首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have developed a novel cryoprobe for skin cryosurgery utilizing the Peltier effect. The four most important parameters for necrotizing tissue efficiently are the cooling rate, end temperature, hold time and thawing rate. In cryosurgery for small skin diseases such as flecks or early carcinoma, it is also important to control the thickness of the frozen region precisely to prevent necrotizing healthy tissue. To satisfy these exacting conditions, we have developed a novel cryoprobe to which a Peltier module was attached. The cryoprobe makes it possible to control heat transfer to skin surface precisely using a proportional-integral-derivative (PID) controller, and because it uses the Peltier effect, the cryoprobe does not need to move during the operation. We also developed a numerical simulation method that allows us to predict the frozen region and the temperature profile during cryosurgery.We tested the performance of our Peltier cryoprobe by cooling agar, and the results show that the cryoprobe has sufficient cooling performance for cryosurgery, because it can apply a cooling rate of more than 250 °C/min until the temperature reaches −40 °C. We also used a numerical simulation to reconstruct the supercooling phenomenon and examine the immediate progress of the frozen region with ice nucleation. The calculated frozen region was compared with the experimentally measured frozen region observed by an interferometer, and the calculation results showed good agreement. The results of numerical simulation confirmed that the frozen region could be predicted accurately with a margin of error as small as 150 μm during use of the cryoprobe in cryosurgery. The numerical simulation also showed that the cryoprobe can control freezing to a depth as shallow as 300 μm.  相似文献   

2.
Deng ZS  Liu J 《Cryobiology》2005,50(2):183-192
Recently, we proposed a method for controlling the extent of freezing during cryosurgery by percutaneously injecting some solutions with particular thermal properties into the target tissues. In order to better understand the mechanism of the enhancement of freezing by these injections, a new numerical algorithm was developed to simulate the corresponding heat transfer process that is involved. The three-dimensional phase change processes in biological tissues subjected to cryoprobe freezing, with or without injection, were compared numerically. Two specific cases were investigated to illustrate the selective freezing method: the injection of solutions with high thermal conductivity; the injection of solutions with low latent heat. It was found that the localized injection of such solutions could significantly enhance the freezing effect and decrease the lowest temperature in the target tissues. The result also suggests that the injection of these solutions may be a feasible and flexible way to control the size of the ice ball and its direction of growth during cryosurgery, which will help to optimize the treatment process.  相似文献   

3.
A technique is presented for a simple, rapid, and reliable means of determining the viability of plant tissue subjected to freezing temperatures. Freezing curves of excised stems of Cornus stolonifera Michx., and several other genera were studied. Tissue temperature was recorded during freezing of plant stem sections. The heat of crystallization deflected the resultant freezing curves at points where tissue froze. Living stem sections of all genera studied revealed 2 freezing points, while dead tissue exhibited only 1. The influence of variables such as moisture content, sample size, thermocouple placement, and cooling rate on freezing curves was analyzed. Stem samples wrapped in moisture-proof film with a thermocouple inserted into the pith were frozen to a predetermined test temperature, thawed, and subjected to a second freezing cycle. The presence or absence of 2 freezing points in the second freezing cycle was used as a criterion for establishing viability. The results were immediately available and identical to results from regrowth tests which took about 20 days.  相似文献   

4.
《Cryobiology》2015,70(3):411-418
This paper describes the development of a novel cryoprobe with the same size as a 24-gauge injection needle and the evaluation of its cooling performance. This ultrafine cryoprobe was designed to reduce the invasiveness and extend application areas of cryosurgery. The ultrafine cryoprobe has a double-tube structure and consists of two stainless steel microtubes. The outer diameter of the cryoprobe is 550 μm, and the inner tube has a 70-μm inner diameter to depressurize the high-pressure refrigerant. By solving the bioheat transfer equation and considering freezing phenomena, the relationship between the size of the frozen region and the heat transfer coefficient of the refrigerant flow in an ultrafine cryoprobe was derived analytically. The results showed that the size of the frozen region is strongly affected by the heat transfer coefficient. A high heat transfer coefficient such as that of phase change heat transfer is required to generate a frozen region of sufficient size. In the experiment, trifluoromethane (HFC-23) was used as the refrigerant, and the cooling effects of the gas and liquid phase states at the inlet were evaluated. When the ultrafine cryoprobe was cooled using a liquid refrigerant, the surface temperature was approximately −50 °C, and the temperature distribution on the surface was uniform for a thermally insulated condition. However, for the case with vaporized refrigerant, the temperature distribution was not uniform. Therefore, it was concluded that the cooling mechanism using liquid refrigerant was suitable for ultrafine cryoprobes. Furthermore, to simulate cryosurgery, a cooling experiment using hydrogel was conducted. The results showed that the surface temperature of the ultrafine cryoprobe reached −35 °C and formed a frozen region with a radius of 4 mm in 4 min. These results indicate that the ultrafine cryoprobe can be applied in actual cryosurgeries for small affected areas.  相似文献   

5.
Yu TH  Liu J  Zhou YX 《Cryobiology》2005,50(2):174-182
Cryosurgery is a minimally invasive surgical technique that employs the destructive effect of freezing to eradicate undesirable tissues. This paper proposes a flexible method to control the size and shape of the iceball by injecting solutions with specific thermal properties into the target tissues, to enhance freezing damage to the diseased tissues while preserving the normal tissues from injury. The cryosurgical procedure was performed using a minimally invasive cryoprobe cooled by liquid nitrogen (LN2) to obtain deep regional freezing. Several needle thermocouples were applied simultaneously to record the transient temperature to detect the freezing effect on the tissues. Simulation experiments on biological tissue (fresh pork) were performed in vitro and four different liquids were injected into the test materials; these were distilled water, an aqueous suspension of aluminum nanoparticles in water, ethanol, and a 10% solution of the cryoprotective agent dimethyl sulfoxide (Me2SO). The experimental results demonstrate that the localized injection of an appropriate solution could enhance the tumor-killing effect without altering the freezing conditions. The study also suggests the potential value of combining cryosurgery with other therapeutic methods, such as electrical, chemical, and thermal treatments, to develop new clinical modalities in the near future.  相似文献   

6.
Mild hyperthermia has been successfully employed to induce reversible physiological changes that can directly treat cancer and enhance local drug delivery. In this approach, temperature monitoring is essential to avoid undesirable biological effects that result from thermal damage. For thermal therapies, Magnetic Resonance Imaging (MRI) has been employed to control real-time Focused Ultrasound (FUS) therapies. However, combined ultrasound imaging and therapy systems offer the benefits of simple, low-cost devices that can be broadly applied. To facilitate such technology, ultrasound thermometry has potential to reliably monitor temperature. Control of mild hyperthermia was previously achieved using a proportional-integral-derivative (PID) controller based on thermocouple measurements. Despite accurate temporal control of heating, this method is limited by the single position at which the temperature is measured. Ultrasound thermometry techniques based on exploiting the thermal dependence of acoustic parameters (such as longitudinal velocity) can be extended to create thermal maps and allow an accurate monitoring of temperature with good spatial resolution. However, in vivo applications of this technique have not been fully developed due to the high sensitivity to tissue motion. Here, we propose a motion compensation method based on the acquisition of multiple reference frames prior to treatment. The technique was tested in the presence of 2-D and 3-D physiological-scale motion and was found to provide effective real-time temperature monitoring. PID control of mild hyperthermia in presence of motion was then tested with ultrasound thermometry as feedback and temperature was maintained within 0.3°C of the requested value.  相似文献   

7.
The effects of a thermally-significant blood vessel, simulated by an embedded acrylic tube, 4.8 mm outer diameter on the freezing field caused by a surface cryoprobe were studied experimentally in a tissue phantom. The flat, 15 mm diameter, circular cryoprobe was operated at a constant cooling rate of -8 degrees C/min by liquid nitrogen down to -60 degrees C. Water flow rates of 30 and 100 ml/min, at a constant temperature of 32.5 degrees C, were maintained in the embedded tube. The latter flow rate is typical to the lower range of blood flows in large arteries in the human body. The phase changing medium (PCM) used was a 30/70% by volume mashed potatoes flakes-water solution. Temperature measurements inside the PCM were performed in one plane perpendicular to the embedded tube, relative to which the cryoprobe was placed at 5 locations in separate experiments. This novel experimental method reduced the perturbation caused by the thermocouple junctions while facilitating rather detailed measurements of the temperature fields developing in the PCM. Results show the development of two hump-like formations on either side of the embedded tube. Freezing was retarded in the region away from the surface cryoprobe and under the tube. This accentuated the dominance of the axial effects, due to the embedded tube, over the radial ones due to the cryoprobe. Results of this study should be considered in designing protocols of cryosurgical procedures performed in the vicinity of thermally-significant blood vessels.  相似文献   

8.
Success of a cryosurgical procedure, i.e., maximal cell destruction, requires that the cooling rate be controlled during the freezing process. Standard cryosurgical devices are not usually designed to perform the required controlled process. In this study, a new cryosurgical device was developed which facilitates the achievement of a specified cooling rate during freezing by accurately controlling the probe temperature variation with time. The new device has been experimentally tested by applying it to an aqueous solution of mashed potatoes. The temperature field in the freezing medium, whose thermal properties are similar to those of biological tissue, was measured. The cryoprobe temperature was controlled according to a desired time varying profile which was assumed to maximize necrosis. The tracking accuracy and the stability of the closed loop control system were investigated. It was found that for most of the time the tracking accuracy was excellent and the error between the measured probe temperature and the desired set point is within +/- 0.4 degrees C. However, noticeable deviations from the set point occurred due to the supercooling phenomenon or due to the instability of the liquid nitrogen boiling regime in the cryoprobe. The experimental results were compared to those obtained by a finite elements program and very good agreement was obtained. The deviation between the two data sets seems to be mainly due to errors in positioning of the thermocouple junctions in the medium.  相似文献   

9.
Long-term storage of engineered bio-artificial tissues is required to ensure the off-the-shelf availability to clinicians due to their long production cycle. Cryopreservation is likely the choice for long-term preservation. Although the cryopreservation of cells is well established for many cell types, cryopreservation of tissues is far more complicated. Cells at different locations in the tissue could experience very different local environmental changes, i.e., the change of concentration of cryoprotecting chemicals (CPA) and temperature, during the addition/removal of CPA and cooling/warming, which leads to nonuniformity in cell survival in the tissue. This is due to the limitation of mass and heat transfer within the tissue. A specific aim of cryopreservation of tissue is to ensure a maximum recovery of cells and their functionality throughout a tissue. Cells at all locations should be protected adequately by the CPA and frozen at rates conducive to survival. It is hence highly desirable to know the cell transient and final states during cryopreservation within the whole tissue, which can be best studied by mathematical modeling. In this work, a model framework for cryopreservation of one-dimensional artificial tissues is developed on the basis of solving the coupled equations to describe the mass and heat transfer within the tissue and osmotic transport through the cell membrane. Using an artificial pancreas as an example, we carried out a simulation to examine the temperature history, cell volume, solute redistribution, and other state parameters during the freezing of the spherical heterogeneous construct (a single bead). It is found that the parameters affecting the mass transfer of CPA in tissue and through the cell membrane and the freezing rate play dominant roles in affecting the cell volume transient and extracellular ice formation. Thermal conductivity and extracellular ice formation kinetics, on the other hand, have little effect on cell transient and final states, as the heat transfer rate is much faster than mass diffusion. The outcome of such a model study can be used to evaluate the construct design on its survivability during cryopreservation and to select a cryopreservation protocol to achieve maximum cell survival.  相似文献   

10.
Q S Shu  S S Hu  A F Xie 《Cryobiology》1986,23(2):184-193
Advances in the design of special cryobiomedical apparatus and a review of the trend of developments in the field of cryosurgery in China are discussed. The typical structure of two special cryoprobes for treatment deep in the body and the technology of designing these probes are presented in detail. Some cases which are treated successfully with the above cryoprobes will also be discussed. The experimental aspects of heat transfer in frozen tissue and of the temperature profiles both of a human brain during surgery and of the cryoprobe are described. Other improvements in the field of cryosurgical devices, e.g., four main ways of attaching freezing tips to cryoprobes during surgery and an LN2 transfer tube with high dexterity are also presented. Finally, the development of commercial cryosurgical apparatus in China is also discussed.  相似文献   

11.
Conventional cryosurgical process employs extremely low temperatures to kill tumor cells within a closely defined region. However, its efficacy can be markedly compromised if the same treatment method is administrated for highly irregularly shaped tumors. Inadequate controls of freezing may induce tumor recurrence or undesirable over-freezing of surrounding healthy tissue. To address the cryosurgical complexity of irregularly shaped tumors, an analytical treatment on irregularly-shaped tumors has been performed and the degree of tumor irregularities is quantified. A novel cryoprobe coined the bifurcate cryoprobe with the capability to generate irregularly shaped cryo-lesions is proposed. The bifurcate cryoprobe, incorporating shape memory alloy functionality, enables the cryoprobe to regulate its physical configuration. To evaluate the probe’s performance, a bioheat transfer model has been developed and validated with in vitro data. We compared the ablative cryo-lesions induced by different bifurcate cryoprobes with those produced by conventional cryoprobes. Key results have indicated that the proposed bifurcate cryoprobes were able to significantly promote targeted tissue destruction while catering to the shape profiles of solid tumors. This study forms an on-going framework to provide clinicians with alternative versatile devices for the treatment of complex tumors.  相似文献   

12.
During cold exposure, peripheral tissues undergo vasoconstriction to minimize heat loss to preserve the maintenance of a normal core temperature. However, vasoconstricted tissues exposed to cold temperatures are susceptible to freezing and frostbite-related tissue damage. Therefore, it is imperative to establish a mathematical model for the estimation of tissue necrosis due to cold stress. To this end, an explicit formula of finite difference method has been used to obtain the solution of Pennes' bio-heat equation with appropriate boundary conditions to estimate the temperature profiles of dermal and subdermal layers when exposed to severe cold temperatures. The discrete values of nodal temperature were calculated at the interfaces of skin and subcutaneous tissues with respect to the atmospheric temperatures of 25 °C, 20 °C, 15 °C, 5 °C, −5 °C and −10 °C. The results obtained were used to identify the scenarios under which various degrees of frostbite occur on the surface of skin as well as the dermal and subdermal areas. The explicit formula of finite difference method proposed in this model provides more accurate predictions as compared to other numerical methods. This model of predicting tissue temperatures provides researchers with a more accurate prediction of peripheral tissue temperature and, hence, the susceptibility to frostbite during severe cold exposure.  相似文献   

13.
Cryopreservation of engineered tissue (ET) has achieved limited success due to limited understanding of freezing-induced biophysical phenomena in ETs, especially fluid-matrix interaction within ETs. To further our understanding of the freezing-induced fluid-matrix interaction, we have developed a biphasic model formulation that simulates the transient heat transfer and volumetric expansion during freezing, its resulting fluid movement in the ET, elastic deformation of the solid matrix, and the corresponding pressure redistribution within. Treated as a biphasic material, the ET consists of a porous solid matrix fully saturated with interstitial fluid. Temperature-dependent material properties were employed, and phase change was included by incorporating the latent heat of phase change into an effective specific heat term. Model-predicted temperature distribution, the location of the moving freezing front, and the ET deformation rates through the time course compare reasonably well with experiments reported previously. Results from our theoretical model show that behind the marching freezing front, the ET undergoes expansion due to phase change of its fluid contents. It compresses the region preceding the freezing front leading to its fluid expulsion and reduced regional fluid volume fractions. The expelled fluid is forced forward and upward into the region further ahead of the compression zone causing a secondary expansion zone, which then compresses the region further downstream with much reduced intensity. Overall, it forms an alternating expansion-compression pattern, which moves with the marching freezing front. The present biphasic model helps us to gain insights into some facets of the freezing process and cryopreservation treatment that could not be gleaned experimentally. Its resulting understanding will ultimately be useful to design and improve cryopreservation protocols for ETs.  相似文献   

14.
This article describes a sapphire cryoprobe as a promising solution to the significant problem of modern cryosurgery that is the monitoring of tissue freezing. This probe consists of a sapphire rod manufactured by the edge-defined film-fed growth technique from Al2O3 melt and optical fibers accommodated inside the rod and connected to the source and the detector. The probe's design enables detection of spatially resolved diffuse reflected intensities of tissue optical response, which are used for the estimation of tissue freezing depth. The current type of the 12.5-mm diameter sapphire probe cooled down by the liquid nitrogen assumes a superficial cryoablation. The experimental test made by using a gelatin-intralipid tissue phantom shows the feasibility of such concept, revealing the capabilities of monitoring the freezing depth up to 10 mm by the particular instrumentation realization of the probe. This justifies a potential of sapphire-based instruments aided by optical diagnosis in modern cryosurgery.  相似文献   

15.
The two-dimensional boundary layer flow and heat transfer to Sisko nanofluid over a non-linearly stretching sheet is scrutinized in the concerned study. Our nanofluid model incorporates the influences of the thermophoresis and Brownian motion. The convective boundary conditions are taken into account. Implementation of suitable transformations agreeing with the boundary conditions result in reduction of the governing equations of motion, energy and concentration into non-linear ordinary differential equations. These coupled non-linear ordinary differential equations are solved analytically by using the homotopy analysis method (HAM) and numerically by the shooting technique. The effects of the thermophoresis and Brownian motion parameters on the temperature and concentration fields are analyzed and graphically presented. The secured results make it clear that the temperature distribution is an increasing function of the thermophoresis and Brownian motion parameters and concentration distribution increases with the thermophoresis parameter but decreases with the Brownian motion parameter. To see the validity of the present work, we made a comparison with the numerical results as well as previously published work with an outstanding compatibility.  相似文献   

16.
To investigate the minimal lethal freezing temperature required to produce skin necrosis in dogs, multiple skin sites were frozen with cryosurgical equipment. Tissue temperatures were recorded from thermocouple sites placed at diverse distances, usually 5 mm from the edge of the freezing probe. In single freezing cycles of about 3 min duration, tissue temperatures in the range of 0 to ?60 °C were produced. Punch biopsies of the skin at the thermocouple sites 3 days after freezing injury provided tissues for estimation of viability by histologic examination.The histologic findings permitted classification of the biopsy tissue into three groups, that is, viable, borderline, or necrotic. When classified as borderline, the division between the necrotic and viable tissue was evident on the histologic slide. The viable specimens were scattered through the 0 to ?35 °C range. All specimens frozen to ?10 °C or warmer were viable. In biopsies classified as borderline, the range of viability extended from ?11 ° to ?50 °C. The necrotic biopsies covered a range of ?14 ° to ?50 °C. Cell death was certain at temperatures colder than ?50 °C. The data showed cryosurgical freezing conditions produced a range of temperatures in which viability or death of tissue may occur and that the ranges of viability and necrosis overlapped to a great extent.The wide range of temperatures at which cells were viable shows the need to achieve tissue temperatures in the range of ?50 °C in the cryosurgical treatment of cancer.  相似文献   

17.
Vascular reactivity (VR) is considered as an effective index to predict the risk of cardiovascular events. A cost-effective alternative technique used to evaluate VR called digital thermal monitoring (DTM) is based on the response of finger temperature to vessel occlusion and reperfusion. In this work, a simulation has been developed to investigate hand temperature in response to vessel occlusion and perfusion. The simulation consists of image-based mesh generation and finite element analysis of blood flow and heat transfer in tissues. In order to reconstruct a real geometric model of human hand, a computer programme including automatic image processing for sequential MR data and mesh generation based on the transfinite interpolation method is developed. In the finite element analysis part, blood flow perfused in solid tissues is considered as fluid phase through porous media. Heat transfer in tissues is described by Pennes bioheat equation and blood perfusion rate is obtained from Darcy velocities. Capillary pressure, blood perfusion and temperature distribution of hand are obtained. The results reveal that fingertip temperature is strongly dependent on larger arterial pressure. This simulation is of potential to quantify the indices used for evaluating the VR in DTM test if it is integrated with the haemodynamic model of blood circulation in upper limb.  相似文献   

18.
The most common cryopreservation protocols of biological tissues suitable for their further implantation has some disadvantages and limited to one sample per procedure with no possible repeated freezing in case of clinical needs. This study is aimed to improve a biological tissues cryopreservation by adding a new heat transfer fluid – polydimethylsiloxane (PDMS). To evaluate its efficiency the porcine biological tissues (heart valves, aortic and trachea fragments) were cryopreserved and thawed in low-viscous PDMS. According to the computer simulation, the midsection cooling rate was up to 490 °C/min and the midsection thawing rate was up to 1140 °C/min with admissible temperature uniformity. Cryoprotectants and liquid nitrogen were not used. The quality of tissue cryopreservation was evaluated using a number of histological and immunohistochemical methods (Orcein, H&E, Anti-CD34, Anti-Vimentin, Anti-Actin staining). Cryopreserved tissues showed no significant morphological difference in comparison with control group both in case of immediate thawing, and after 2 months of low temperature storage. Computer simulation of heat transfer showed the thermal limitations of used approach for larger specimens. The use of PDMS is proposed for preservation of vascular tissue in order to implant it in the form of homotransplants or biobanking with the possible additional use of an internal hydrophilic coating to prevent hydrophobization.  相似文献   

19.
Most of the laser applications in medicine and biology involve thermal effects. The laser-tissue thermal interaction has therefore received more and more attentions in recent years. However, previous works were mainly focused on the case of laser heating on normal tissues (37 degrees C or above). To date, little is known on the mechanisms of laser heating on the frozen biological tissues. Several latest experimental investigations have demonstrated that lasers have great potentials in tissue cryopreservation. But the lack of theoretical interpretation limits its further application in this area. The present paper proposes a numerical model for the thawing of biological tissues caused by laser irradiation. The Monte Carlo approach and the effective heat capacity method are, respectively, employed to simulate the light propagation and solid-liquid phase change heat transfer. The proposed model has four important features: (1) the tissue is considered as a nonideal material, in which phase transition occurs over a wide temperature range; (2) the solid phase, transition phase, and the liquid phase have different thermophysical properties; (3) the variations in optical properties due to phase-change are also taken into consideration; and (4) the light distribution is changing continually with the advancement of the thawing fronts. To this end, 15 thawing-front geometric configurations are presented for the Monte Carlo simulation. The least-squares parabola fitting technique is applied to approximate the shape of the thawing front. And then, a detailed algorithm of calculating the photon reflection/refraction behaviors at the thawing front is described. Finally, we develop a coupled light/heat transport solution procedure for the laser-induced thawing of frozen tissues. The proposed model is compared with three test problems and good agreement is obtained. The calculated results show that the light reflectance/transmittance at the tissue surface are continually changing with the progression of the thawing fronts and that lasers provide a new heating method superior to conventional heating through surface conduction because it can achieve a uniform volumetric heating. Parametric studies are performed to test the influences of the optical properties of tissue on the thawing process. The proposed model is rather general in nature and therefore can be applied to other nonbiological problems as long as the materials are absorbing and scattering media.  相似文献   

20.
W.B. Bald 《Cryobiology》1984,21(5):570-573
The design and testing of a prototype cryosurgical probe utilizing helium gas precooled with liquid nitrogen are described. An 8-mm-diameter probe produced an ice ball with a diameter of 28 mm after 10 min freezing using a helium gas flow rate of 42 liter/min. This indicated a surface heat transfer coefficient of 0.34 W/cm2 °K and temperature of ?138 °C at the probe tip. Improved performance figures can be achieved using higher gas pressures and flow rates. A helium gas flow system schematic for use with this new type of cryoprobe is also presented. It is claimed that this system will overcome the problems of developing both multiple-tipped probes and small-diameter needle probes for use in cryoanalgesia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号