首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dopamine pathway and especially the dopamine receptors 1 and 2 (DRD1 and DRD2) are implicated in the regulation of mothering in rats. Evidence for this in humans is lacking. Here, we show that genetic variation in both DRD1 and DRD2 genes in a sample of 187 Caucasian mothers predicts variation in distinct maternal behaviors during a 30-min mother-infant interaction at 6 months postpartum. Two DRD1 single-nucleotide polymorphisms (SNPs rs265981 and rs686) significantly associated with maternal orienting away from the infant (P = 0.002 and P = 0.003, respectively), as did DRD1 haplotypes (P = 0.03). Two DRD2 SNPs (rs1799732 and rs6277) significantly associated with maternal infant-directed vocalizing (P = 0.001 and P = 0.04, respectively), as did DRD2 haplotypes (P = 0.01). We present evidence for heterosis in DRD1 where heterozygote mothers orient away from their infants significantly less than either homozygote group. Our findings provide important evidence that genetic variation in receptors critical for mothering in non-human species also affect human maternal behaviors. The findings also highlight the importance of exploring multiple dimensions of the complex human mothering phenotype.  相似文献   

2.

Background

Heroin dependence is a debilitating psychiatric disorder with complex inheritance. Since the dopaminergic system has a key role in rewarding mechanism of the brain, which is directly or indirectly targeted by most drugs of abuse, we focus on the effects and interactions among dopaminergic gene variants.

Objective

To study the potential association between allelic variants of dopamine D2 receptor (DRD2), ANKK1 (ankyrin repeat and kinase domain containing 1), dopamine D4 receptor (DRD4), catechol-O-methyl transferase (COMT) and dopamine transporter (SLC6A3) genes and heroin dependence in Hungarian patients.

Methods

303 heroin dependent subjects and 555 healthy controls were genotyped for 7 single nucleotide polymorphisms (SNPs) rs4680 of the COMT gene; rs1079597 and rs1800498 of the DRD2 gene; rs1800497 of the ANKK1 gene; rs1800955, rs936462 and rs747302 of the DRD4 gene. Four variable number of tandem repeats (VNTRs) were also genotyped: 120 bp duplication and 48 bp VNTR in exon 3 of DRD4 and 40 bp VNTR and intron 8 VNTR of SLC6A3. We also perform a multivariate analysis of associations using Bayesian networks in Bayesian multilevel analysis (BN-BMLA).

Findings and conclusions

In single marker analysis the TaqIA (rs1800497) and TaqIB (rs1079597) variants were associated with heroin dependence. Moreover, –521 C/T SNP (rs1800955) of the DRD4 gene showed nominal association with a possible protective effect of the C allele. After applying the Bonferroni correction TaqIB was still significant suggesting that the minor (A) allele of the TaqIB SNP is a risk component in the genetic background of heroin dependence. The findings of the additional multiple marker analysis are consistent with the results of the single marker analysis, but this method was able to reveal an indirect effect of a promoter polymorphism (rs936462) of the DRD4 gene and this effect is mediated through the –521 C/T (rs1800955) polymorphism in the promoter.  相似文献   

3.
Heroin addiction is a chronic complex disease with a substantial genetic contribution. This study was designed to identify gene variants associated with heroin addiction in African Americans. The emphasis was on genes involved in reward modulation, behavioral control, cognitive function, signal transduction and stress response. We have performed a case–control association analysis by screening with 1350 variants of 130 genes. The sample consisted of 202 former severe heroin addicts in methadone treatment and 167 healthy controls with no history of drug abuse. Single nucleotide polymorphism (SNP), haplotype and multi-SNP genotype pattern analyses were performed. Seventeen SNPs showed point-wise significant association with heroin addiction (nominal P < 0.01). These SNPs are from genes encoding several receptors: adrenergic ( ADRA1A ), arginine vasopressin ( AVPR1A ), cholinergic ( CHRM2 ), dopamine (DRD1 ), GABA-A ( GABRB3 ), glutamate ( GRIN2A ) and serotonin ( HTR3A ) as well as alcohol dehydrogenase ( ADH7 ), glutamic acid decarboxylase ( GAD1 and GAD2 ), the nucleoside transporter ( SLC29A1 ) and diazepam-binding inhibitor ( DBI ). The most significant result of the analyses was obtained for the GRIN2A haplotype G-A-T (rs4587976-rs1071502-rs1366076) with protective effect ( P uncorrected = 9.6E- 05, P corrected = 0.058). This study corroborates several reported associations with alcohol and drug addiction as well as other related disorders and extends the list of variants that may affect the development of heroin addiction. Further studies will be necessary to replicate these associations and to elucidate the roles of these variants in drug addiction vulnerability.  相似文献   

4.
Schizophrenia and suicidal behaviour are sever and complex mental disorders, largely determined by factors of inheritance. Both disorders present pathological changes in the catecholamine neurotransmitter system. The study was conducted on three groups; a group of subjects suffering from schizophrenia, a second compounded by individuals who attempted suicide and a third group of phenotypically healthy examinees. The blood samples of schizophrenic patients as of those who attempted suicide were obtained at the Psychiatric Hospital "Sveti Ivan" in Zagreb in the year 2004. Tests were conducted on the statistic relation between a total of 18 SNPs within three candidate-genes of the dopamine and adrenergic system (DRD4, SLC6A3 and ADRA2B) and the manifestation of schzophrenia and suicidal behaviour. Cases were genotyped by use of SNPlex system. Statistically significant differences were determined in the allelic frequency between the mentioned groups. Findings show a significant connection between 4 SNPs (ADRA2B rs749457, SLC6A3 rs464094, DRD4 rs11246226 and rs4331145) and schizophrenia, and 2 SNPs with suicidal attempt (ADRA2B rs1018351 i SLC6A3 rs403636). In addition, this is the first study that highlights the potential role/effect of polymorphisms in ADRA2B on the manifestation of schizophrenia, as on suicidal behaviour.  相似文献   

5.
Multiple dopamine receptors in the dopaminergic system may be prime candidates for genetic influence on alcohol abuse and dependence due to their involvement in reward and reinforcing mechanisms. Genetic polymorphisms in dopamine receptor genes are believed to influence the development and/or severity of alcoholism. To examine the genetic effects of the Dopamine Receptor D1 (DRD) gene family (DRD1-DRD5) in the Korean population, 11 polymorphisms in the DRD gene family were genotyped and analyzed in 535 alcohol-dependent subjects and 273 population controls. Although none of the polymorphisms of DRD1-5 genes were found to be associated with the risk of alcoholism, one 5' UTR polymorphism in the DRD1 (DRD1-48A>G) gene was significantly associated with severity of alcohol-related problem, as measured by the Alcohol Use Disorders Identification Test (AUDIT) in a gene dose-dependent manner, i.e., 24.37 (+/-8.19) among patients with -48A/A genotype, 22.37 (+/-9.49) among those with -48A/G genotype, and 17.38 (+/-8.28) among those with -48G/G genotype (P=0.002). The genetic effects of DRD1-48A>G were further analyzed with other phenotypes among alcohol-dependent subjects. Interestingly, the DRD1-48A>A genotype was also found to be associated with novelty seeking (NC), harm avoidance (HA), and persistence (P) (P =0.01, 0.02, and 0.003, respectively). The information derived from this study could be valuable for understanding the genetic factors involved in alcoholic phenotypes and genetic distribution of the DRD gene family, and could facilitate further investigation in other ethnic groups.  相似文献   

6.
DNA double-strand breaks (DSB) are the most lethal form of ionizing radiation-induced DNA damage, and failure to repair them results in cell death. In order to see if any associations exist between DNA repair gene polymorphisms and phenotypic profiles of DSB repair (DSBR) we performed a genotype-phenotype correlation study in 118 young healthy subjects (mean age 25.8±6.7years). Subjects were genotyped for 768 single nucleotide polymorphisms (SNPs) with a custom Illumina Golden Gate Assay, and an H2AX histone phosphorylation assay was done to test DSBR capacity. We found that H2AX phosphorylation at 1h was significantly lower in subjects heterozygous (no variant homozygotes were observed) for the XPA gene SNP rs3176683 (p-value=0.005), while dephosphorylation was significantly higher in subjects carrying the variant allele in three MRE11A gene SNPs: rs1014666, rs476137 and rs2508784 (p-value=0.003, 0.003 and 0.008, respectively). An additive effect of low-activity DNA repair alleles was associated with altered DSBR activity, as demonstrated by both H2AX phosphorylation at 1 h (p-trend <0.0001) and γH2AX dephosphorylation at 3h (p-trend <0.0001). Our study revealed that in addition to SNPs of genes that are well-established players in DSBR, non-DSBR genes, such as the XPA gene that is mainly involved in the nucleotide excision repair pathway, can also influence DSBR in healthy subjects. This suggests that successful DSBR may require both DSBR and non-DSBR mechanisms.  相似文献   

7.
Genes involved in serotonergic and dopaminergic neurotransmission have been hypothesized to affect different aspects of personality, but findings from genetic association studies did not provide conclusive results so far. In previous studies, however, only one or a few polymorphisms within single genes were investigated neglecting the possibility that the genetic associations might be more complex comprising several genes or gene regions. To overcome this limitation, we performed an extended genetic association study analyzing 17 serotonergic ( SLC6A4, HTR1A, HTR1B, HTR2A, HTR2C, HTR3A, HTR6, MAOA, TPH1, TPH2 ) and dopaminergic genes ( SLC6A3, DRD2, DRD3, DRD4, COMT, MAOA, TH, DBH ), which have been previously reported to be implicated with personality traits.
One hundred and ninety-five single nucleotide polymorphisms (SNPs) within these genes were genotyped with the Illumina BeadChip technology (HumanHap300, Human-1) in a sample of 366 mentally healthy Caucasians. Additionally, we tried to replicate our results in an independent sample of further 335 Caucasians. Personality traits in both samples were assessed with the German version of Cloninger's Tridimensional Personality Questionnaire.
From 30 SNPs showing associations at a nominal level of significance, two intronic SNPs, rs2770296 and rs927544, both located in the HTR2A gene, withstood correction for multiple testing. These SNPs were associated with the personality trait novelty seeking . The effect of rs927544 could be replicated for the novelty seeking subscale extravagance , and the same SNP was also associated with extravagance inthe combined samples.
Our results show that HTR2A polymorphisms modulate facets of novelty seeking behaviour in healthy adults suggesting that serotonergic neurotransmission is involved in this phenotype.  相似文献   

8.
The present study detected two single nucleotide polymorphisms (SNPs) at the PLA2G4D locus, rs2459692 and rs4924618, to investigate a genetic association between the PLA2G4D gene and schizophrenia. A total of 236 Chinese parent-offspring trios of Han descent were recruited for the genetic analysis. The transmission disequilibrium test (TDT) did not show allelic association either for rs2459692 (chi(2) = 0.217, P = 0.641) or for rs4924618 (chi(2) = 0.663, P = 0.416). To see the combined effect of the PLA2G4D locus with the other three PLA2G4 genes, we applied the above two SNPs as a conditional marker to test the pair-wise combination for a disease association. The conditioning on allele (COA) test revealed a weak association for the rs2459692-PLA2G4A combination (chi(2) = 6.03, df = 2, P = 0.049), the rs2459692-PLA2G4B combination (chi(2) = 7.16, df = 3, P = 0.028) and the rs4924618-PLA2G4C combination (chi(2) = 7.01, df = 2, P = 0.03), whereas the conditioning on genotype (COG) test showed a weak association only for the rs4924618-PLA2G4C combination (chi(2) = 8.52, df = 3, P = 0.036). Because we performed a multi-locus analysis in this study, the weak association shown by the conditional tests could make little biological sense. In conclusion, the PLA2G4D gene may not be involved in a susceptibility to schizophrenia.  相似文献   

9.
均衡的体成分构成对维持机体的健康状态具有重要作用,体成分受遗传与环境因素的共同影响。多巴胺参与摄食、运动及认知等活动的调节,多巴胺D3受体(DRD3)对多巴胺神经通路起关键调节作用,进而对摄食功能发挥作用,从而可能对体成分产生影响。为了解遗传与环境因素对双生子儿童体成分的影响,并探讨DRD3基因单核苷酸多态性(SNP)与体成分的相关性,对160对4-12岁双生子肱三头肌皮褶厚度(d1)、肩胛下皮褶厚度(d2)、髂前上棘位皮褶厚度(d3)和体质量(m)进行了测量,计算d4(d1+d2)、d5(d2/d1),体脂率(Pf)、瘦体质量(ml);从口腔拭子中提取全基因组DNA;通过Amp FISTR Sino filerPlus试剂盒分析确定卵型;采用SNaPshot技术对DRD3基因4个SNP位点进行检测;使用Mx软件估算各指标遗传度;运用广义估计方程模型分析各指标与DRD3基因SNP的相关性。校正年龄效应后,除个别指标(d3, ml)外,男女生指标遗传度(h)学龄前期总体偏低,且某些指标(d2, d4, Pf, ml)的遗传度存在一定的性别差异。d2分别与rs324029、rs226082存在相关(P<0.05); d3分别与rs2134655、rs226082存在相关(P<0.05);d5分别与rs2134655、rs167771存在相关(P<0.05);Pf分别与rs226082、rs167771存在相关(P<0.05);ml分别与rs2134655、rs226082、rs167771存在相关(P<0.05)。本研究结果表明,遗传和环境因素对儿童体成分发育均有影响,但遗传效应可能存在一定的发育阶段和性别差异;DRD3基因SNPs与儿童的体成分可能存在一定的相关性。  相似文献   

10.
《Cancer epidemiology》2014,38(5):563-568
Nibrin and DNA repair protein XRCC3 are involved in DNA double-strand break repair. We genotyped seven tagging SNPs in these genes (rs1805794, rs709816; rs1063054; rs7141928, rs1799794, rs861530, rs861539) with the aim to analyse their association with acute lymphoblastic leukaemia (ALL), a disease, that is characterised by elevated genetic instability. Study consisted of 460 paediatric ALL cases and 552 healthy controls. For selection of DNA sequence variants we employed SNP-tagging approach, incorporating the HAPMAP CEU reference panel data.We did not find association of analysed and tagged SNPs and derived haplotypes with the ALL risk thus did not confirm the hypothesis that analysed DNA recombination repair variants account for increased susceptibility to ALL.  相似文献   

11.
Kidney transplant recipients often experience a significant amount of weight gain in the first year post-transplantation. While demographic factors such as age, race, and sex have been associated with weight gain in this population, these factors do not explain all of the variability seen. A number of studies have suggested that genetics also plays a critical role in weight changes. Recently, alterations in the activity of the neurotransmitter dopamine have been associated with weight change, and gene expression studies in kidney transplant recipients have supported this association. The purpose of this pilot study is to first examine the feasibility and methodology, and then to examine the associations of age, race, sex, and genotype for 13 SNPs and 3 VNTRs in 9 dopaminergic pathway genes (ANKK1, DRD2, DRD3, DRD4, SLC6A3/DAT1, MAOA, MAOB, COMT, CPE) for associations with percent weight change at 12 months post-transplantation. Seventy kidney transplant recipients had demographic and clinical data collected as a part of a larger observational study. DNA was extracted from repository buffy coat samples taken at the time of transplant, and genotyped using Taqman and PCR based methods. Three SNPs were independently associated with percent weight change: ANKK1 rs1800497 (r = -0.28, p = 0.05), SLC6A3/DAT1 rs6347 (p = 0.046), and CPE rs1946816 (p = 0.028). Stepwise regression modelling confirmed the combined associations of age (p = 0.0021), DRD4 VNTR 4/5 genotype (p = 0.0074), and SLC6A3/DAT1 rs6347 CC genotype (p = 0.0009) and TT genotype (p = 0.0004) with percent weight change in a smaller sample (n = 35) of these kidney transplant recipients that had complete genotyping. These associations indicate that there may be a genetic, and an age component to weight changes post transplantation.  相似文献   

12.
《PloS one》2015,10(4)
We performed a genome-wide association (GWA) study in 434 sporadic Creutzfeldt-Jakob disease (sCJD) patients and 1939 controls from the United Kingdom, Germany and The Netherlands. The findings were replicated in an independent sample of 1109 sCJD and 2264 controls provided by a multinational consortium. From the initial GWA analysis we selected 23 SNPs for further genotyping in 1109 sCJD cases from seven different countries. Five SNPs were significantly associated with sCJD after correction for multiple testing. Subsequently these five SNPs were genotyped in 2264 controls. The pooled analysis, including 1543 sCJD cases and 4203 controls, yielded two genome wide significant results: rs6107516 (p-value=7.62x10-9) a variant tagging the prion protein gene (PRNP); and rs6951643 (p-value=1.66x10-8) tagging the Glutamate Receptor Metabotropic 8 gene (GRM8). Next we analysed the data stratifying by country of origin combining samples from the pooled analysis with genotypes from the 1000 Genomes Project and imputed genotypes from the Rotterdam Study (Total n=12967). The meta-analysis of the results showed that rs6107516 (p-value=3.00x10-8) and rs6951643 (p-value=3.91x10-5) remained as the two most significantly associated SNPs. Rs6951643 is located in an intronic region of GRM8, a gene that was additionally tagged by a cluster of 12 SNPs within our top100 ranked results. GRM8 encodes for mGluR8, a protein which belongs to the metabotropic glutamate receptor family, recently shown to be involved in the transduction of cellular signals triggered by the prion protein. Pathway enrichment analyses performed with both Ingenuity Pathway Analysis and ALIGATOR postulates glutamate receptor signalling as one of the main pathways associated with sCJD. In summary, we have detected GRM8 as a novel, non-PRNP, genome-wide significant marker associated with heightened disease risk, providing additional evidence supporting a role of glutamate receptors in sCJD pathogenesis.  相似文献   

13.
Schizophrenia and bipolar disorder are associated with dopamine neurotransmission and show high comorbidity with tobacco dependence. Recent evidence indicates that the family of the NR4A orphan nuclear receptors, which are expressed in dopamine neurons and in dopaminoceptive brain areas, may play a role in dopamine‐mediated effects. We have, therefore, analysed the association of six single nucleotide polymorphisms (SNPs) within the three genes belonging to the NR4A orphan nuclear receptor family, NR4A1 (rs2603751, rs2701124), NR4A2 (rs12803, rs834835) and NR4A3 (rs1131339, rs1405209), with the degree of smoking in a sample of 204 unrelated schizophrenia patients, which included 126 smokers and 78 non‐smokers. SNPs within the NR4A3 gene (rs1131339 and rs1405209) were significantly associated with heavy smoking in this cohort, using a stepwise analysis of the escalated number of cigarettes smoked per day (P = 0.008 and 0.006, respectively; satisfying the Nyholt significance threshold of 0.009, an adjustment for multiple testing). We then repeated the association analysis of the NR4A3 markers (rs1131339 and rs1405209) in a larger cohort of 319 patients with bipolar disorder, which included 167 smokers and 152 non‐smokers. We have replicated the positive association with smoking of the NR4A3 SNP rs1131339 in this group (P = 0.04), providing an important confirmation of the involvement of the NR4A3 gene in nicotine addiction in patients with mental health disease, a population significantly at risk for nicotine addiction.  相似文献   

14.

Background

Prefrontal behavior and activity in humans are heritable. Studies in animals demonstrate an interaction between dopamine D2 receptors and nicotinic acetylcholine receptors on prefrontal behavior but evidence in humans is weak. Therefore, we hypothesize that genetic variation regulating dopamine D2 and nicotinic acetylcholine receptor signaling impact prefrontal cortex activity and related cognition. To test this hypothesis in humans, we explored the interaction between functional genetic variants in the D2 receptor gene (DRD2, rs1076560) and in the nicotinic receptor α5 gene (CHRNA5, rs16969968) on both dorsolateral prefrontal cortex mediated behavior and physiology during working memory and on prefrontal gray matter volume.

Methods

A large sample of healthy subjects was compared for genotypic differences for DRD2 rs1076560 (G>T) and CHNRA5 rs16969968 (G>A) on prefrontal phenotypes, including cognitive performance at the N-Back task, prefrontal physiology with BOLD fMRI during performance of the 2-Back working memory task, and prefrontal morphometry with structural MRI.

Results

We found that DRD2 rs1076560 and CHNRA5 rs16969968 interact to modulate cognitive function, prefrontal physiology during working memory, and prefrontal gray matter volume. More specifically, CHRNA5-AA/DRD2-GT subjects had greater behavioral performance, more efficient prefrontal cortex activity at 2Back working memory task, and greater prefrontal gray matter volume than the other genotype groups.

Conclusions

The present data extend previous studies in animals and enhance our understanding of dopamine and acetylcholine signaling in the human prefrontal cortex, demonstrating interactions elicited by working memory that are modulated by genetic variants in DRD2 and CHRNA5.  相似文献   

15.
16.
Mathematical ability is heritable, but few studies have directly investigated its molecular genetic basis. Here we aimed to identify specific genetic contributions to variation in mathematical ability. We carried out a genome wide association scan using pooled DNA in two groups of U.K. samples, based on end of secondary/high school national academic exam achievement: high (n = 419) versus low (n = 183) mathematical ability while controlling for their verbal ability. Significant differences in allele frequencies between these groups were searched for in 906,600 SNPs using the Affymetrix GeneChip Human Mapping version 6.0 array. After meeting a threshold of p<1.5×10−5, 12 SNPs from the pooled association analysis were individually genotyped in 542 of the participants and analyzed to validate the initial associations (lowest p-value 1.14 ×10−6). In this analysis, one of the SNPs (rs789859) showed significant association after Bonferroni correction, and four (rs10873824, rs4144887, rs12130910 rs2809115) were nominally significant (lowest p-value 3.278 × 10−4). Three of the SNPs of interest are located within, or near to, known genes (FAM43A, SFT2D1, C14orf64). The SNP that showed the strongest association, rs789859, is located in a region on chromosome 3q29 that has been previously linked to learning difficulties and autism. rs789859 lies 1.3 kbp downstream of LSG1, and 700 bp upstream of FAM43A, mapping within the potential promoter/regulatory region of the latter. To our knowledge, this is only the second study to investigate the association of genetic variants with mathematical ability, and it highlights a number of interesting markers for future study.  相似文献   

17.
Several genes that are involved in the regulation of circadian rhythms are implicated in the susceptibility to bipolar disorder (BD). The current study aimed to investigate the relationships between genetic variants in NR1D1 RORA, and RORB genes and BD in the Han Chinese population. We conducted a case-control genetic association study with two samples of BD patients and healthy controls. Sample I consisted of 280 BD patients and 200 controls. Sample II consisted of 448 BD patients and 1770 healthy controls. 27 single nucleotide polymorphisms in the NR1D1, RORA, and RORB genes were genotyped using GoldenGate VeraCode assays in sample I, and 492 markers in the three genes were genotyped using Affymetrix Genome-Wide CHB Array in sample II. Single marker and gene-based association analyses were performed using PLINK. A combined p-value for the joining effects of all markers within a gene was calculated using the rank truncated product method. Multifactor dimensionality reduction (MDR) method was also applied to test gene-gene interactions in sample I. All markers were in Hardy-Weinberg equilibrium (P>0.001). In sample I, the associations with BD were observed for rs4774388 in RORA (OR = 1.53, empirical p-value, P = 0.024), and rs1327836 in RORB (OR = 1.75, P = 0.003). In Sample II, there were 45 SNPs showed associations with BD, and the most significant marker in RORA was rs11639084 (OR = 0.69, P = 0.002), and in RORB was rs17611535 (OR = 3.15, P = 0.027). A combined p-value of 1.6×10−6, 0.7, and 1.0 was obtained for RORA, RORB and NR1D1, respectively, indicting a strong association for RORA with the risk of developing BD. A four way interaction was found among markers in NR1D1, RORA, and RORB with the testing accuracy 53.25% and a cross-validation consistency of 8 out of 10. In sample II, 45 markers had empirical p-values less than 0.05. The most significant markers in RORA and RORB genes were rs11639084 (OR = 0.69, P = 0.002), and rs17611535 (OR = 3.15, P = 0.027), respectively. Gene-based association was significant for RORA gene (P = 0.0007). Our results support for the involvement of RORs genes in the risk of developing BD. Investigation of the functional properties of genes in the circadian pathway may further enhance our understanding about the pathogenesis of bipolar illness.  相似文献   

18.
ABSTRACT: BACKGROUND: Recently, genomewide association studies identified a pleiotropic gene locus, ABO, as being significantly associated with hematological traits. To confirm the effects of ABO on hematological traits, we examined the link between the ABO locus and hematological traits in Korean population-based cohorts. RESULTS: Six tagging SNPs for ABO were analyzed with regard to their effects on hematological traits [white blood cell count (WBC), red blood cell count (RBC), platelet (Plat), mean corpuscular volume (MCV), and mean corpuscular haemoglobin concentration (MCHC)]. Linear regression analyses were performed, controlling for recruitment center, sex, and age as covariates. Of the 6 tagging SNPs, 3 (rs2073823, rs8176720, and rs495828) and 3 (rs2073823, rs8176717, and rs687289) were significantly associated with RBC and MCV, respectively (Bonferroni correction p-value criteria < 0.05/6 = 0.008). rs2073823 and a reported SNP (rs8176746), as well as rs495828 and a reported SNP (rs651007), showed perfect linkage disequilibrium status (r2s = 0.99). Of the remaining 3 SNPs (rs8176720, rs8176717 and rs687289), rs8176717 generated an independent signal with moderate p-value (= 0.045) when it was adjusted for by rs2073823 (the most significant SNP). We also identified a copy number variation (CNV) that was tagged by the SNP rs8176717, the minor allele of which correlated with the deletion allele of CNV. Our haplotype analysis indicated that the haplotype that contained the CNV deletion was significantly associated with MCV (beta +/- se = 0.363 +/- 0.118, p =2.09 x 10-3). CONCLUSIONS: Our findings confirm that ABO is one of the genetic factors that are associated with hematological traits in the Korean population. This result is notable, because GWASs fail to evaluate the link between a CNV and phenotype traits.  相似文献   

19.
In order to systematically test the hypothesis that genetic variation in the dopamine system contributes to the susceptibility to migraine with aura (MA), we performed a comprehensive genetic association study of altogether ten genes from the dopaminergic system in a large German migraine with aura case-control sample. Based on the genotyping results of 53 variants across the ten genes in 270 MA cases and 272 controls, three genes—DBH, DRD2 and SLC6A3—were chosen to proceed to additional genotyping of 380 MA cases and 378 controls. Four of the 26 genotyped polymorphisms in these three genes displayed nominally significant allelic P-values in the sample of 650 MA patients and 650 controls. Three of these SNPs [rs2097629 in DBH (uncorrected allelic P value = 0.0012, OR = 0.77), rs7131056 in DRD2 (uncorrected allelic P value = 0.0018, OR = 1.28) and rs40184 in SLC6A3 (uncorrected allelic P value = 0.0082, OR = 0.81)] remained significant after gene-wide correction for multiple testing by permutation analysis. Further consideration of imputed genotype data from 2,937 British control individuals did not affirm the association with DRD2, but supported the associations with DBH and SLC6A3. Our data provide new evidence for an involvement of components of the dopaminergic system—in particular the dopamine-beta hydroxylase and dopamine transporter genes—to the pathogenesis of migraine with aura. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. U. Todt and C. Netzer contributed equally to this work.  相似文献   

20.
We examined the genetic association of neuropeptide Y receptor Y5 (NPY5R) single nucleotide polymorphisms (SNPs) with measures of the insulin resistance (metabolic) syndrome. We genotyped 10 NPY5R SNPs in 439 Mexican American individuals (age=43.3+/-17.3 years and BMI=30.0+/-6.7 kg/m2) distributed across 27 pedigrees from the San Antonio Family Diabetes Study and performed association analyses using the measured genotype approach as implemented in Sequential Oligogenic Linkage Analysis Routines (SOLAR). Minor alleles for five (rs11100493, rs12501691, P1, rs11100494, rs12512687) of the NPY5R SNPs were found to be significantly (p<0.05) associated with fasting plasma triglyceride concentrations and decreased high-density lipoprotein concentrations. In addition, the minor allele for SNP P2 was significantly associated (p=0.031) with a decreased homeostasis model assessment of beta-cell function (HOMA-%beta). Linkage disequilibrium between SNP pairs indicated one haplotype block of five SNPs (rs11100493, rs12501691, P1, rs11100494, rs12512687) that were highly correlated (r2>0.98). These preliminary results provide evidence for association of SNPs in the NPY5R gene with dyslipidemia (elevated triglyceride concentrations and reduced high-density lipoprotein levels) in our Mexican American population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号