首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Geobacter sulfurreducens produces current densities in microbial fuel cells that are among the highest known for pure cultures. The possibility of adapting this organism to produce even higher current densities was evaluated. A system in which a graphite anode was poised at −400 mV (versus Ag/AgCl) was inoculated with the wild-type strain of G. sulfurreducens, strain DL-1. An isolate, designated strain KN400, was recovered from the biofilm after 5 months of growth on the electrode. KN400 was much more effective in current production than strain DL-1. This was apparent with anodes poised at −400 mV, as well as in systems run in true fuel cell mode. KN400 had current (7.6 A/m2) and power (3.9 W/m2) densities that respectively were substantially higher than those of DL1 (1.4 A/m2 and 0.5 W/m2). On a per cell basis KN400 was more effective in current production than DL1, requiring thinner biofilms to make equivalent current. The enhanced capacity for current production in KN400 was associated with a greater abundance of electrically conductive microbial nanowires than DL1 and lower internal resistance (0.015 versus 0.130 Ω/m2) and mass transfer limitation in KN400 fuel cells. KN400 produced flagella, whereas DL1 does not. Surprisingly, KN400 had much less outer-surface c-type cytochromes than DL1. KN400 also had a greater propensity to form biofilms on glass or graphite than DL1, even when growing with the soluble electron acceptor, fumarate. These results demonstrate that it is possible to enhance the ability of microorganisms to electrochemically interact with electrodes with the appropriate selective pressure and that improved current production is associated with clear differences in the properties of the outer surface of the cell that may provide insights into the mechanisms for microbe–electrode interactions.  相似文献   

2.
3.
Genome comparison is now a crucial step for genome annotation and identification of regulatory motifs. Genome comparison aims for instance at finding genomic regions either specific to or in one-to-one correspondence between individuals/strains/species. It serves e.g. to pre-annotate a new genome by automatically transferring annotations from a known one. However, efficiency, flexibility and objectives of current methods do not suit the whole spectrum of applications, genome sizes and organizations. Innovative approaches are still needed. Hence, we propose an alternative way of comparing multiple genomes based on segmentation by similarity. In this framework, rather than being formulated as a complex optimization problem, genome comparison is seen as a segmentation question for which a single optimal solution can be found in almost linear time. We apply our method to analyse three strains of a virulent pathogenic bacteria, Ehrlichia ruminantium, and identify 92 new genes. We also find out that a substantial number of genes thought to be strain specific have potential orthologs in the other strains. Our solution is implemented in an efficient program, qod, equipped with a user-friendly interface, and enables the automatic transfer of annotations between compared genomes or contigs (Video in Supplementary Data). Because it somehow disregards the relative order of genomic blocks, qod can handle unfinished genomes, which due to the difficulty of sequencing completion may become an interesting characteristic for the future. Availabilty: http://www.atgc-montpellier.fr/qod.  相似文献   

4.
MOTIVATION: Following an extensive search for orthologous genes between the complete genomes from archaea and bacteria, the spatial association of the orthologs has been investigated in terms of synteny, the conservation of the order of neighboring genes. However, the relationships between the relative locations of remote orthologs over entire genomes have not been shown. RESULTS: Comprehensive comparisons between the locations of orthologs on nineteen archaeal and bacterial genomes are presented by the location to location correspondence based on the gene-location distance. When the two genomes are rotated such that a pair of orthologs with the shortest distance is set in the same angle, a statistically significant number of orthologs maintain their relative locations between the genomes. Even by the short distances at the 5% significance level, the rotations are restricted within a narrow range, suggesting an intrinsic angle for realizing similar locations between the orthologs in each genome pair. Furthermore, the rotations in the restricted range agree with the replication origin and terminus sites for the analyzed genomes where such sites are known. The relationship between location-maintained orthologs and gene function is also discussed.  相似文献   

5.
The identification of orthologs to a set of known genes is often the starting point for evolutionary studies focused on gene families of interest. To date, the existing orthology detection tools (COG, InParanoid, OrthoMCL, etc.) are aimed at genome-wide ortholog identification and lack flexibility for the purposes of case studies. We developed a program OrthoFocus, which employs an extended reciprocal best hit approach to quickly search for orthologs in a pair of genomes. A group of paralogs from the input genome is used as the start for the forward search and the criterion for the reverse search, which allows handling many-to-one and many-to-many relationships. By pairwise comparison of genomes with the input species genome, OrthoFocus enables quick identification of orthologs in multiple genomes and generates a multiple alignment of orthologs so that it can further be used in phylogenetic analysis. The program is available at http://www.lipidomics.ru/.  相似文献   

6.
A total of 37 complete genome sequences of bacteria, archaea, and eukaryotes were compared. The percentage of orthologous genes of each species contained within any of the other 36 genomes was established. In addition, the mean identity of the orthologs was calculated. Several conclusions result: (i) a greater absolute number of orthologs of a given species is found in larger species than in smaller ones; (ii) a greater percentage of the orthologous genes of smaller genomes is contained in other species than is the case for larger genomes, which corresponds to a larger proportion of essential genes; (iii) before species can be specifically related to one another in terms of gene content, it is first necessary to correct for the size of the genome; (iv) eukaryotes have a significantly smaller percentage of bacterial orthologs after correction for genome size, which is consistent with their placement in a separate domain; (v) the archaebacteria are specifically related to one another but are not significantly different in gene content from the bacteria as a whole; (vi) determination of the mean identity of all orthologs (involving hundreds of gene comparisons per genome pair) reduces the impact of errors in misidentification of orthologs and to misalignments, and thus it is far more reliable than single gene comparisons; (vii) however, there is a maximum amount of change in protein sequences of 37% mean identity, which limits the use of percentage sequence identity to the lower taxa, a result which should also be true for single gene comparisons of both proteins and rRNA; (viii) most of the species that appear to be specifically related based upon gene content also appear to be specifically related based upon the mean identity of orthologs; (ix) the genes of a majority of species considered in this study have diverged too much to allow the construction of all-encompassing evolutionary trees. However, we have shown that eight species of gram-negative bacteria, six species of gram-positive bacteria, and eight species of archaebacteria are specifically related in terms of gene content, mean identity of orthologs, or both.  相似文献   

7.
Using computational approaches we have identified 2017 expressed intronless genes in the mouse genome. Evolutionary analysis reveals that 56 intronless genes are conserved among the three domains of life--bacteria, archea and eukaryotes. These highly conserved intronless genes were found to be involved in essential housekeeping functions. About 80% of expressed mouse intronless genes have orthologs in eukaryotic genomes only, and thus are specific to eukaryotic organisms. 608 of these genes have intronless human orthologs and 302 of these orthologs have a match in OMIM database. Investigation into these mouse genes will be important in generating mouse models for understanding human diseases.  相似文献   

8.
An automated comparative analysis of 17 complete microbial genomes   总被引:3,自引:0,他引:3  
MOTIVATION: As sequenced genomes become larger and sequencing becomes faster, there is a need to develop accurate automated genome comparison techniques and databases to facilitate derivation of genome functionality; identification of enzymes, putative operons and metabolic pathways; and to derive phylogenetic classification of microbes. RESULTS: This paper extends an automated pair-wise genome comparison technique (Bansal et al., Math. Model. Sci. Comput., 9, 1-23, 1998, Bansal and Bork, in First International Workshop of Declarative Languages, Springer, pp. 275-289, 1999) used to identify orthologs and gene groups to derive orthologous genes in a group of genomes and to identify genes with conserved functionality. Seventeen microbial genomes archived at ftp://ncbi.nlm.nih.gov/genbank/genomes have been compared using the automated technique. Data related to orthologs, gene groups, gene duplication, gene fusion, orthologs with conserved functionality, and genes specifically orthologous to Escherichia coli and pathogens has been presented and analyzed. AVAILABILITY: A prototype database is available at ftp://www.mcs.kent.edu/arvind/intellibio / orthos.html. The software is free for academic research under an academic license. The detailed database for every microbial genome in NCBI is commercially available through intellibio software and consultancy corporation (Web site: http://www.mcs.kent.edu/?rvind/intellibio . html). CONTACT: arvind@mcs.kent.edu.  相似文献   

9.
Patterns of positive selection in six Mammalian genomes   总被引:1,自引:0,他引:1  
Genome-wide scans for positively selected genes (PSGs) in mammals have provided insight into the dynamics of genome evolution, the genetic basis of differences between species, and the functions of individual genes. However, previous scans have been limited in power and accuracy owing to small numbers of available genomes. Here we present the most comprehensive examination of mammalian PSGs to date, using the six high-coverage genome assemblies now available for eutherian mammals. The increased phylogenetic depth of this dataset results in substantially improved statistical power, and permits several new lineage- and clade-specific tests to be applied. Of approximately 16,500 human genes with high-confidence orthologs in at least two other species, 400 genes showed significant evidence of positive selection (FDR<0.05), according to a standard likelihood ratio test. An additional 144 genes showed evidence of positive selection on particular lineages or clades. As in previous studies, the identified PSGs were enriched for roles in defense/immunity, chemosensory perception, and reproduction, but enrichments were also evident for more specific functions, such as complement-mediated immunity and taste perception. Several pathways were strongly enriched for PSGs, suggesting possible co-evolution of interacting genes. A novel Bayesian analysis of the possible "selection histories" of each gene indicated that most PSGs have switched multiple times between positive selection and nonselection, suggesting that positive selection is often episodic. A detailed analysis of Affymetrix exon array data indicated that PSGs are expressed at significantly lower levels, and in a more tissue-specific manner, than non-PSGs. Genes that are specifically expressed in the spleen, testes, liver, and breast are significantly enriched for PSGs, but no evidence was found for an enrichment for PSGs among brain-specific genes. This study provides additional evidence for widespread positive selection in mammalian evolution and new genome-wide insights into the functional implications of positive selection.  相似文献   

10.
Genomic trees have been constructed based on the presence and absence of families of protein-encoding genes observed in 27 complete genomes, including genomes of 15 free-living organisms. This method does not rely on the identification of suspected orthologs in each genome, nor the specific alignment used to compare gene sequences because the protein-encoding gene families are formed by grouping any protein with a pairwise similarity score greater than a preset value. Because of this all inclusive grouping, this method is resilient to some effects of lateral gene transfer because transfers of genes are masked when the recipient genome already has a homolog (not necessarily an ortholog) of the incoming gene. Of 71 genes suspected to have been laterally transferred to the genome of Aeropyrum pernix, only approximately 7 to 15 represent genes where a lateral gene transfer appears to have generated homoplasy in our character dataset. The genomic tree of the 15 free-living taxa includes six different bacterial orders, six different archaeal orders, and two different eukaryotic kingdoms. The results are remarkably similar to results obtained by analysis of rRNA. Inclusion of the other 12 genomes resulted in a tree only broadly similar to that suggested by rRNA with at least some of the differences due to artifacts caused by the small genome size of many of these species. Very small genomes, such as those of the two Mycoplasma genomes included, fall to the base of the Bacterial domain, a result expected due to the substantial gene loss inherent to these lineages. Finally, artificial ``partial genomes' were generated by randomly selecting ORFs from the complete genomes in order to test our ability to recover the tree generated by the whole genome sequences when only partial data are available. The results indicated that partial genomic data, when sampled randomly, could robustly recover the tree generated by the whole genome sequences. Received: 30 May 2001 / Accepted: 10 October 2001  相似文献   

11.
Zhang T  Zhang L  Su W  Gao P  Li D  He X  Zhang Y 《Bioresource technology》2011,102(14):7099-7102
In this paper, we reported a kind of exoelectrogens, Pseudomonas alcaliphila (P. alcaliphila) strain MBR, which could excrete phenazine-1-carboxylic acid (PCA) to transfer electron under alkaline condition in microbial fuel cells (MFCs). The electrochemical activity of strain MBR and the extracellular electron transfer mechanism in MFCs were evaluated by cyclic voltammetry (CV) and electricity generation curve measurement. The results indicated a soluble mediator was the key factor for extracellular electron transfer of strain MBR under alkaline condition. The soluble mediator was PCA detected by gas chromatography-mass (GC-MS) analyses.  相似文献   

12.
GeConT: gene context analysis   总被引:5,自引:1,他引:4  
SUMMARY: The fact that adjacent genes in bacteria are often functionally related is widely known. GeConT (Gene Context Tool) is a web interface designed to visualize genome context of a gene or a group of genes and their orthologs in all the completely sequenced genomes. The graphical information of GeConT can be used to analyze genome annotation, functional ortholog identification or to verify the genomic context congruence of any set of genes that share a common property. AVAILABILITY: http://www.ibt.unam.mx/biocomputo/gecont.html  相似文献   

13.
An in silico comparative genomics approach was used to identify putative orthologs to genetically mapped genes from the mosquito, Aedes aegypti, in the Drosophila melanogaster and Anopheles gambiae genome databases. Comparative chromosome positions of 73 D. melanogaster orthologs indicated significant deviations from a random distribution across each of the five A. aegypti chromosomal regions, suggesting that some ancestral chromosome elements have been conserved. However, the two genomes also reflect extensive reshuffling within and between chromosomal regions. Comparative chromosome positions of A. gambiae orthologs indicate unequivocally that A. aegypti chromosome regions share extensive homology to the five A. gambiae chromosome arms. Whole-arm or near-whole-arm homology was contradicted with only two genes among the 75 A. aegypti genes for which orthologs to A. gambiae were identified. The two genomes contain large conserved chromosome segments that generally correspond to break/fusion events and a reciprocal translocation with extensive paracentric inversions evident within. Only very tightly linked genes are likely to retain conserved linear orders within chromosome segments. The D. melanogaster and A. gambiae genome databases therefore offer limited potential for comparative positional gene determinations among even closely related dipterans, indicating the necessity for additional genome sequencing projects with other dipteran species.  相似文献   

14.
Pathogenic bacteria continuously encounter multiple forms of stress in their hostile environments, which leads to DNA damage. With the new insight into biology offered by genome sequences, the elucidation of the gene content encoding proteins provides clues toward understanding the microbial lifestyle related to habitat and niche. Campylobacter jejuni, Haemophilus influenzae, Helicobacter pylori, Mycobacterium tuberculosis , the pathogenic Neisseria, Streptococcus pneumoniae, Streptococcus pyogenes and Staphylococcus aureus are major human pathogens causing detrimental morbidity and mortality at a global scale. An algorithm for the clustering of orthologs was established in order to identify whether orthologs of selected genes were present or absent in the genomes of the pathogenic bacteria under study. Based on the known genes for the various functions and their orthologs in selected pathogenic bacteria, an overview of the presence of the different types of genes was created. In this context, we focus on selected processes enabling genome dynamics in these particular pathogens, namely DNA repair, recombination and horizontal gene transfer. An understanding of the precise molecular functions of the enzymes participating in DNA metabolism and their importance in the maintenance of bacterial genome integrity has also, in recent years, indicated a future role for these enzymes as targets for therapeutic intervention.  相似文献   

15.
《Fly》2013,7(3):192-204
We used the Illumina reversible-short sequencing technology to obtain 17-fold average depth (s.d.~8) of ~94% of the euchromatic genome and ~1-5% of the heterochromatin sequence of the Drosophila melogaster isogenic strain w1118; iso-2; iso-3. We show that this strain has a ~9 kb deletion that uncovers the first exon of the white (w) gene, ~4 kb of downstream promoter sequences, and most of the first intron, thus demonstrating that whole-genome sequencing can be used for mutation characterization. We chose this strain because there are thousands of transposon insertion lines and hundreds of isogenic deficiency lines available with this genetic background, such as the Exelixis, Inc., and the DrosDEL collections. We compared our sequence to Release 5 of the finished reference genome sequence which was made from the isogenic strain y1; cn1 bw1 sp1 and identified ~356,614 candidate SNPs in the ~117 Mb unique sequence genome, which represents a substitution rate of ~1/305 nucleotides (~0.30%). The distribution of SNPs is not uniform, but rather there is a ~2-fold increase in SNPs on the autosome arms compared with the X chromosome and a ~7-fold increase when compared to the small 4th chromosome. This is consistent with previous analyses that demonstrated a correlation between recombination frequency and SNP frequency. An unexpected finding was a SNP hotpot in a ~20Mb central region of the 4th chromosome, which might indicate higher than expected recombination frequency in this region of this chromosome. Interestingly, genes involved in sensory perception are enriched in SNP hotspots and genes encoding developmental genes are enriched in SNP coldspots, which suggests that recombination frequencies might be proportional to the evolutionary selection coefficient. There are currently 12 Drosophila species sequenced, and this represents one of many isogenic Drosophila melanogaster genome sequences that are in progress. Because of the dramatic increase in power in using isogenic lines rather than outbred individuals, the SNP information should be valuable as a test bed for understanding genotype-by-environment interactions in human population studies.  相似文献   

16.
Previous studies have suggested that the conductive pili of Geobacter sulfurreducens are essential for extracellular electron transfer to Fe(III) oxides and for optimal long-range electron transport through current-producing biofilms. The KN400 strain of G. sulfurreducens reduces poorly crystalline Fe(III) oxide more rapidly than the more extensively studied DL-1 strain. Deletion of the gene encoding PilA, the structural pilin protein, in strain KN400 inhibited Fe(III) oxide reduction. However, low rates of Fe(III) reduction were detected after extended incubation (>30 days) in the presence of Fe(III) oxide. After seven consecutive transfers, the PilA-deficient strain adapted to reduce Fe(III) oxide as fast as the wild type. Microarray, whole-genome resequencing, proteomic, and gene deletion studies indicated that this adaptation was associated with the production of larger amounts of the c-type cytochrome PgcA, which was released into the culture medium. It is proposed that the extracellular cytochrome acts as an electron shuttle, promoting electron transfer from the outer cell surface to Fe(III) oxides. The adapted PilA-deficient strain competed well with the wild-type strain when both were grown together on Fe(III) oxide. However, when 50% of the culture medium was replaced with fresh medium every 3 days, the wild-type strain outcompeted the adapted strain. A possible explanation for this is that the necessity to produce additional PgcA, to replace the PgcA being continually removed, put the adapted strain at a competitive disadvantage, similar to the apparent selection against electron shuttle-producing Fe(III) reducers in many anaerobic soils and sediments. Despite increased extracellular cytochrome production, the adapted PilA-deficient strain produced low levels of current, consistent with the concept that long-range electron transport through G. sulfurreducens biofilms is more effective via pili.  相似文献   

17.
18.
In this study, we developed 359 detection primers for single nucleotide polymorphisms (SNPs) previously discovered within intron sequences of wheat genes and used them to evaluate SNP polymorphism in common wheat (Triticum aestivum L.). These SNPs showed an average polymorphism information content (PIC) of 0.18 among 20 US elite wheat cultivars, representing seven market classes. This value increased to 0.23 when SNPs were pre-selected for polymorphisms among a diverse set of 13 hexaploid wheat accessions (excluding synthetic wheats) used in the wheat SNP discovery project (). PIC values for SNP markers in the D genome were approximately half of those for the A and B genomes. D genome SNPs also showed a larger PIC reduction relative to the other genomes (P < 0.05) when US cultivars were compared with the more diverse set of 13 wheat accessions. Within those accessions, D genome SNPs show a higher proportion of alleles with low minor allele frequencies (<0.125) than found in the other two genomes. These data suggest that the reduction of PIC values in the D genome was caused by differential loss of low frequency alleles during the population size bottleneck that accompanied the development of modern commercial cultivars. Additional SNP discovery efforts targeted to the D genome in elite wheat germplasm will likely be required to offset the lower diversity of this genome. With increasing SNP discovery projects and the development of high-throughput SNP assay technologies, it is anticipated that SNP markers will play an increasingly important role in wheat genetics and breeding applications. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
Recent studies of mammalian genomes have uncovered the vast extent of copy number variations (CNVs) that contribute to phenotypic diversity. Compared to SNP, a CNV can cover a wider chromosome region, which may potentially incur substantial sequence changes and induce more significant effects on phenotypes. CNV has been becoming an alternative promising genetic marker in the field of genetic analyses. Here we firstly report an account of CNV regions in the cattle genome in Chinese Holstein population. The Illumina Bovine SNP50K Beadchips were used for screening 2047 Holstein individuals. Three different programes (PennCNV, cnvPartition and GADA) were implemented to detect potential CNVs. After a strict CNV calling pipeline, a total of 99 CNV regions were identified in cattle genome. These CNV regions cover 23.24 Mb in total with an average size of 151.69 Kb. 52 out of these CNV regions have frequencies of above 1%. 51 out of these CNV regions completely or partially overlap with 138 cattle genes, which are significantly enriched for specific biological functions, such as signaling pathway, sensory perception response and cellular processes. The results provide valuable information for constructing a more comprehensive CNV map in the cattle genome and offer an important resource for investigation of genome structure and genomic variation underlying traits of interest in cattle.  相似文献   

20.
The entire structure of a 98 kb genomic region that abounds in genes related to magnetosome synthesis was first described in the Magnetospirillum sp. strain AMB-1. The deletion of this 98 kb genomic region and the circular form after excision from the chromosome was detected by PCR amplification. This strongly suggests that the region has undergone a lateral gene transfer. The region has the characteristics of a genomic island: low GC content, location between two repetitive sequences, and the presence of an integrase in the flanking region of the first repetitive sequence. This 98 kb genomic region has the potential for transfer by the integrase activity. Comparative genome analysis revealed other regions with a high concentration of orthologs in magnetic bacteria besides the 98 kb region, and magnetosome synthesis seemed to need not only the exogenous 98 kb region, but also other orthologs and individually originating genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号