首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Understanding the responses of invasive and native populations to environmental change is crucial for reliable predictions of invasions in the face of global change. While comparisons of responses across invasive species with different life histories have been performed before, comparing functional traits of congeneric native and invasive species may help to reveal driving factors associated with invasion. Here we compared morphological functional trait patterns of an invasive species (Impatiens parviflora) with its congeneric native species (I. noli-tangere) along an approximately 1600 km European latitudinal gradient from France (49°34′N) to Norway (63°40′N). Soil nitrogen was recorded during six weeks of the growing season, and light, soil moisture, and nutrient availability were estimated for each sampled population using community weighted means of indicator values for co-occurring species. Temperature data were gathered from nearby weather stations.Both the native and invasive species are taller at higher latitudes and this response is strongest in the invasive species. Seed mass and number of seeds per capsule increase in I. noli-tangere but decrease in I. parviflora towards higher latitudes. Surprisingly, plant height in the invasive I. parviflora decreases with increasing soil nitrogen availability. The latitudinal pattern in seed mass is positively related to temperature in I. noli-tangere and negatively in I. parviflora. Leaf area of both species decreases with increasing Ellenberg indicator values for nitrogen and light but increases with increasing soil moisture. Soil nitrogen concentrations and Ellenberg indicator values for nitrogen have significant positive (I. noli-tangere) and negative (I. parviflora) effects on the number of seeds per capsule. Our results show that the native I. noli-tangere has efficient reproduction at its range edge while the invasive I. parviflora shows a marked decrease in seed size and seed number per capsule. These patterns are unrelated to the growth and obtained size of the plants: even low soil nitrogen availability in the north seemed not to limit plant growth and size. Our results suggest that the invasive I. parviflora tends to become more invasive at lower latitudes by producing heavier seeds and more seeds per capsule.  相似文献   

2.
In mountainous areas, native and non-native plants will be exposed to climate change and increased disturbance in the future. Non-native plants may be more successful than natives in disturbed areas and thus be able to respond quicker to shifting climatic zones. In 2009, monitoring plots were established for populations of a non-native species (Linaria dalmatica) and a closely related native species (Castilleja miniata) on an elevation gradient in the Greater Yellowstone Ecosystem, USA. Population data were collected twice during the growing season for 3 years and used to calculate population vital rates for both species, and to construct population dynamics models for L. dalmatica. Linaria dalmatica vital rates were more associated with climatic/environmental factors than those of C. miniata. Population dynamics models for L. dalmatica showed no trend in population growth rate (λ) vs. elevation. The highest λ corresponded with the lowest vegetation and litter cover, and the highest bare ground cover. All populations with λ < 1 corresponded with the lowest measured winter minimum temperature. There was a negative association between λ and number of weeks of adequate soil moisture, and a weak positive association between λ and mean winter minimum temperature. Variance in vital rates and λ of L. dalmatica suggest broad adaptation within its current range, with the potential to spread further with or without future changes in climate. There is evidence that λ is negatively affected by persistent soil moisture which promotes the growth of other plant species, suggesting that it might expand further if other species were removed by disturbance.  相似文献   

3.
To assess the likely impacts of environmental change, the responses of two well-known invasive plant species, native Pueraria lobata and alien Humulus japonicus, to differences in growth temperature were studied in South Korea. Habitat preferences, physiological responses such as photosynthetic rates and chlorophyll contents, growth rates, and nutrient contents were quantified for each species. A competition experiment was conducted to evaluate the temperature preferences of the two species. All results indicated that the alien species H. japonicus can take advantage of elevated temperatures (35 °C) to enhance its competitive advantage against the native species P. lobata. While H. japonicus took advantage of elevated temperatures and preferred high-temperature areas, P. lobata showed reduced performance and dominance in high-temperature areas. Therefore, in future, due to global warming and urbanization, there are possibilities that H. japonicus takes advantage of elevated temperature against P. lobata that could lead to increased H. japonicus coverage over time. Therefore, consistent monitoring of both species especially where P. lobata is dominated are required because both species are found in every continents in the world. Controlling P. lobata requires thorough inspection of H. japonicus presence of the habitat in advance to prevent post P. lobata management invasion of H. japonicus.  相似文献   

4.
The invasive garden ant, Lasius neglectus, is a dominant species due to its capacity to form large supercolonies. This species was assumed to possess a wide thermal niche since it is able to adapt to cold climates, which is a factor that boosted its rapid expansion from south to many central-northern European Countries. However, the effect of variations in environmental temperatures on its competitive ability against other species has still not been investigated. In this paper, we analyzed the change in survival ability of Lasius neglectus during encounters with two Mediterranean dominant ants (Crematogaster scutellaris and Tapinoma nigerrimum) at four different temperatures (15, 20, 25 and 30 °C). Firstly, control tests were performed to provide the baseline survival ability of the three species at different temperatures. Secondly, competition tests were carried out at the same temperatures. Lasius neglectus survival was negatively affected by high temperature (30 °C) in control tests, and this impairment was much more pronounced in competition tests. On the contrary, the two opponent species were only marginally affected by temperatures in control tests. Crematogaster scutellaris was a better competitor than L. neglectus, particularly at high temperatures. Tapinoma nigerrimum was a weaker competitor and was always outcompeted by L. neglectus, particularly at low temperatures. This result could suggest that L. neglectus is at a disadvantage during interspecific encounters when temperatures are high and that the predicted future increase in environmental temperatures may potentially enhance this handicap.  相似文献   

5.
Old World Bluestems (OWB), introduced from Europe and Asia in the 1920s, recently have begun to raise concerns in the Great Plains. Despite suggestion in the late 1950s that OWB were weedy and negatively impacted biological diversity, they were widely introduced throughout the Great Plains for agricultural purposes. Anecdotal evidence suggests that OWB exhibit invasive characteristics that promote competitive exclusion of native species. The objective of our study was to quantify the competitive abilities of two OWB species (Caucasian bluestem; Bothriochloa bladhii (Retz.) S.T. Blake (= Bothriochloa caucasica (Trin.) C.E. Hubb.) and yellow bluestem; Bothriochloa ischaemum (L.) Keng) with three native grass species (big bluestem (Andropogon gerardii Vitman), little bluestem (Schizachyrium scoparium (Michx.) Nash), and sideoats grama (Bouteloua curtipendula (Michx.) Torr.)). A greenhouse target-neighbor study was conducted to assess both interspecific and intraspecific competition. A total of 480 pots (4.4 l) filled with native soil was used with all pair-wise combinations of species and four density treatments (six replications). Vegetative tiller height, above- and belowground biomass were measured at the end of 16 weeks. Both of the OWB significantly inhibited at least one growth parameter of the three native grass species, while most of the native species did not inhibit growth of either OWB species. Growth of B. ischaemum was enhanced when grown in association with S. scoparium. Based upon the results of our study of OWB competitive superiority and previous research, many of the characteristics possessed by OWB are found to be in common with known invasive species. Hence, we propose that two OWB are competitively superior to three common native prairie species providing them with the ability to invade and threaten the native grasslands of the Central and Southern Great Plains.  相似文献   

6.
The present study provides first comprehensive and up-to-date results on alien plant taxa in Iceland since 1967. We evidenced the presence of 336 alien vascular plant taxa, including 277 casuals and 59 naturalised taxa, two being invasive. The distribution of the alien flora exhibits a clear spatial pattern showing hotspots of occurrence and diversity within areas of major settlement centres. Altitude above sea level and temperature-related variables proved to be the most important factors shaping alien plant distribution in Iceland. Predictive modelling evidenced that arctic areas of Iceland and the Central Highlands are under serious risk of alien plant invasion due to climate change. The results provide crucial information for alien and invasive plant management and contribute data for meta-analyses of invasion processes worldwide.  相似文献   

7.
More attention is currently being focused on earthworm invasions; however, in many ecosystems the relative abundance of native and invasive earthworm species is unknown. We characterized earthworm populations of two grassland types within the Palouse region: native prairie remnants and Conservation Reserve Program (CRP) set asides planted with exotic grasses. The earthworm community in both grassland types was completely dominated by the exotic-invasive Aporrectodea trapezoides. Only one individual of a native species, Driloleirus americanus (the giant Palouse earthworm), was found in a prairie remnant. No differences were found between prairie remnants and CRP sites for mean earthworm density (24–106 individuals m−2) or fresh weight (12–45 g m−2). Our results suggest that the combined effects of land-use change, habitat fragmentation and competitive interactions have resulted in the decimation of native earthworm populations and dominance of invasive earthworms in native and non-native grasslands of the Palouse region.  相似文献   

8.
Rising nitrate concentrations in the water column and the spread of invasive, non-native macrophytes are two major threats to Florida's oligotrophic, freshwater ecosystems. We used a replicated mesocosm experiment to test the effects of elevated nitrate concentrations in the water on the growth of the invasive macrophyte Hydrilla verticillata and two common, native submerged macrophytes Vallisneria americana and Sagittaria kurziana. Results from this study indicate that nitrate concentrations of 1.0 mg L−1 NO3-N in the water increased the final dry-weight biomass of H. verticillata by 2.75 times, while having no statistical effect on the growth of the two native species. Additionally, H. verticillata grew at a faster rate than the two native species in the low nitrate treatments accounting for 82% of the total biomass, indicating that it may have the capacity to invade relatively pristine communities. In waters where nitrate concentrations continue to rise, the cost of control efforts for H. verticillata may substantially increase in the future.  相似文献   

9.
Arid and semi-arid ecosystems of the southwestern US are undergoing changes in vegetation composition and are predicted to experience shifts in climate. To understand implications of these current and predicted changes, we conducted a precipitation manipulation experiment on the Santa Rita Experimental Range in southeastern Arizona. The objectives of our study were to determine how soil surface and seasonal timing of rainfall events mediate the dynamics of leaf-level photosynthesis and plant water status of a native and non-native grass species in response to precipitation pulse events. We followed a simulated precipitation event (pulse) that occurred prior to the onset of the North American monsoon (in June) and at the peak of the monsoon (in August) for 2002 and 2003. We measured responses of pre-dawn water potential, photosynthetic rate, and stomatal conductance of native (Heteropogon contortus) and non-native (Eragrostis lehmanniana) C4 bunchgrasses on sandy and clay-rich soil surfaces. Soil surface did not always amplify differences in plant response to a pulse event. A June pulse event lead to an increase in plant water status and photosynthesis. Whereas the August pulse did not lead to an increase in plant water status and photosynthesis, due to favorable soil moisture conditions facilitating high plant performance during this period. E. lehmanniana did not demonstrate heightened photosynthetic performance over the native species in response to pulses across both soil surfaces. Overall accumulated leaf-level CO2 response to a pulse event was dependent on antecedent soil moisture during the August pulse event, but not during the June pulse event. This work highlights the need to understand how desert species respond to pulse events across contrasting soil surfaces in water-limited systems that are predicted to experience changes in climate.  相似文献   

10.
The antipredator behavior diel vertical migration (DVM), common in aquatic keystone species Daphnia, involves daily migration from warmer surface waters before dawn to cooler deeper waters after dusk. Plasticity in Daphnia DVM behavior optimizes fitness via trade-offs between growth, reproduction, and predator avoidance. Migration behavior is affected by co-varying biotic and abiotic factors, including light, predator cues, and anthropogenic stressors making it difficult to determine each factor's individual contribution to the variation in this behavior. This study aims to better understand this ecologically significant behavior in Daphnia by: (1) determining how Daphnia pulicaria thermal preferences vary within and among natural populations; (2) distinguishing the role of temperature verses depth in Daphnia vertical migration; and (3) defining how two anthropogenic stressors (copper and nickel) impact Daphnia migratory behavior.Simulated natural lake stratification were constructed in 8 L (0.5 m tall, 14.5 cm wide) water columns to monitor under controlled laboratory conditions the individual effects of temperature gradients, depth, and metal stressors on Daphnia vertical migration. Three major findings are reported. First, while no difference in thermal preference was found among the four populations studied, within lake populations variability among isolates was high. Second, decoupling temperature and depth revealed that depth was a better predictor of Daphnia migratory patterns over temperature. Third, exposure to environmentally relevant concentrations of copper or nickel inhibited classic DVM behavior. These findings revealed the high variability in thermal preference found within Daphnia populations, elucidated the individual roles that depth and temperature have on migratory behavior, and showed how copper and nickel can interfere with the natural response of Daphnia to fish predator cues. Thus contributing to the body of knowledge necessary to predict how natural populations of Daphnia will be affected by climate related changes in lake temperatures and increased presence of anthropogenic stressors.  相似文献   

11.
Rising sea surface temperatures in the North Sea have had consequential effects on not only indigenous plankton species, but also on the possibility of successful colonisation of the area by invasive plankton species. Previous studies have noted the introduction and integration into the plankton community of various phytoplankton species, but establishment of zooplankton organisms in the North Sea is less well-documented. Examining continuous plankton recorder (CPR) survey data and zooplankton results from the Helgoland Roads study, the autumn of 1999 witnessed the occurrence of the marine cladoceran Penilia avirostris in large numbers in the North Sea. The rapid appearance of the species corresponded with exceptionally warm sea surface temperatures (SSTs). Since 1999, the species has become a regular feature of the autumnal zooplankton community of the North Sea. In 2002 and 2003, the species occurred in greater abundance than recorded before. It is suggested that increased autumn SSTs have proved favourable to P. avirostris, with warmer conditions contributing to the success of the species resting eggs and aiding colonisation.Communicated by H.-D. Franke  相似文献   

12.
Alpine environments are particularly susceptible to environmental changes associated with global warming but there is potential for alpine plants to adapt to warming if local adaptation occurs and gene flow allows genotypes adapted to low altitudes to colonize higher altitude sites. Here we examine the adaptive potential of a common alpine grass, Poa hiemata, within the restricted alpine habitat of Australian mountains, across a narrow altitudinal gradient replicated in three areas. Grasses at high altitude sites had shorter leaf lengths and larger circumferences than those at lower sites. Transplant experiments with clonal material and plants grown from seed indicated that these differences were partly genetic, with environmental and genetic factors both contributing to the differences between altitudes. Differences in altitudinal forms were also evident in a common garden experiment. Plants showed a home-site advantage in terms of survival. A fitness analysis indicated that at high altitude sites, selection favored plants with short leaves and larger circumferences, whereas these traits were selected in the opposite direction at the low altitude sites. These findings indicate cogradient selection and potential for both plastic and genotypic shifts in response to climate change in P. hiemata.  相似文献   

13.
Physiological activity and structural dynamics in arid and semi-arid ecosystems are driven by discrete inputs or pulses of growing season precipitation. Here we describe the short-term dynamics of ecosystem physiology in experimental stands of native (Heteropogon contortus) and invasive (Eragrostis lehmanniana) grasses to an irrigation pulse across two geomorphic surfaces with distinctly different soils: a Pleistocene-aged surface with high clay content in a strongly horizonated soil, and a Holocene-aged surface with low clay content in homogenously structured soils. We evaluated whole-ecosystem and leaf-level CO2 and H2O exchange, soil CO2 efflux, along with plant and soil water status to understand potential constraints on whole-ecosystem carbon exchange during the initiation of the summer monsoon season. Prior to the irrigation pulse, both invasive and native grasses had less negative pre-dawn water potentials ( pd), greater leaf photosynthetic rates (A net) and stomatal conductance (g s), and greater rates of net ecosystem carbon exchange (NEE) on the Pleistocene surface than on the Holocene. Twenty-four hours following the experimental application of a 39 mm irrigation pulse, soil CO2 efflux increased leading to all plots losing CO2 to the atmosphere over the course of a day. Invasive species stands had greater evapotranspiration rates (ET) immediately following the precipitation pulse than did native stands, while maximum instantaneous NEE increased for both species and surfaces at roughly the same rate. The differential ET patterns through time were correlated with an earlier decline in NEE in the invasive species as compared to the native species plots. Plots with invasive species accumulated between 5% and 33% of the carbon that plots with the native species accumulated over the 15-day pulse period. Taken together, these results indicate that system CO2 efflux (both the physical displacement of soil CO2 by water along with plant and microbial respiration) strongly controls whole-ecosystem carbon exchange during precipitation pulses. Since CO2 and H2O loss to the atmosphere was partially driven by species effects on soil microclimate, understanding the mechanistic relationships between the soil characteristics, plant ecophysiological responses, and canopy structural dynamics will be important for understanding the effects of shifting precipitation and vegetation patterns in semi-arid environments.  相似文献   

14.
In many cases, understanding species’ responses to climate change requires understanding variation among individuals in response to such change. For species with strong symbiotic relationships, such as many coral reef species, genetic variation in symbiont responses to temperature may affect the response to increased ocean temperatures. To assess variation among symbiont genotypes, we examined the population dynamics and physiological responses of genotypes of Breviolum antillogorgium in response to increased temperature. We found broad temperature tolerance across genotypes, with all genotypes showing positive growth at 26, 30, and 32°C. Genotypes differed in the magnitude of the response of growth rate and carrying capacity to increasing temperature, suggesting that natural selection could favor different genotypes at different temperatures. However, the historical temperature at which genotypes were reared (26 or 30°C) was not a good predictor of contemporary temperature response. We found increased photosynthetic rates and decreased respiration rates with increasing contemporary temperature, and differences in physiology among genotypes, but found no significant differences in the response of these traits to temperature among genotypes. In species with such broad thermal tolerance, selection experiments on symbionts outside of the host may not yield results sufficient for evolutionary rescue from climate change.  相似文献   

15.
Ectotherms constitute the vast majority of terrestrial biodiversity and are especially likely to be vulnerable to climate warming because their basic physiological functions such as locomotion, growth, and reproduction are strongly influenced by environmental temperature. An integrated view about the effects of global warming will be reached not just establishing how the increase in mean temperature impacts the natural populations but also establishing the effects of the increase in temperature variance. One of the molecular responses that are activated in a cell under a temperature stress is the heat shock protein response (HSP). Some studies that have detected consistent differences among thermal treatments and ontogenetic stages in HSP70 expression have assumed that these differences had a genetic basis and consequently expression would be heritable. We tested for changes in quantitative genetic parameters of HSP70 expression in a half-sib design where individuals of the beetle Tenebrio molitor were maintained in constant and varying thermal environments. We estimated heritability of HSP70 expression using a linear mixed modelling approach in different ontogenetic stages. Expression levels of HSP70 were consistently higher in the variable environment and heritability estimates were low to moderate. The results imply that within each ontogenetic stage additive genetic variance was higher in the variable environment and in adults compared with constant environment and larvae stage, respectively. We found that almost all the genetic correlations across ontogenetic stages and environment were positive. These suggest that directional selection for higher levels of expression in one environment will result in higher expression levels of HSP70 on the other environment for the same ontogenetic stage.  相似文献   

16.
Arrocampo Reservoir is used as a cooling basin for a nuclear power plant located in southern Europe. Its annual mean temperature is about 30 °C with maxims that achieved 41.5 °C near the hot water effluent. Common carp (Cyprinus carpio, Linnaeus 1758) is the dominant pelagic fish species in this reservoir. Hydroacoustic surveys were conducted bimonthly over 9 years to characterize common carp abundance and distribution in the reservoir on an annual and seasonal temporal scale. Mean fish density during the period was 0.029 fish m−3, varying from a maximum of 0.038 in 2003 to a minimum of 0.012 in 1998. There were no significant differences in the mean fish density among years. Each year, fish distribution showed significant seasonal variation. Carp were homogeneously distributed during autumn and spring; in winter carp occupied warmer outfall areas, whereas in summer, fish were distributed in the coldest area of the reservoir (dam area) but avoided the warm outfall area. These seasonal tendencies of carp distribution was repeated every years. Behavioural reaction appears to be particularly important in explain carp distribution in this reservoir.  相似文献   

17.
Abstract. The ability of populations to undergo adaptive evolution depends on the presence of genetic variation for ecologically important traits. The maintenance of genetic variation may be influenced by many variables, particularly long-term effective population size and the strength and form of selection. The roles of these factors are controversial and there is very little information on their impacts for quantitative characters. The aims of this study were to determine the impacts of population size and variable versus constant prior environmental conditions on fitness and the magnitude of response to selection. Outbred and inbred populations of Drosophila melanogaster were maintained under benign, constant stressful, and variably stressful conditions for seven generations, and then forced to adapt to a novel stress for seven generations. Fitness and adaptability were assayed in each replicate population. Our findings are that: (1) populations inbred in a variable environment were more adaptable than those inbred in a constant environment; (2) populations adapted to a prior stressful environment had greater fitness when reared in a novel stress than those less adapted to stress; (3) inbred populations had lower fitness and were less adaptable than the outbred population they were derived from; and (4) strong lineage effects were detectable across environments in the inbred populations.  相似文献   

18.
Hatchling Sceloporus undulatus elongatus from Washington Co., Utah and S. u. garmani from Woods Co., Oklahoma were raised to maturity and reproduction under identical laboratory conditions with ad libitum food availability. Growth, allometry, age and size of maturity, clutch size and egg mass were compared among lab-raised cohorts from the two populations, among lab-raised and field-caught animals (including their field-caught mothers) and, for growth, with values obtained by previously published field studies on the same or nearby populations. For all traits population differences observed in previous field studies and current field samples resulted from both a plastic response to proximate environmental conditions and intrinsic (possibly genetic) difference. The most plastic traits were growth and age of maturity. Cohorts from both populations expressed the ability to mature in less than 6 months in the laboratory but only the S.u. garmani express early maturity in the field. Allometric differences generated during growth in the lab were not observed in field samples but may reflect an adaptive physiological difference. The least plastic trait was egg mass. The only trait for which the rank order of the difference in the field was reversed in the lab was growth rate. S.u. elongatus grew significantly faster than S.u. garmani in the lab but much slower in the field. The tendency of S.u. garmani females to breed at minimum size of maturity may be greater than that of S.u. elongatus.  相似文献   

19.
Following its introduction into Europe (EU), the common milkweed (Asclepias syriaca) has been free of most specialist herbivores that are present in its native North American (NA) range, except for the oleander aphid Aphis nerii. We compared EU and NA populations of A. nerii on EU and NA milkweed populations to test the hypothesis that plant–insect interactions differ on the two continents. First, we tested if herbivore performance is higher on EU plants than on NA plants, because the former have escaped most of their herbivores and have perhaps been selected for lower defence levels following introduction. Second, we compared two A. nerii lines (one from each continent) to test whether genotypic differences in the herbivore may influence species interactions in plant–herbivore communities in the context of species introductions. The NA population of A. nerii developed faster, had higher fecundity and attained higher population growth rates than the EU population. There was no overall significant continental difference in aphid resistance between the plants. However, milkweed plants from EU supported higher population growth rates and faster development of the NA line of A. nerii than plants from NA. In contrast, EU aphids showed similar (low) performance across plant populations from both continents. In a second experiment, we examined how chewing herbivores indirectly mediate interactions between milkweeds and aphids, and induced A. syriaca plants from each continent by monarch caterpillars (Danaus plexippus) to compare the resulting changes in plant quality on EU aphid performance. As specialist chewing herbivores of A. syriaca are only present in NA, we expected that plants from the two continents may affect aphid growth in different ways when they are challenged by a specialist chewing herbivore. Caterpillar induction decreased aphid developmental times on NA plants, but not on EU plants, whereas fecundity and population growth rates were unaffected by induction on both plant populations. The results show that genetic variation in the plants as well as in the herbivores can determine the outcome of plant–herbivore interactions.  相似文献   

20.
Temperature strongly affects performance in ectotherms. As ocean warming continues, performance of marine species will be impacted. Many studies have focused on how warming will impact physiology, life history, and behavior, but few studies have investigated how ecological and behavioral traits of organisms will affect their response to changing thermal environments. Here, we assessed the thermal tolerances and thermal sensitivity of swimming performance of two sympatric mysid shrimp species of the Northwest Atlantic. Neomysis americana and Heteromysis formosa overlap in habitat and many aspects of their ecological niche, but only N. americana exhibits vertical migration. In temperate coastal ecosystems, temperature stratification of the water column exposes vertical migrators to a wider range of temperatures on a daily basis. We found that N. americana had a significantly lower critical thermal minimum (CTmin) and critical thermal maximum (CTmax). However, both mysid species had a buffer of at least 4 °C between their CTmax and the 100-year projection for mean summer water temperatures of 28 °C. Swimming performance of the vertically migrating species was more sensitive to temperature variation, and this species exhibited faster burst swimming speeds. The generalist performance curve of H. formosa and specialist curve of N. americana are consistent with predictions based on the exposure of each species to temperature variation such that higher within-generation variability promotes specialization. However, these species violate the assumption of the specialist-generalist tradeoff in that the area under their performance curves is not constant. Our results highlight the importance of incorporating species-specific responses to temperature based on the ecology and behavior of organisms into climate change prediction models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号