bacteria, the Acinetobacter ADP1 is highly competent for natural transformation which affords extraordinary convenience for genetic manipulation. The circular chromosome of the Acinetobacter ADP1, presented here, encodes 3325 predicted coding sequences, of which 60% have been classified based on sequence similarity to other documented proteins. The close evolutionary proximity of Acinetobacter and Pseudomonas species, as judged by the sequences of their 16S RNA genes and by the highest level of bidirectional best hits, contrasts with the extensive divergence in the GC content of their DNA (40 versus 62%). The chromosomes also differ significantly in size, with the Acinetobacter ADP1 chromosome <60% of the length of the Pseudomonas counterparts. Genome analysis of the Acinetobacter ADP1 revealed genes for metabolic pathways involved in utilization of a large variety of compounds. Almost all of these genes, with orthologs that are scattered in other species, are located in five major 'islands of catabolic diversity', now an apparent 'archipelago of catabolic diversity', within one-quarter of the overall genome. Acinetobacter ADP1 displays many features of other aerobic soil bacteria with metabolism oriented toward the degradation of organic compounds found in their natural habitat. A distinguishing feature of this genome is the absence of a gene corresponding to pyruvate kinase, the enzyme that generally catalyzes the terminal step in conversion of carbohydrates to pyruvate for respiration by the citric acid cycle. This finding supports the view that the cycle itself is centrally geared to the catabolic capabilities of this exceptionally versatile organism.  相似文献   

15.
Wang Z  Wang T 《Proteomics》2011,11(2):225-238
Diurnal physiological acclimation regulated by a circadian system is an advantage for plant fitness. The circadian system is composed of a signal input, the clock and output pathways. Understanding the regulation mechanism of the output pathways remains a major challenge. Diurnal proteomic change reflects the state of circadian organization. We found the content of glucose, fructose, sucrose and starch diurnally changed in leaves of rice seedlings grown under a 12-h light/12-h dark condition with constant temperature. Dynamic proteomics analysis revealed 140 protein spots with diurnally changed levels at six times of the light/dark cycle; 132 spots were identified by MS, and 119 spots were of a single protein each with functional annotation. These proteins are involved in regulation of carbohydrate flow, redox, protein folding, nitrogen and protein metabolism, energy conversion, photorespiration and photosynthesis. Of these proteins, 81.5% were upregulated during the light phase, overlappingly, 41.2% showed behavior of circadian anticipation to dawn. Pattern analysis showed that the diurnal regulation involved pathways of allocation of carbohydrates between temporary reserves and consumption, maintenance of redox homeostasis, diurnal protein reassembly and nitrogen assimilation. These pathways reflect biochemical phenotypes of the circadian change linking the oscillator and circadian outputs.  相似文献   

16.
The spatial distribution of organosulphur compounds throughout the onion (Allium cepa L.) plant body during reproduction is of ecological and horticultural interest. These secondary metabolites are associated with both pest resistance and many of the vegetable's culinary and medicinal properties, including the ability to inhibit platelet aggregation. Inhibition of platelet aggregation can be of benefit to human cardiovascular health. Organosulphur compound concentrations are associated with elemental sulphur, pungency, soluble solids and effect on human platelet aggregation. These parameters were evaluated in extracts collected separately from bulb scales, leaf blades, scapes and umbels biweekly throughout the reproductive phase of the life cycle of the onion. Significant variation in pungency, platelet inhibition, total sulphur content and soluble solids existed among samples of organs and within organs over time during reproductive growth. Furthermore, some extracts from leaf, scape and bulb induced rather than inhibited platelet aggregation.  相似文献   

17.
Sulphur and nitrogen changes in forest soils of East Africa   总被引:1,自引:0,他引:1  
Summary Sulphur measurements made on soils in East Africa revealed the unexpected occurrence of sulphates in forest subsoils. Soil profiles from plantation and natural forests were analysed and a general pattern of sulphur distribution was found.It has been found that in addition to the sulphur cycle dependent upon microbiological oxidation of organic sulphur there exists a cycle whereby sulphate is circulated as such between trees and soil.The biological oxidation of organic sulphur in the soil is an extremely slow process compared with that of carbon and nitrogen. Treatment with calcium carbonate, nitrates and non-sulphur-containing amino acids had no effect upon the subsequent sulphate production. Incubation with either S-containing amino acids or with calcium sulphate however, resulted in an increased rate of soil-sulphur oxidation and this effect is being further investigated.An aqueous extract of wattle leaves proved to inhibit nitrification in the soil for short periods and evidence is presented which suggests that methionine may be involved in this effect.  相似文献   

18.
Quality control pathways for non-coding RNAs such as tRNAs and rRNAs are widespread. In both prokaryotes and eukaryotes, poly(A) polymerases target aberrant non-coding RNAs for degradation. In yeast, a nuclear complex that includes the poly(A) polymerase Trf4p works together with the exosome in degrading a broad array of non-coding RNAs, several of which are aberrant. Yeast also have additional pathways for the degradation of defective RNAs and other pathways may exist in higher eukaryotes. One possibility is that cells recognize specific, still undiscovered, features common to misfolded RNAs; however, an alternative is that RNA quality control proteins interact with relatively general RNA structures, whereas correctly folded RNAs are sequestered by specific RNA-binding proteins and thus protected from degradation. Recently available structures of protein and ribonucleoprotein complexes involved in non-coding RNA quality control are providing a more detailed understanding of this process.  相似文献   

19.
20.
The elemental composition of proteins influences the quantities of different elements required by organisms. Here, we considered variation in the sulphur content of whole proteomes among 19 Archaea, 122 Eubacteria and 10 eukaryotes whose genomes have been fully sequenced. We found that different species vary greatly in the sulphur content of their proteins, and that average sulphur content of proteomes and genome base composition are related. Forces contributing to variation in proteomic sulphur content appear to operate quite uniformly across the proteins of different species. In particular, the sulphur content of orthologous proteins was frequently correlated with mean proteomic sulphur contents. Among prokaryotes, proteomic sulphur content tended to be greater in anaerobes, relative to non-anaerobes. Thermophiles tended to have lower proteomic sulphur content than non-thermophiles, consistent with the thermolability of cysteine and methionine residues. This work suggests that persistent environmental growth conditions can influence the evolution of elemental composition of whole proteomes in a manner that may have important implications for the amount of sulphur used by living organisms to build proteins. It extends previous studies that demonstrated links between transient changes in environmental conditions and the elemental composition of subsets of proteins expressed under these conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号