首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
To investigate the role of cell surface glycosaminoglycans (GAGs), including heparan sulfate (HS), on HIV-1 infection in human T cells, HIV-1 binding and infection were determined after treatment of T-cell lines and CD4 + T cells from normal peripheral blood mononuclear cells (PBMC) with GAG-degrading enzyme or a GAG metabolic sulfation inhibitor. Heparitinase I (hep I) and sodium chlorate prevented binding of HIV-1/IIIB to MT-4 cells as revealed by indirect immunofluorescence procedures, thereby inhibiting infection. Hep I was less effective in the binding inhibition of the macrophage-tropic strain HIV-1/SF162 than that of the T-cell line-tropic strain HIV-1/IIIB. The binding of HIV-1/SF162 was about 100-fold less dependent on cell surface HS than HIV-1/IIIB. Human HTLV-I positive T-cell lines expressed more HS than HTLV-I negative T-cell lines or normal CD4 + T cells when stained with anti-HS mAbs against either native or heparitinase-treated HS. With the exception of endo-β-galactosidase (endo-β-gal), GAG-degrading enzymes, including hep I, chondroitinase ABC (chon ABC), chondroitinase AC II (chon AC II) and keratanase, did not prevent the binding of HIV-1/IIIB to CD4+ T cells from normal PBMC. These results indicate that the cell surface HS of human T cells participates in HIV-1 infection by facilitating HIV-1/IIIB binding to MT-4 cells. In particular, the sulfation of HS chains is critical. Since the expression of cell surface HS varies among T cells, which are not consistently sensitive to hep I treatment in HIV-1 binding inhibition, other GAG-like molecules may also be involved.  相似文献   

4.
5.
Recent studies have shown that natural infection by HIV-2 leads to the elicitation of high titers of broadly neutralizing antibodies (NAbs) against primary HIV-2 strains (T. I. de Silva, et al., J. Virol. 86:930–946, 2012; R. Kong, et al., J. Virol. 86:947–960, 2012; G. Ozkaya Sahin, et al., J. Virol. 86:961–971, 2012). Here, we describe the envelope (Env) binding and neutralization properties of 15 anti-HIV-2 human monoclonal antibodies (MAbs), 14 of which were newly generated from 9 chronically infected subjects. All 15 MAbs bound specifically to HIV-2 gp120 monomers and neutralized heterologous primary virus strains HIV-27312A and HIV-2ST. Ten of 15 MAbs neutralized a third heterologous primary virus strain, HIV-2UC1. The median 50% inhibitory concentrations (IC50s) for these MAbs were surprisingly low, ranging from 0.007 to 0.028 μg/ml. Competitive Env binding studies revealed three MAb competition groups: CG-I, CG-II, and CG-III. Using peptide scanning, site-directed mutagenesis, chimeric Env constructions, and single-cycle virus neutralization assays, we mapped the epitope of CG-I antibodies to a linear region in variable loop 3 (V3), the epitope of CG-II antibodies to a conformational region centered on the carboxy terminus of V4, and the epitope(s) of CG-III antibodies to conformational regions associated with CD4- and coreceptor-binding sites. HIV-2 Env is thus highly immunogenic in vivo and elicits antibodies having diverse epitope specificities, high potency, and wide breadth. In contrast to the HIV-1 Env trimer, which is generally well shielded from antibody binding and neutralization, HIV-2 is surprisingly vulnerable to broadly reactive NAbs. The availability of 15 human MAbs targeting diverse HIV-2 Env epitopes can facilitate comparative studies of HIV/SIV Env structure, function, antigenicity, and immunogenicity.  相似文献   

6.
Deciphering antibody specificities that constrain human immunodeficiency virus type 1 (HIV-1) envelope (Env) diversity, limit virus replication, and contribute to neutralization breadth and potency is an important goal of current HIV/AIDS vaccine research. Transplantation of discrete HIV-1 neutralizing epitopes into HIV-2 scaffolds may provide a sensitive, biologically functional context by which to quantify specific antibody reactivities even in complex sera. Here, we describe a novel HIV-2 proviral scaffold (pHIV-2KR.X7) into which we substituted the complete variable region 3 (V3) of the env gene of HIV-1YU2 or HIV-1Ccon to yield the chimeric proviruses pHIV-2KR.X7 YU2 V3 and pHIV-2KR.X7 Ccon V3. These HIV-2/HIV-1 chimeras were replication competent and sensitive to selective pharmacological inhibitors of virus entry. V3 chimeric viruses were resistant to neutralization by HIV-1 monoclonal antibodies directed against the CD4 binding site, coreceptor binding site, and gp41 membrane proximal external region but exhibited striking sensitivity to HIV-1 V3-specific monoclonal antibodies, 447-52D and F425 B4e8 (50% inhibitory concentration of [IC50] <0.005 μg/ml for each). Plasma specimens from 11 HIV-1 clade B- and 10 HIV-1 clade C-infected subjects showed no neutralizing activity against HIV-2 but exhibited high-titer V3-specific neutralization against both HIV-2/HIV-1 V3 chimeras with IC50 measurements ranging from 1:50 to greater than 1:40,000. Neutralization titers of B clade plasmas were as much as 1,000-fold lower when tested against the primary HIV-1YU2 virus than with the HIV-2KR.X7 YU2 V3 chimera, demonstrating highly effective shielding of V3 epitopes in the native Env trimer. This finding was replicated using a second primary HIV-1 strain (HIV-1BORI) and the corresponding HIV-2KR.X7 BORI V3 chimera. We conclude that V3 is highly immunogenic in vivo, eliciting antibodies with substantial breadth of reactivity and neutralizing potential. These antibodies constrain HIV-1 Env to a structure(s) in which V3 epitopes are concealed prior to CD4 engagement but do not otherwise contribute to neutralization breadth and potency against most primary virus strains. Triggering of the viral spike to reveal V3 epitopes may be required if V3 immunogens are to be components of an effective HIV-1 vaccine.  相似文献   

7.
Prevention of the initial infection of mucosal dendritic cells (DC) and interruption of the subsequent transmission of HIV-1 from DC to T cells are likely to be important attributes of an effective human immunodeficiency virus type 1 (HIV-1) vaccine. While anti-HIV-1 neutralizing antibodies have been difficult to elicit by immunization, there are several human monoclonal antibodies (MAbs) that effectively neutralize virus infection of activated T cells. We investigated the ability of three well-characterized neutralizing MAbs (IgG1b12, 2F5, and 2G12) to block HIV-1 infection of human DC. DC were generated from CD14+ blood cells or obtained from cadaveric human skin. The MAbs prevented viral entry into purified DC and the ensuing productive infection in DC/T-cell cultures. When DC were first pulsed with HIV-1, MAbs blocked the subsequent transmission to unstimulated CD3+ T cells. Thus, neutralizing antibodies can block HIV-1 infection of DC and the cell-to-cell transmission of virus from infected DC to T cells. These data suggest that neutralizing antibodies could interrupt the initial events associated with mucosal transmission and regional spread of HIV-1.  相似文献   

8.
Abstract

TSAO derivatives represent a unique class of nucleosides that are specifically targeted at HIV-1 RT. This overview is focussed on the chemical synthesis, the conformational studies, the antiviral and metabolic properties of TSAO derivatives, as well as their mechanism of antiviral action and the molecular basis of the rapid selection of resistant HIV-1 strains that emerge in cell culture in the presence of TSAO derivatives.  相似文献   

9.
Antibodies with exceptional breadth and potency have been elicited in some individuals during natural HIV-1 infection. Elicitation and affinity maturation of broadly neutralizing antibodies (bnAbs) is therefore the central goal of HIV-1 vaccine development. The functional properties of bnAbs also make them attractive as immunotherapeutic agents, which has led to their production and optimization for passive immunotherapy. This process requires in vitro manufacturing and monitoring of any heterogeneous expression, especially when subpopulations of antibodies are produced with varying levels of biological activity. Post-translational modification (PTM) of antibodies can contribute to heterogeneity and is the focus of this study. Specifically, we have investigated cysteinylation in a bnAb lineage (PCDN family) targeting the N332-glycan supersite on the surface envelope glycoprotein (Env) of HIV-1. This PTM is defined by capping of unpaired cysteine residues with molecular cysteine. Through chromatography and mass spectrometry, we were able to characterize subpopulations of cysteinylated and non-cysteinylated antibodies when expressed in mammalian cells. The crystal structures of two PCDN antibodies represent the first structures of a cysteinylated antibody and reveal that the cysteinylation in this case is located in CDRH3. Biophysical studies indicate that cysteinylation of these HIV-1 antibodies does not interfere with antigen binding, which has been reported to occur in other cysteinylated antibodies. As such, these studies highlight the need for further investigation of cysteinylation in anti-HIV and other bnAbs.  相似文献   

10.
An optimal HIV vaccine should induce broadly neutralizing antibodies (bnAbs) that neutralize diverse viral strains and subtypes. However, potent bnAbs develop in only a small fraction of HIV-infected individuals, all contain rare features such as extensive mutation, insertions, deletions, and/or long complementarity-determining regions, and some are polyreactive, casting doubt on whether bnAbs to HIV can be reliably induced by vaccination. We engineered two potent VRC01-class bnAbs that minimized rare features. According to a quantitative features frequency analysis, the set of features for one of these minimally mutated bnAbs compared favorably with all 68 HIV bnAbs analyzed and was similar to antibodies elicited by common vaccines. This same minimally mutated bnAb lacked polyreactivity in four different assays. We then divided the minimal mutations into spatial clusters and dissected the epitope components interacting with those clusters, by mutational and crystallographic analyses coupled with neutralization assays. Finally, by synthesizing available data, we developed a working-concept boosting strategy to select the mutation clusters in a logical order following a germline-targeting prime. We have thus developed potent HIV bnAbs that may be more tractable vaccine goals compared to existing bnAbs, and we have proposed a strategy to elicit them. This reductionist approach to vaccine design, guided by antibody and antigen structure, could be applied to design candidate vaccines for other HIV bnAbs or protective Abs against other pathogens.  相似文献   

11.
12.
The identification of a new generation of potent broadly neutralizing HIV-1 antibodies (bnAbs) has generated substantial interest in their potential use for the prevention and/or treatment of HIV-1 infection. While combinations of bnAbs targeting distinct epitopes on the viral envelope (Env) will likely be required to overcome the extraordinary diversity of HIV-1, a key outstanding question is which bnAbs, and how many, will be needed to achieve optimal clinical benefit. We assessed the neutralizing activity of 15 bnAbs targeting four distinct epitopes of Env, including the CD4-binding site (CD4bs), the V1/V2-glycan region, the V3-glycan region, and the gp41 membrane proximal external region (MPER), against a panel of 200 acute/early clade C HIV-1 Env pseudoviruses. A mathematical model was developed that predicted neutralization by a subset of experimentally evaluated bnAb combinations with high accuracy. Using this model, we performed a comprehensive and systematic comparison of the predicted neutralizing activity of over 1,600 possible double, triple, and quadruple bnAb combinations. The most promising bnAb combinations were identified based not only on breadth and potency of neutralization, but also other relevant measures, such as the extent of complete neutralization and instantaneous inhibitory potential (IIP). By this set of criteria, triple and quadruple combinations of bnAbs were identified that were significantly more effective than the best double combinations, and further improved the probability of having multiple bnAbs simultaneously active against a given virus, a requirement that may be critical for countering escape in vivo. These results provide a rationale for advancing bnAb combinations with the best in vitro predictors of success into clinical trials for both the prevention and treatment of HIV-1 infection.  相似文献   

13.
《Cell host & microbe》2020,27(6):963-975.e5
  1. Download : Download high-res image (212KB)
  2. Download : Download full-size image
  相似文献   

14.
Human immunodeficiency virus type 1 (HIV-1) infection is characterized by progressive depletion of CD4+ T lymphocytes and dysfunction of the immune system. The numbers of CD4+ T lymphocytes in the human body are maintained constantly by homeostatic mechanisms that failed during HIV-1 infection, resulting in progressive loss of CD4+ T cells mainly via apoptosis. Recently, a non-apoptotic form of necrotic programmed cell death, named necroptosis, has been investigated in many biological and pathological processes. We then determine whether HIV-1-infected cells also undergo necroptosis. In this report, we demonstrate that HIV-1 not only induces apoptosis, but also mediates necroptosis in the infected primary CD4+ T lymphocytes and CD4+ T-cell lines. Necroptosis-dependent cytopathic effects are significantly increased in HIV-1-infected Jurkat cells that is lack of Fas-associated protein-containing death domain (FADD), indicating that necroptosis occurs as an alternative cell death mechanism in the absence of apoptosis. Unlike apoptosis, necroptosis mainly occurs in HIV-infected cells and spares bystander damage. Treatment with necrostatin-1(Nec-1), a RIP1 inhibitor that specifically blocks the necroptosis pathway, potently restrains HIV-1-induced cytopathic effect and interestingly, inhibits the formation of HIV-induced syncytia in CD4+ T-cell lines. This suggests that syncytia formation is mediated, at least partially, by necroptosis-related processes. Furthermore, we also found that the HIV-1 infection-augmented tumor necrosis factor-alpha (TNF-α) plays a key role in inducing necroptosis and HIV-1 Envelope and Tat proteins function as its co-factors. Taken together,necroptosis can function as an alternative cell death pathway in lieu of apoptosis during HIV-1 infection, thereby also contributing to HIV-1-induced cytopathic effects. Our results reveal that in addition to apoptosis, necroptosis also plays an important role in HIV-1-induced pathogenesis.  相似文献   

15.
16.
17.
18.
We investigated the murine antibody response to recombinant p17 (rp17) of human immunodeficiency virus type 1 (HIV-1) and the human antibody response directed to p17 in HIV-1 infection. Three large peptides covering residues 12-29, 53-87 and 87-115 of p17 were synthesized. The cysteine residues 57 and 87 of peptide 53-87 were reoxidized to form a disulfide bridge. Eighteen out of 19 murine monoclonal anti-rp17 antibodies had relatively high affinities (KA = 1.9 × 105?1.4 × 108 M?1) with one of the 3 p17 peptides in the liquid phase. Each monoclonal antibody reacted only with one particular peptide and had no reactivity with the other 2 p17 peptides. All the monoclonal antibodies reacted with rp17 in the liquid phase with a reasonable degree of affinity (KA = 2.0 × 105?1.8 × 107 M?1). Four HIV-1 carrier sera, which were positive in ELISA using rp17 as the antigen, reacted positively in an ELISA using 3 p17 peptides which were used to titrate murine monoclonal antibodies. Murine monoclonal antibodies having specificity for the 3 p17 peptides stained live HIV-1-infected cells by means of indirect membrane immunofluorescence, irrespective of their specificity. This suggests that the various portions of p17 (at least 3 regions of p17) were exposed on the surface of live infected cells, probably as short polypeptide chains.  相似文献   

19.
20.
Neutralizing antibody protection against HIV-1 may require broad and potent antibodies targeting multiple epitopes. We tested 7 monoclonal antibodies (MAbs) against 45 viruses of diverse subtypes from early infection. The CD4 binding site MAb NIH45-46W was most broad and potent (91% coverage; geometric mean 50% inhibitory concentration [IC(50)], 0.09 μg/ml). Combining NIH45-46W and a V3-specific MAb, PGT128, neutralized 96% of viruses, while PGT121, another V3-specific MAb, neutralized the remainder. Thus, 2 or 3 antibody specificities may prevent infection by most HIV-1 variants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号