首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The work presented in this paper focuses on numerically investigating the thermal response of gold nanoshells-embedded biological tissue phantoms with potential applications into photo-thermal therapy wherein the interest is in destroying the cancerous cells with minimum damage to the surrounding healthy cells. The tissue phantom has been irradiated with a pico-second laser. Radiative transfer equation (RTE) has been employed to model the light-tissue interaction using discrete ordinate method (DOM). For determining the temperature distribution inside the tissue phantom, the RTE has been solved in combination with a generalized non-Fourier heat conduction model namely the dual phase lag bio-heat transfer model. The numerical code comprising the coupled RTE-bio-heat transfer equation, developed as a part of the current work, has been benchmarked against the experimental as well as the numerical results available in the literature. It has been demonstrated that the temperature of the optical inhomogeneity inside the biological tissue phantom embedded with gold nanoshells is relatively higher than that of the baseline case (no nanoshells) for the same laser power and operation time. The study clearly underlines the impact of nanoshell concentration and its size on the thermal response of the biological tissue sample. The comparative study concerned with the size and concentration of nanoshells showed that 60 nm nanoshells with concentration of 5×1015 mm−3 result into the temperature levels that are optimum for the irreversible destruction of cancer infected cells in the context of photo-thermal therapy. To the best of the knowledge of the authors, the present study is one of the first attempts to quantify the influence of gold nanoshells on the temperature distributions inside the biological tissue phantoms upon laser irradiation using the dual phase lag heat conduction model.  相似文献   

2.
The derivation and application of the general characteristics of bioheat transfer for medical applications are shown in this paper. Two general bioheat transfer characteristics are derived from solutions of one-dimensional Pennes’ bioheat transfer equation: steady-state thermal penetration depth, which is the deepest depth where the heat effect reaches; and time to reach steady-state, which represents the amount of time necessary for temperature distribution to converge to a steady-state. All results are described by dimensionless form; therefore, these results provide information on temperature distribution in biological tissue for various thermal therapies by transforming to dimension form.  相似文献   

3.
Specifying exact geometry of vessel network and its effect on temperature distribution in living tissues is one of the most complicated problems of the bioheat field. In this paper, the effects of blood vessels on temperature distribution in a skin tissue subjected to various thermal therapy conditions are investigated. Present model consists of counter-current multilevel vessel network embedded in a three-dimensional triple-layered skin structure. Branching angles of vessels are calculated using the physiological principle of minimum work. Length and diameter ratios are specified using length doubling rule and Cube law, respectively. By solving continuity, momentum and energy equations for blood flow and Pennes and modified Pennes bioheat equations for the tissue, temperature distributions in the tissue are measured. Effects of considering modified Pennes bioheat equation are investigated, comprehensively. It is also observed that blood has an impressive role in temperature distribution of the tissue, especially at high temperatures. The effects of different parameters such as boundary conditions, relaxation time, thermal properties of skin, metabolism and pulse heat flux on temperature distribution are investigated. Tremendous effect of boundary condition type at the lower boundary is noted. It seems that neither insulation nor constant temperature at this boundary can completely describe the real physical phenomena. It is expected that real temperature at the lower levels is somewhat between two predicted values. The effect of temperature on the thermal properties of skin tissue is considered. It is shown that considering temperature dependent values for thermal conductivity is important in the temperature distribution estimation of skin tissue; however, the effect of temperature dependent values for specific heat capacity is negligible. It is seen that considering modified Pennes equation in processes with high heat flux during low times is significant.  相似文献   

4.
Hyperthermia is a process that uses heat from the spatial heat source to kill cancerous cells without damaging the surrounding healthy tissues. Efficacy of hyperthermia technique is related to achieve temperature at the infected cells during the treatment process. A mathematical model on heat transfer in multilayer tissues in finite domain is proposed to predict the control temperature profile at hyperthermia position. The treatment technique uses dual-phase-lag model of heat transfer in multilayer tissues with modified Gaussian distribution heat source subjected to the most generalized boundary condition and interface at the adjacent layers. The complete dual-phase-lag model of bioheat transfer is solved using finite element Legendre wavelet Galerkin approach. The present solution has been verified with exact solution in a specific case and provides a good accuracy. The effect of the variability of different parameters such as lagging times, external heat source, metabolic heat source and the most generalized boundary condition on temperature profile in multilayer tissues is analyzed and also discussed the effective approach of hyperthermia treatment. Furthermore, we studied the modified thermal damage model with regeneration of healthy tissues as well. For viewpoint of thermal damage, the least thermal damage has been observed in boundary condition of second kind. The article concludes with a discussion of better opportunities for future clinical application of hyperthermia treatment.  相似文献   

5.
6.
A three-dimensional (3D) multilayer model based on the skin physical structure is developed to investigate the transient thermal response of human skin subject to laser heating. The temperature distribution of the skin is modeled by the bioheat transfer equation, and the influence of laser heating is expressed as a source term where the strength of the source is a product of a Gaussian shaped incident irradiance, an exponentially shaped axial attenuation, and a time function. The water evaporation and diffusion is included in the model by adding two terms regarding the heat loss due to the evaporation and diffusion, where the rate of water evaporation is determined based on the theory of laminar boundary layer. Cryogen spray cooling (CSC) in laser therapy is studied, as well as its effect on the skin thermal response. The time-dependent equation is discretized using the finite difference method with the Crank–Nicholson scheme and the stability of the numerical method is analyzed. The large sparse linear system resulted from discretizing the governing partial differential equation is solved by a GMRES solver and the expected simulation results are obtained.  相似文献   

7.
Presence of a tumor and its characteristics like location, size and properties are estimated. Estimation is based on the measurement of the skin surface temperature of the breast. Consideration is given to a 2-D breast tissue infected with a tumor. Heat transfer in the breast tissue modeled using the Pennes bioheat equation is solved by the finite volume method. Skin surface temperature profile of the breast is characteristic of the tumor location, its size and grade. In the inverse analysis, the objective function is minimized using the genetic algorithm. Exact estimation is obtained if one parameter is estimated at a time. However, the accuracies are acceptable even when blood perfusion rate, location and size are estimated simultaneously.  相似文献   

8.
Clothing evaporative resistance is an important input in thermal comfort models. Thermal manikin tests give the most accurate and reliable evaporative resistance values for clothing. The calculation methods of clothing evaporative resistance require the sweating skin surface temperature (i.e., options 1 and 2). However, prevailing calculation methods of clothing evaporative resistance (i.e., options 3 and 4) are based on the controlled nude manikin surface temperature due to the sensory measurement difficulty. In order to overcome the difficulty of attaching temperature sensors to the wet skin surface and to enhance the calculation accuracy on evaporative resistance, we conducted an intensive skin study on a thermal manikin ‘Tore’. The relationship among the nude manikin surface temperature, the total heat loss and the wet skin surface temperature in three ambient conditions was investigated. A universal empirical equation to predict the wet skin surface temperature of a sweating thermal manikin was developed and validated on the manikin dressed in six different clothing ensembles. The skin surface temperature prediction equation in an ambient temperature range between 25.0 and 34.0 °C is Tsk=34.0–0.0132HL. It is demonstrated that the universal empirical equation is a good alternative to predicting the wet skin surface temperature and facilitates calculating the evaporative resistance of permeable clothing ensembles. Further studies on the validation of the empirical equation on different thermal manikins are needed however.  相似文献   

9.
10.
This study aimed to search for relations between body fat percentage and skin temperature and to describe possible effects on skin temperature as a result of fat percentage in each anatomical site. Women (26.11±4.41 years old) (n =123) were tested for: body circumferences; skin temperatures (thermal camera); fat percentage and lean mass from trunk, upper and lower limbs; and body fat percentage (Dual-Energy X-Ray Absorptiometry). Values of minimum (TMi), maximum (TMa), and mean temperatures (TMe) were acquired in 30 regions of interest. Pearson's correlation was estimated for body circumferences and skin temperature variables with body fat percentage. Participants were divided into groups of high and low fat percentage of each body segment, of which TMe values were compared with Student's t-test. Linear regression models for predicting body fat percentage were tested. Body fat percentage was positively correlated with body circumferences and palm temperatures, while it was negatively correlated with most temperatures, such as TMa and TMe of posterior thighs (r =−0.495 and −0.432), TMe of posterior lower limbs (r =−0.488), TMa of anterior thighs (r =−0.406) and TMi and TMe of posterior arms (r =−0.447 and −0.430). Higher fat percentages in the specific anatomical sites tended to decrease TMe, especially in posterior thighs, shanks and arms. Skin temperatures and body circumferences predicted body fat percentage with 58.3% accuracy (R =0.764 and R2 =0.583). This study clarifies that skin temperature distribution is influenced by the fat percentage of each body segment.  相似文献   

11.
Skin temperature is an essential physiological parameter of thermal comfort. The purpose of this research was to reveal the effects of clothing thermal resistance and operative temperature on local skin temperature (LST) and mean skin temperature (MST). The LSTs (at 32 sites) in stable condition were measured for different clothing thermal resistances 1.39, 0.5 and 0.1 clo. To study the effect of environmental temperature on LST and MST, the LSTs were also measured for operative temperatures 23, 26 and 33 °C. The experimental data showed that the effect of clothing thermal resistance on the foot was greater compared to the other human parts, and the effect of operative temperature on many parts of the human body was great, such as foot, hand, trunk, and arm. The MSTs measured on the conditions that air speed was under 0.1 m/s, RH was about 30–70%, and metabolic rate was about 1 met, were collected from previous studies. On the basis of these experimental data, a MST prediction equation with the operative temperature and clothing thermal resistance as independent variables, was obtained by multiple linear regression. This equation was a good alternative and provided convenience to predict the MST in different operative temperatures and clothing thermal resistances.  相似文献   

12.
The present study aims to understand the effects of interindividual differences in thermal comfort on the relationship between the preferred temperature and the thermoregulatory responses to ambient cooling. Thirteen young women subjects chose the preferred ambient temperature (preferred Ta) in a climate chamber and were categorized into the H group (preferring ≥29 °C; n=6) and the M group (preferring <29 °C; n=7). The H group preferred warmer sensations than the M group (P<0.05) and the average of preferred Ta was 27.6 °C and 30.2 °C in the M group and H group, respectively. Then all subjects were exposed to temperature variations in the climate chamber. During Ta variations from 33 °C to 25 °C, the H group felt colder than the M group, although no difference was noted in the Tsk (mean skin temperature) and Ts-hand between the 2 groups. From the view of the relationship between the Tsk and thermal sensation, although the thermal sensitivity to the Tsk was almost similar in the H and M groups, the H group might have lower threshold to decreasing Ta than the M group.  相似文献   

13.
Equivalence of Pennes bioheat equation (PBHE) and Wulff continuum model (WCM) is established for a 1-D planar tissue. The derived condition of equivalence is specific to tissue without metabolic heat generation. Mathematical analysis is carried out to relate blood perfusion rate and local mean blood velocity that are needed in the analysis of WCM. It is found that the local mean blood velocity in a tissue is a direct function of square root of blood perfusion rate. This functional dependence is also established numerically by having same solution obtained from PBHE and WCM. Analysis is also done to check how closely the derived relation can be used for practical cases of breast tissue with and without a tumor. Blood velocity is a very important physiological quantity. Its measurement is a difficult process and requires a state-of-the-art technique. The proposed relation allows its computation merely from the knowledge of blood perfusion rate.  相似文献   

14.
目的 调查皮肤软组织感染病原菌的种类及耐药性,为临床合理使用抗菌药物提供科学依据.方法 利用WHONET 5.6对2009年1月至2011年12月皮肤软组织感染患者脓液或分泌物细菌培养及药敏试验结果进行回顾性分析.结果 共分离菌株444株,金黄色葡萄球菌(SAU)分离率居第1位,171株占38.5%;表皮葡萄球菌居第2位,54株占12.2%;铜绿假单胞菌第3位,43株占9.7%;头孢哌酮/舒巴坦、哌拉西林/他唑巴坦、阿米卡星、亚胺培南和美罗培南对革兰阴性杆菌有较好的抗菌活性(耐药率≤3.3%);金黄色葡萄球菌对青霉素和红霉素的耐药率为93.6%和65.0%,对呋喃妥因、利奈唑胺、利福平、莫西沙星和左旋氧氟沙星耐药率为0%、0%、1.4%、2.2%和9.3%,未检出万古霉素耐药株;耐甲氧西林金黄色葡萄球菌(MRSA)检出率25.7% (44/171);MRSA和甲氧西林敏感金黄色葡萄球菌(MSSA)对氨苄西林/舒巴坦、利福平、莫西沙星三种药物的敏感性差异有统计学意义.结论 引起皮肤软组织感染病原菌以阳性球菌尤其是金黄色葡萄球菌为主,临床上应尽量根据药敏试验结果选用抗生素,合理用药.  相似文献   

15.
Pain sensation has been studied extensively, over a range of scales, from the molecular level to the entire human neural system. Thermal stimulation of pain has been widely used in the study of pain sensation. Skin thermal pain is induced through both direct (an increase/decrease in temperature) and indirect (thermomechanical and thermochemical) ways, and is governed by complicated thermomechanical–chemical–neurophysiologic responses. This paper is focused on the theoretical modeling of the underlying mechanisms in the process of skin thermal pain. A holistic model has been developed, which is composed of three sub-models, namely, transduction, transmission, and modulation and perception. The model can contribute to the understanding of thermally related pain phenomena in skin tissue and to improvements in a range of thermal therapeutic methods.  相似文献   

16.
Dermal connective tissue collagen is the major structural protein in skin. Fibroblasts within the dermis are largely responsible for collagen production and turnover. We have previously reported that dermal fibroblasts, in aged human skin in vivo, express elevated levels of CCN1, and that CCN1 negatively regulates collagen homeostasis by suppressing collagen synthesis and increasing collagen degradation (Quan et al. Am J Pathol 169:482–90, 2006, J Invest Dermatol 130:1697–706, 2010). In further investigations of CCN1 actions, we find that CCN1 alters collagen homeostasis by promoting expression of specific secreted proteins, which include matrix metalloproteinases and proinflammatory cytokines. We also find that CCN1-induced secretory proteins are elevated in aged human skin in vivo. We propose that CCN1 induces an “Age-Associated Secretory Phenotype”, in dermal fibroblasts, which mediates collagen reduction and fragmentation in aged human skin.  相似文献   

17.
Non-equilibrium molecular dynamics (MD) simulations were used to study the thermal conductivity of thin argon films. The MD simulations show that the argon film's thermal conductivity is affected by the thickness up to thickness of about 100 nm, which agrees with theoretical estimates. The results show that the MD method is very effective for modeling nanoscale thermal conduction. Besides pure argon films, the effect of vacancies on the argon film's thermal conductivity was also studied. The vacancies greatly reduce the thermal conductivity as a function of the vacancy concentration but not as a function of the vacancy distribution when the film's temperature is constant.  相似文献   

18.
In this study, an inverse algorithm based on the conjugate gradient method and the discrepancy principle is applied to solve the inverse hyperbolic heat conduction problem in estimating the unknown time-dependent surface heat flux in a skin tissue, which is stratified into epidermis, dermis, and subcutaneous layers, from the temperature measurements taken within the medium. Subsequently, the temperature distributions in the tissue can be calculated as well. The concept of finite heat propagation velocity is applied to the modeling of the bioheat transfer problem. The inverse solutions will be justified based on the numerical experiments in which two different heat flux distributions are to be determined. The temperature data obtained from the direct problem are used to simulate the temperature measurements. The influence of measurement errors on the precision of the estimated results is also investigated. Results show that an excellent estimation on the time-dependent surface heat flux can be obtained for the test cases considered in this study.  相似文献   

19.
The ear skin temperature as an indicator of the thermal comfort of pigs   总被引:1,自引:0,他引:1  
The aim of the study was to investigate the relationship between the ear skin temperature and the behaviour of pigs. Fifty-four pigs weighing 75 ± 5 kg were used in three replications (18 pigs per replication) and housed in pens (six pigs per pen) in a controlled climate facility. The room temperature was changed by 2 °C from 18 °C down to 10 °C and up again to 22 °C. The ear skin temperature (EST) was continuously recorded and the activity, lying posture, location and contact with pen mates were scored by 12 min scan sampling for 24 h at the set point temperatures 18 °C, 10 °C and 22 °C. A diurnal rhythm in the EST, the posture and the lying behaviour was found. The EST was highest at night and lowest in the afternoon. During night the pigs had more physical contact to pen mates than during day time. For all three set point temperatures the predominant lying position during the night was the fully recumbent position. The room temperature affected the lying behaviour and the EST. With decreasing room temperature the pigs increased their contact to pen mates and fewer pigs were observed lying in the fully recumbent position. The EST decreased with decreasing room temperature, and the range in the EST's at the three set point temperatures was larger during day than night (4 °C versus 2 °C). The results indicate that pigs adjust their behaviour to a higher EST when resting than when they are active, and they use behavioural adjustment (e.g. increased/decreased contact to pen mates) to bring their skin temperature into a preferred interval.  相似文献   

20.
Brown adipose tissue is an organ in mammals specialized for the generation of heat. The tissue plays an important role in thermoregulatory heat production (nonshivering thermogenesis), and in nutritional energetics (through the process of diet-induced thermogenesis). Much of the current interest in brown adipose tissue has been catalysed by the postulate (1970’s) that a reduced capacity for thermogenesis underlies the development of obesity. Heat is generated in brown fat by a controlled uncoupling of oxidative phosphorylation, a process regulated by a tissue-specific mitochondrial uncoupling protein,M r 32–33,000. The immunological identification of uncoupling protein is now used as a biochemical criterion for distinguishing brown fat from white adipose tissue. The gene coding for uncoupling protein has been cloned in several species, and a number of factors regulating the expression of the gene, as well as the amount and activity of the protein itself, have been documented. In addition to its direct role in heat production, brown adipose tissue has some notable general metabolic properties, such as in the conversion of thyroxine to triiodothyronine. An overview of the biology of brown adipose tissue is presented in this article, with an emphasis on some recent developments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号