首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Early and middle Paleozoic gastropod protoconchs generally differ strongly from their corresponding adult morphologies, that is, most known protoconchs are smooth and openly coiled, whereas the majority of adult shells are ornamented and tightly coiled. In contrast, larval and adult shells of late Paleozoic gastropods with planktotrophic larval development (Caenogastropoda, Neritimorpha) commonly resemble each other in shape and principle ornamentation. This is surprising because habitat and mode of life of planktonic larvae and benthic adults differ strongly from each other. Generally, late Paleozoic to Recent protoconchs are tightly coiled. This modern type of larval shell resembles the adult shell morphology and was obviously predisplaced onto the larval stage during the middle Paleozoic. The oldest known planktonic‐armored (strongly ornamented) larval shells are known from the late Paleozoic. However, smooth larval shells are also common among the studied late Paleozoic gastropods. The appearance of larval armor at the beginning of the late Paleozoic could reflect an increase of predation pressure in the plankton. Although there are counter examples in which larval and adult shell morphology differ strongly from each other, there is statistical evidence for a heterochronic predisplacement of adult characters onto the larval stage. Larval and adult shells are built in the same way, by accretionary secretion at the mantle edge. It is likely that the same underlying gene expression is responsible for that. If so, similarities of larval and adult shell may be explained by gene sharing, whereas differences may be due to different (planktic vs. benthic life) epigenetic patterns.  相似文献   

2.
Data on the hormonal regulation of the formation and mobilisation of fat body stores are presented and discussed in relation to general parameters of last instar larval development such as growth, food intake, and moulting. Crickets feed voraciously during the first half of the last larval stage. With the onset of feeding, fat body lipid synthesis increases, leading to increasing lipid stores in the fat body with a maximum reached on day 5. Lipid (42% of fat body fresh mass) is the main constituent of the fat body stores, followed by protein (6%) and glycogen (2%). During the second half of the last larval stage, feeding activity dramatically decreases, the glycogen reserves are depleted but lipid and protein reserves in the fat body remain at a high level except for the last day of the last larval stage when lipid and protein in the fat body are also largely depleted. The process of moulting consumes almost three quarters of the caloric equivalents that were acquired during the last larval stage. Adipokinetic hormone (AKH) inhibits effectively the synthesis of lipids in the larval fat body. Furthermore, AKH stimulates lipid mobilisation by activating fat body triacylglycerol lipase (TGL) in last larval and adult crickets. Both effects of AKH are weaker in larvae than in adults. This is the first report on the age-dependent basal activity of TGL in larval and adult insects. In addition, for the first time, an activation of TGL by AKH in a larval insect is shown.  相似文献   

3.
Larval release and photobehavior were studied in the colonial ascidian Polyandrocarpa zorritensis. The test hypothesis was that if larval release is induced by light, then larvae should be attracted to settlement areas where light is sufficient for larval release. Light induced larval release but the time course varied with light intensity. As the intensity of either sunlight or blue-green light decreased (1) the time until the beginning of larval release (latency) became longer, (2) the mean time of larval release increased, and (3) the time interval over which larvae were released increased. The threshold light intensity to induce larval release in blue-green light (8.75x10(12) photons cm(-2) s(-1)) was lower than that in sunlight (3.6x10(13) photons cm(-2) s(-1)). Light induced larval release was not affected by currents up to 15 cm s(-1). Larvae aggregate in light when given a choice between light and dark. This response did not vary with larval age. The lowest light intensity, at which larvae could distinguish between light and dark was 5.0x10(12) photons cm(-2) s(-1) in blue-green light and 2.9x10(14) photons cm(-2) s(-1) in sunlight. Thus, the hypothesis is supported because larvae are attracted to areas where light intensity is sufficient for larval release.  相似文献   

4.
The dorsal air sacs supply oxygen to the flight muscles of the Drosophila adult. This tracheal organ grows from an epithelial tube (the air sac primordium (ASP)) that arises during the third larval instar (L3) from a wing-disc-associated tracheal branch. Since the ASP is generated by a program of both morphogenesis and cell proliferation and since the larval tracheal branches are populated by cells that are terminally differentiated, the provenance of its progenitors has been uncertain. Here, we show that, although other larval tracheae are remodeled after L3, most tracheal branches in the tracheal metamere associated with the wing disc (Tr2) are precociously repopulated with imaginal tracheoblasts during L3. Concurrently, the larval cells in Tr2 undergo head involution defective (hid)-dependent programmed cell death. In BX-C mutant larvae, the tracheal branches of the Tr3 metamere are also repopulated during L3. Our results show that repopulation of the larval trachea is a prerequisite for FGF-dependent induction of cell proliferation and tubulogenesis in the ASP and that homeotic selector gene function is necessary for the temporal and spatial control of tracheal repopulation.  相似文献   

5.
During anuran metamorphosis, larval-type myotubes in both trunk and tail are removed by apoptosis, and only trunk muscles are replaced by newly formed adult-type myotubes. In the present study, we clarified the regulatory mechanisms for specific developmental fates of adult and larval muscles. Two distinct (adult and larval) types of myoblasts were found to exist in the trunk, but no or very few adult myoblasts were found in the tail. Each type of myoblast responded differently to metamorphic trigger, 3,3',5-triiodo-L-thyronine (T(3)) in vitro. T(3)-induced cell death was observed in larval myoblasts but not in adult myoblasts. These results suggest that the fates (life or death) of trunk and tail muscles are determined primarily by the differential distribution of adult myoblasts within the muscles. However, a transplantation study clarified that each larval and adult myoblast was not committed to fuse into particular myotube types, and they could form heterokaryon myotubes in vivo. Cell culture experiments suggested that the following two mechanisms are involved in the specification of myotube fate: (1) Heterokaryon myotubes could escape T(3)-induced death only when the proportion of adult nuclei number was higher than 70% in the myotubes. Apoptosis was not observed in any larval nuclei within the surviving heterokaryon myotubes, suggesting the conversion of larval nuclei fate. (2) Differentiation of adult myoblasts was promoted by the factor(s) released from larval myoblasts in a cell type-specific manner. Taken together, the developmental fate of myotubes is determined by the ratio of nuclei types, and the formation of adult nuclei-rich myotubes was specifically enhanced by larval myoblast factor(s).  相似文献   

6.
Life history theory and empirical studies suggest that large size or earlier metamorphosis are suitable proxies for increased lifetime fitness. Thus, across a gradient of larval habitat quality, individuals with similar phenotypes for these traits should exhibit similar post-metamorphic performance. Here we examine this paradigm by testing for differences in post-metamorphic growth and survival independent of metamorphic size in a temperate (spring peeper, Pseudacris crucifer) and tropical (red-eyed treefrog, Agalychnis callidryas) anuran reared under differing larval conditions. For spring peepers, increased food in the larval environment increased post-metamorphic growth efficiency more than predicted by metamorphic phenotype and led to increased mass. Similarly, red-eyed treefrogs reared at low larval density ended the experiment at a higher mass than predicted by metamorphic phenotype. These results show that larval environments can have delayed effects not captured by examining only metamorphic phenotype. These delayed effects for the larval environment link larval and juvenile life history stages and could be important in the population dynamics of organisms with complex life cycles.  相似文献   

7.
Biosynthesis of most peptide hormones and neuropeptides requires proteolytic excision of the active peptide from inactive proprotein precursors, an activity carried out by subtilisin-like proprotein convertases (SPCs) in constitutive or regulated secretory pathways. The Drosophila amontillado (amon) gene encodes a homolog of the mammalian PC2 protein, an SPC that functions in the regulated secretory pathway in neuroendocrine tissues. We have identified amon mutants by isolating ethylmethanesulfonate (EMS)-induced lethal and visible mutations that define two complementation groups in the amon interval at 97D1 of the third chromosome. DNA sequencing identified the amon complementation group and the DNA sequence change for each of the nine amon alleles isolated. amon mutants display partial embryonic lethality, are defective in larval growth, and arrest during the first to second instar larval molt. Mutant larvae can be rescued by heat-shock-induced expression of the amon protein. Rescued larvae arrest at the subsequent larval molt, suggesting that amon is also required for the second to third instar larval molt. Our data indicate that the amon proprotein convertase is required during embryogenesis and larval development in Drosophila and support the hypothesis that AMON acts to proteolytically process peptide hormones that regulate hatching, larval growth, and larval ecdysis.  相似文献   

8.
For many marine organisms, the population dynamics in multiple habitats are affected by migration of planktonic larvae. We herein examine the effect of incomplete larval mixing on the condition for species coexistence. The system consists of two heterogeneous habitats, each composed of a number of sites occupied by adults of two species. Larvae produced in a habitat form a pool and migrate to the pool of the other habitat. When an adult dies, the vacant site becomes occupied by an individual randomly chosen from the larval pool. We study (1). the invasibility of a inferior species which has no advantage in either habitats, (2). the dynamics when larval migration and competition among adults are symmetric between habitats, and (3). the case with unidirectional migration. The coexistence of competitors is more likely to occur when larval migration is weak.  相似文献   

9.
Extant neritimorphs with planktotrophic larval development have a convolute smooth larval shell which is internally resorbed. The oldest known larval shells of this type are of Triassic age. Well-preserved Late Palaeozoic neritimorph specimens have larval shells of two or more rapidly increasing well separated whorls. These larval shells resemble planktotrophic caenogastropod larval shells. This type of larval shell is possibly plesiomorphic in neritimorphs and caenogastropods. Permian/Pennsylvanian neritimorphs (Naticopsis, Trachyspird) have smooth larval shells (Naticopsidae) or larval shells with strong axial ribs (Trachyspiridae new family). The convolute low-spired round shell shape of modern neritimorphs is causally linked with the resorption of the inner teleoconch and protoconch whorls. Modern neritimorph shells with a uniform, undifferentiated inner lumen have probably evolved from naticopsid ancestors which lack resorption. It is possible that an elevated spire, deep sutures and protruding spiral larval shells would have made such internally undifferentiated shells more vulnerable for mechanical destruction and prédation. Suggestions that coiling evolved independently in neritimorphs and other Gastropoda are unlikely and contrast with the fossil record. The modern neritid larval shell has probably evolved from relatively low-spired smooth naticopsid larval shells like those reported here.  相似文献   

10.
Three cDNAs encoding putative larval cuticle protein (LCP) were cloned from the mulberry longicorn beetle, Apriona germari. The three cDNA sequences were 309 bp, 396 bp and 408 bp in length, encoding 103, 132 and 136 amino acid residues, respectively. The predicted molecular masses for these LCPs were approximately 9.2 kDa (AgLCP9.2), 12.3 kDa (AgLCP12.3) and 12.6 kDa (AgLCP12.6). Pairwise identity among AgLCP9.2, AgLCP12.3 and AgLCP12.6 were relatively low. Each AgLCP contained a type-specific consensus sequence identifiable in other insect cuticle proteins. The deduced amino acid sequence of AgLCP9.2 is most similar to Bombyx mori LCP18 and those of AgLCP12.3 and AgLCP12.6 are both most similar to B. mori LCP17. Northern blot analysis revealed that the three AgLCPs showed epidermis-specific expression. The expression profile of AgLCPs after larval ecdysis revealed by Northern blot analysis that the high-level mRNA expression of AgLCPs was detected on the first day of larval ecdysis for AgLCP9.2, on the fifth day for AgLCP12.3 and from the first day of larval ecdysis to the fifth day after larval ecdysis for AgLCP12.6, demonstrating that AgLCP mRNAs are differentially expressed in epidermis after larval ecdysis.  相似文献   

11.
The shell of marine gastropods conserves and reflects early ontogeny, including embryonic and larval stages, to a high degree when compared with other marine invertebrates. Planktotrophic larval development is indicated by a small embryonic shell (size is also related to systematic placement) with little yolk followed by a multiwhorled shell formed by a free‐swimming veliger larva. Basal gastropod clades (e.g. Vetigastropoda) lack planktotrophic larval development. The great majority of Late Palaeozoic and Mesozoic ‘derived’ marine gastropods (Neritimorpha, Caenogastropoda and Heterobranchia) with known protoconch had planktotrophic larval development. Dimensions of internal moulds of protoconchs suggest that planktotrophic larval development was largely absent in the Cambrian and evolved at the Cambrian–Ordovician transition, mainly due to increasing benthic predation. The evolution of planktotrophic larval development offered advantages and opportunities such as more effective dispersal, enhanced gene flow between populations and prevention of inbreeding. Early gastropod larval shells were openly coiled and weakly sculptured. During the Mid‐ and Late Palaeozoic, modern tightly coiled larval shells (commonly with strong sculpture) evolved due to increasing predation pressure in the plankton. The presence of numerous Late Palaeozoic and Triassic gastropod species with planktotrophic larval development suggests sufficient primary production although direct evidence for phytoplankton is scarce in this period. Contrary to previous suggestions, it seems unlikely that the end‐Permian mass extinction selected against species with planktotrophic larval development. The molluscan classes with highest species diversity (Gastropoda and Bivalvia) are those which may have planktotrophic larval development. Extremely high diversity in such groups as Caenogastropoda or eulamellibranch bivalves is the result of high phylogenetic activity and is associated with the presence of planktotrophic veliger larvae in many members of these groups, although causality has not been shown yet. A new gastropod species and genus, Anachronistella peterwagneri, is described from the Late Triassic Cassian Formation; it is the first known Triassic gastropod with an openly coiled larval shell.  相似文献   

12.
It has been shown that larval skin (LS) grafts are rejected by an inbred strain of adult Xenopus, which suggests a mechanism of metamorphosis by which larval cells are recognized and attacked by the newly differentiating immune system, including T lymphocytes. In an attempt to define the larval antigenic molecules that are targeted by the adult immune system, anti-LS antibodies (IgY) were produced by immunizing adult frogs with syngeneic LS grafts. The antigen molecules that reacted specifically with this anti-LS antiserum were localized only in the larval epidermal cells. Of 53 and 59-60 kDa acidic proteins that were reactive with anti-LS antibodies, a protein of 59 kDa and with an isoelectric point of 4.5 was selected for determination of a 19 amino acid sequence (larval peptide). The rat antiserum raised against this peptide was specifically reactive with the 59 kDa molecules of LS lysates. Immunofluorescence studies using these antisera revealed that the larval-specific molecules were localized in both the tail and trunk epidermis of premetamorphic larvae, but were reduced in the trunk regions during metamorphosis, and at the climax stage of metamorphosis were detected only in the regressing tail epidermis. Culture of splenocytes from LS-immunized adult frogs in the presence of larval peptide induced augmented proliferative responses. Cultures of larval tail pieces in T cell-enriched splenocytes from normal frogs or in natural killer (NK)-cell-enriched splenocytes from early thymectomized frogs both resulted in significant destruction of tail pieces. Tissue destruction in the latter was enhanced when anti-LS antiserum was added to the culture. These results indicate that degeneration of tail tissues during metamorphosis is induced by a mechanism such that the larval-specific antigen molecules expressed in the tail epidermis are recognized as foreign by the newly developing adult immune system, and destroyed by cytotoxic T lymphocytes and/or NK cells.  相似文献   

13.
The regional differences in the sensitivity of protein synthesis and free radical processes to temperature, trypsin, urea and LiCl were studied in Obelia flexuosa by means of autoradiography. The regional differences were also determined with respect to the rate of incorporation and excretion of a labelled aminoacid under the normal conditions. The metabolic reactions of larvae can be divided in primary (the first 30 min following the effect) and subsequent adaptive ones. The primary reactions are characterized by the greater sensitivity of the anterior larval regions to all factors under study. The subsequent reactions are characterized by synchronous and unidirectional metabolic starts in both the anterior and posterior larval regions, the starts being bigger in the anterior regions. The restoration of the normal ratios of metabolic activities of the opposite larval regions does not always correlate with the restoration of the normal absolute level of metabolism. The adaptive reactions are better expressed for protein synthesis, rather than for free radical processes. The anterior larval region has the greatest metabolic non-stability by a series of indices.  相似文献   

14.
Summary Methods for the isolation and in vitro culture of larval and adultXenopus laevis epidermal cells have been developed. Epidermal cells of stage 52–54 tadpoles and adult epidermal cells were enzymatically dissociated and purified (98%) by Percoll-density centrifugation and unit-gravity sedimentation. Both cell types attached on fibronectin-coated dishes and proliferated for 1 wk when the proper medium was used. There were four significant differences between larval and adult cells: a) Adult cells had a greater buoyant density than larval cells. b) Keratin synthesis patterns were markedly different. c) A combination of medium F12 and Eagle's minimum essential medium was optimal for growth of larval cells whereas MCDB151 medium was optimal for adult cells. d) Adult cells needed fetal bovine serum (>5%) whereas larval cells grew without fetal bovine serum. In contrast to these differences, larval and adult cells had two similar properties: a) Insulin had a potent effect on the growth of both cells, and b) The optimal Ca++ concentration for cell growth was quite low for both cell types; 0,1 mM for larval cells and below 0.05 mM for adult cells. These results suggest that low Ca++ levels are essential for both cornifying (adult) and uncornifying (larval) amphibian keratinocytes. The culture techniques described herein for larval and adult epidermal cells provide a new in vitro model for analyzing development of the epidermis during amphibian metamorphosis. This study was supported by grant (HD 24438) from the National Institutes of Health, Bethesda, MD.  相似文献   

15.
A comparative analysis of the larval and presumptive juvenile neuromuscular systems among actinotroch larvae was performed using confocal laser microscopy with probes for F-actin and serotonin. Currently, there are two main categories of larval nervous systems based on the origin of the nerve fibers that innervate the larval tentacles. Characteristics of the serotonergic cells of the larval apical ganglion and juvenile nervous system have remained relatively conserved, but the structure of the secondary (hood) sense organ and the juvenile tentacles has diversified among species. Differences in larval musculature are mainly associated with differences in hood morphology. The presumptive, juvenile neuromuscular system is either integrated or separated from that of the larva based on the origin of the juvenile tentacles. Among species, the juvenile tentacles are made by remodeling the larval tentacles, developed from a basal tentacular thickening, or developed as a completely separate set in the larva. Differentiation of the neuromuscular structures of the juvenile tentacles is more diverse than their outward morphological characteristics would suggest. Importance of these larval characters is discussed in terms of current problems that exist within phoronid systematics. Evolutionary implications of these morphological characters are discussed among the phoronids, brachiopods, and related bilaterians. Overall, the integration or separation of larval and juvenile neuromuscular characters may yield insights into the evolution of lophotrochozoan body plans.  相似文献   

16.
Substrates contaminated by wandering fifth instar larvae ofPlodia interpunctella (Hübner) (Lepidoptera: Pyralidae) elicit oviposition by conspecific female moths, and larval rearing diet enhances oviposition and also induces upwind flight. Two-choice oviposition assays determined that four-day-old gravid femaleP. interpunctella preferred to lay eggs on dishes containing cornmeal-based rearing diet compared to empty dishes. Pieces of cheesecloth contaminated by fifth instar larvae elicited more oviposition than untreated cheesecloth or dishes with food. The combination of larval contamination and food was preferred over food only or larval contamination only in both two- and four-choice experiments. The factor(s) in larval contamination responsible for eliciting oviposition in female moths was extracted in hexane, confirming that organic semiochemicals are responsible for the effect. The oviposition-eliciting activity of larval contamination was retained on cheesecloth for up to 30 days following treatment with larvae, suggesting the active component(s) is stable and of low relative volatility. In two-choice windtunnel bioassays female moths initiated flight only when rearing food was present in one of the treatments, and they displayed the highest landing responses to a combination of larval contamination and food. Earlier work onP. interpunctella and related pyralid species found that larval contamination due to secretions from the mandibular glands acted as both a spacing pheromone for wandering larvae and as a kairomone for host-seeking parasitoid wasps. The present study suggests that the same or a similar secretion acts as an oviposition-eliciting pheromone for conspecific females.  相似文献   

17.
The caterpillars of Sesamia nonagrioides developing under long-day (LD) photoperiod pupate in the 5th or 6th instar whereas under short day (SD) conditions they enter diapause and undergo several extra larval molts. The diapause is terminated within 1-3 instars upon transfer of SD larvae to the LD conditions. Brain removal from the 6th instar larvae promotes pupation followed by imaginal development; however, one third of the SD larvae and 12% of the LD larvae debrained at the start of the instar first undergo 1-2 larval molts. The incidence of larval molts is enhanced by the brain implants. Exclusively pupal molts occur in the LD larvae debrained late in the 6th instar. Decapitation elicits pupation in both LD and SD larvae, except for some of the 4th and 5th and rarely 6th instar that are induced to a fast larval molt. The pupation of decapitated larvae is reverted to a larval molt by application of a juvenile hormone (JH) agonist. No molts occur in abdomens isolated from the head and thorax prior to the wandering stage. Abdomens isolated later undergo a larval (SD insects) or a pupal (LD insects) molt. Taken together the data reveal that in S. nonagrioides (1) several larval molts followed by a pupal and imaginal molt can occur without brain; (2) an unknown head factor outside the brain is needed for the pupal-adult molt; (3) brain exerts both stimulatory and inhibitory effect on the corpora allata (CA); (4) larval molts induced in CA absence suggest considerable JH persistence.  相似文献   

18.
Shell-anchored muscles that extend into the cephalopodium of five species of planktotrophic nudibranch larvae were studied by ultrastructural examination of sequential larval developmental stages. All species, regardless of larval shell type (inflated or non-inflated), showed a similar basic pattern of shell muscles. The larval retractor muscle (LRM) differentiates prior to hatching and its fibres insert on epithelia of the velum, apical plate, stomodeal region, or mantle fold. Many fibres also connect with subepithelial intrinsic muscles of the cephalopodium. Most but not all LRM fibres Project to left-sided targets and are innervated from the left cerebral ganglion. Two pedal muscles, which are innervated from the pedal ganglia, differentiate during the post-hatching larval stage and both insert primarily on pedal epithelium attached to the operculum. The left pedal muscle is anchored to the shell immediately adjacent to the attachment plaque of the LRM and consists of basal and distal tiers of muscle cells. The right pedal muscle arises on the ventral rim of the shell aperture and consists of a single tier of muscle cells. Ontogenic changes in larval retraction behaviour correlate with developmental change in the muscle effectors. Although some interspecific differences were noted, the presence of a common ground plan for larval shell muscles in these five species contrasts with previous indications of marked variability for nudibranch larval shell muscles.  相似文献   

19.
The effects of larval nutrition and parental size on offspring horn (male) and body size (male and female) were examined in the Japanese horned beetle Allomyrina dichotoma L. (Coleoptera: Scarabaeidae). Offspring-parent regressions for both horn size and body size of males show no heritable effect, and the magnitudes of these traits were primarily determined by the larval nutritional condition. Male Allomyrina dichotoma also displayed dimorphic horn size-body size allometry, that is, larger males had longer horns relative to their body size and vice versa. Because it has been suggested that males of different body sizes adopt different reproductive tactics, the dimorphic horn size–body size allometry and male reproductive tactics are also a result of the larval environment. Similarly, female body size was determined by larval nutrition, and, thus, larval condition might influence future female fecundity. Females under low nutrition treatment spent longer duration of the third larval instar than females under high nutrition. Females under poor nutrition treatment probably attempted to be as large as possible by the extent of larval duration. Since horn and/or body sizes of males and females affect their fitness, this suggests the evolution of female choice for better oviposition site.  相似文献   

20.
We have previously hypothesized that density‐dependent natural selection is responsible for a genetic polymorphism in crowded cultures of Drosophila. This genetic polymorphism entails two alternative phenotypes for dealing with crowded Drosophila larval cultures. The first phenotype is associated with rapid development, fast larval feeding rates but reduced absolute viability, especially in the presence of nitrogenous wastes like ammonia. The second phenotype has associated with it the opposite set of traits, slow development, slow feeding rates and higher viability. We suggested that these traits are associated due to genetic correlations and that an important selective agent in crowded larval cultures was high levels of ammonia. To test this hypothesis we have examined viability and larval feeding rates in populations kept at low larval densities but selected directly for (i) rapid egg‐to‐adult development, (ii) tolerance of ammonia in the larval environment and (iii) tolerance of urea in the larval environment. Consistent with our hypothesis we found that (i) larvae selected for rapid development exhibited increased feeding rates, and decreased viability in food laced with ammonia or urea relative to controls, and (ii) larvae selected to tolerate either ammonia or urea in their larval environment show reduced feeding rates but elevated survival in toxin‐laced food relative to controls. It would appear that development time and larval feeding rate are important characters for larvae adapting to crowded cultures. The correlated fitness effects of these characters provide important insights into the nature of density‐dependent natural selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号