首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

IL-6 trans-signaling is critically involved in the initiation and promotion of inflammatory and autoimmune diseases. Therefore, we investigated the clinical relevance of soluble members of IL-6 trans-signaling system in chronic spontaneous urticaria (CSU).

Methods

IL-6, interleukin 6 soluble receptor (IL-6 sR) and soluble gp130 (sgp130) were measured by ELISA method in plasma from CSU patients and the healthy subjects. The data were related to activation of the acute phase response as indicated by serum C-reactive protein (CRP) concentration and compared between patients stratified by the disease activity.

Results

Concentrations of IL-6, IL-6 sR, sgp130 in plasma and CRP in serum were significantly elevated in CSU patients compared with the healthy controls. CRP correlated significantly with IL-6 and sgp130, similarly IL-6 correlated significantly with sgp130. By contrast, CRP and IL-6 did not correlate significantly with IL-6 sR. However, significant correlation was noted between IL-6 sR and sgp130.

Conclusions

Concentrations of IL-6 and its soluble receptors were significantly elevated in patients with CSU, suggesting upregulation of the IL-6 trans-signaling in the disease. In addition, our results support the concept that the system may be involved in pathogenesis of the systemic inflammatory activation in CSU patients.  相似文献   

2.

Background

Regulation of human airway smooth muscle cells (HASMC) by cytokines contributes to chemotactic factor levels and thus to inflammatory cell accumulation in lung diseases. Cytokines such as the gp130 family member Oncostatin M (OSM) can act synergistically with Th2 cytokines (IL-4 and IL-13) to modulate lung cells, however whether IL-17A responses by HASMC can be altered is not known.

Objective

To determine the effects of recombinant OSM, or other gp130 cytokines (LIF, IL-31, and IL-6) in regulating HASMC responses to IL-17A, assessing MCP-1/CCL2 and IL-6 expression and cell signaling pathways.

Methods

Cell responses of primary HASMC cultures were measured by the assessment of protein levels in supernatants (ELISA) and mRNA levels (qRT-PCR) in cell extracts. Activation of STAT, MAPK (p38) and Akt pathways were measured by immunoblot. Pharmacological agents were used to assess the effects of inhibition of these pathways.

Results

OSM but not LIF, IL-31 or IL-6 could induce detectable responses in HASMC, elevating MCP-1/CCL2, IL-6 levels and activation of STAT-1, 3, 5, p38 and Akt cell signaling pathways. OSM induced synergistic action with IL-17A enhancing MCP-1/CCL-2 and IL-6 mRNA and protein expression, but not eotaxin-1 expression, while OSM in combination with IL-4 or IL-13 synergistically induced eotaxin-1 and MCP-1/CCL2. OSM elevated steady state mRNA levels of IL-4Rα, OSMRβ and gp130, but not IL-17RA or IL-17RC. Pharmacologic inhibition of STAT3 activation using Stattic down-regulated OSM, OSM/IL-4 or OSM/IL-13, and OSM/IL-17A synergistic responses of MCP-1/CCL-2 induction, whereas, inhibitors of Akt and p38 MAPK resulted in less reduction in MCP-1/CCL2 levels. IL-6 expression was more sensitive to inhibition of p38 (using SB203580) and was affected by Stattic in response to IL-17A/OSM stimulation.

Conclusions

Oncostatin M can regulate HASMC responses alone or in synergy with IL-17A. OSM/IL-17A combinations enhance MCP-1/CCL2 and IL-6 but not eotaxin-1. Thus, OSM through STAT3 activation of HASMC may participate in inflammatory cell recruitment in inflammatory airway disease.

Electronic supplementary material

The online version of this article (doi:10.1186/s12931-014-0164-4) contains supplementary material, which is available to authorized users.  相似文献   

3.

Objective

Epithelial-mesenchymal transition (EMT) plays an important role in cancer tumorigenesis. However, the underlying mechanisms of EMT in lung adenocarcinoma, and how this process might be inhibited, remain to be explored. This study investigated the role of IL-6 in lung adenocarcinoma cell EMT and explored the potential effects of metformin on this process.

Methods

Invasion assay and MTT assay was performed to determine cell invasion and cell proliferation. Western blotting, immunofluorescence, real-time PCR, ELISA, and immunohistochemistry were performed to detect the expression of IL-6, E-cadherin, Vimentin, and p-STAT3.

Results

We discovered that IL-6, via STAT3 phosphorylation, could promote lung adenocarcinoma cell invasion via EMT in vitro. This was supported by the inverse correlation between E-cadherin and IL-6 expression, positive correlation between IL-6 and vimentin mRNA expression and between STAT3 phosphorylation and IL-6 expression in tumor tissues. Importantly, metformin inhibited tumor growth and distant metastases in tumor-bearing nude mice and reversed IL-6-induced EMT both in vitro and in vivo. Furthermore, we found that blockade of STAT3 phosphorylation might be the underlying mechanism of metformin inhibition of IL-6-induced EMT.

Conclusions

Collectively, our present results show that enhanced IL-6 expression, via STAT3 phosphorylation, is a mechanism of EMT in lung adenocarcinoma. We found that metformin could inhibit IL-6-induced EMT possibly by blocking STAT3 phosphorylation.  相似文献   

4.

Background

Previous findings support the concept that IL-9 may play a significant role in mediating both pro-inflammatory and changes in airway responsiveness that characterizes the atopic asthmatic state. We previously demonstrated that human airway smooth muscle (ASM) cells express a functional IL-9R that mediate CCL11 expression. However, the signaling pathway governing this effect is not well understood.

Methodology/Principal Findings

In this study, we showed that IL-9 mediated CCL11 expression in ASM cells does not rely on STAT6 or STAT5 but on STAT3 pathway. IL-9 induced rapid STAT3 activation in primary ASM cells that was not observed in case of STAT6 or STAT5. STAT3 binding to CCL11 promoter was also observed in vivo upon IL-9 stimulation of ASM cells. Disruption of STAT3 activity with SH2 domain binding inhibitory peptide results in significant reduction of IL-9 mediated CCL11 promoter activity. DN STAT3β over-expression in ASM cells, but not Ser 727 STAT3 or STAT6 DN, abolishes IL-9 mediated CCL11 promoter activity. Finally, STAT3 but not STAT6 silenced ASM cells showed significant reduction in IL-9 mediated CCL11 promoter activity and mRNA expression.

Conclusion/Significance

Taken together, our results indicate that IL-9 mediated CCL11 via STAT3 signalling pathway may play a crucial role in airway inflammatory responses.  相似文献   

5.
6.
7.

Objective

The S100A9 and S100A8 proteins are highly expressed by neutrophils and monocytes and are part of a group of damage-associated molecular pattern molecules that trigger inflammatory responses. Sera and synovial fluids of patients with rheumatoid arthritis (RA) contain high concentrations of S100A8/A9 that correlate with disease activity.

Methods

In this study, we investigated the importance of S100A9 in RA by using neutralizing antibodies in a murine lipopolysaccharide-synchronized collagen-induced arthritis model. We also used an in vitro model of stimulation of human immune cells to decipher the role played by S100A9 in leukocyte migration and pro-inflammatory cytokine secretion.

Results

Treatment with anti-S100A9 antibodies improved the clinical score by 50%, diminished immune cell infiltration, reduced inflammatory cytokines, both in serum and in the joints, and preserved bone/collagen integrity. Stimulation of neutrophils with S100A9 protein led to the enhancement of neutrophil transendothelial migration. S100A9 protein also induced the secretion by monocytes of proinflammatory cytokines like TNFα, IL-1β and IL-6, and of chemokines like MIP-1α and MCP-1.

Conclusion

The effects of anti-S100A9 treatment are likely direct consequences of inhibiting the S100A9-mediated promotion of neutrophil transmigration and secretion of pro-inflammatory cytokines from monocytes. Collectively, our results show that treatment with anti-S100A9 may inhibit amplification of the immune response and help preserve tissue integrity. Therefore, S100A9 is a promising potential therapeutic target for inflammatory diseases like rheumatoid arthritis for which alternative therapeutic strategies are needed.  相似文献   

8.

Objective

To characterize the effect of HIV infection on IL-27-induced gene expression.

Design

During HIV infection, cytokine expression and function become deregulated. IL-27 is an important modulator of inflammatory responses. Interestingly, IL-27 can inhibit HIV replication in T cells and monocytes, implicating IL-27 as a potential adjunct to anti-viral treatment. Our previous work demonstrated that circulating HIV may suppress IL-27 expression, therefore, this study, in continuation of our previous work, aimed to understand how HIV affects expression levels of the IL-27 receptor and downstream functions of IL-27.

Methods

Peripheral blood mononuclear cells (PBMC) were isolated from whole blood of HIV negative and HIV positive (viremic) individuals to assess IL-27-induced gene expression by flow cytometry and ELISA. PBMC were also processed for monocyte enrichment to assess IL-27 receptor expression by flow cytometry and real-time PCR.

Results

Expression of the IL-27 receptor subunit, gp130, was upregulated in response to IL-27 in HIV negative individuals, however, in HIV positive individuals, this IL-27 response was diminished. Furthermore, we observed downregulation of IL-27-induced IL-6, TNF-α, and IL-10 expression in HIV positive subjects.

Conclusion

In HIV infection, IL-27-induced gene expression was impaired, indicating HIV-mediated dysregulation of IL-27 functions occurs during HIV infection. This study provides evidence for new viral pathogenic mechanisms contributing to the widespread impairment of immune responses observed in HIV pathogenesis.  相似文献   

9.
10.

Background

Patients who have esophageal eosinophilia without gastroesophageal reflux disease (GERD) nevertheless can respond to proton pump inhibitors (PPIs), which can have anti-inflammatory actions independent of effects on gastric acid secretion. In esophageal cell cultures, omeprazole has been reported to inhibit Th2 cytokine-stimulated expression of eotaxin-3, an eosinophil chemoattractant contributing to esophageal eosinophilia in eosinophilic esophagitis (EoE). The objective of this study was to elucidate molecular mechanisms underlying PPI inhibition of IL-4-stimulated eotaxin-3 production by esophageal cells.

Methods/Findings

Telomerase-immortalized and primary cultures of esophageal squamous cells from EoE patients were treated with IL-4 in the presence or absence of acid-activated omeprazole or lansoprazole. We measured eotaxin-3 protein secretion by ELISA, mRNA expression by PCR, STAT6 phosphorylation and nuclear translocation by Western blotting, eotaxin-3 promoter activation by an exogenous reporter construct, and STAT6, RNA polymerase II, and trimethylated H3K4 binding to the endogenous eotaxin-3 promoter by ChIP assay. Omeprazole in concentrations ≥5 µM significantly decreased IL-4-stimulated eotaxin-3 protein secretion and mRNA expression. Lansoprazole also blocked eotaxin-3 protein secretion. Omeprazole had no effect on eotaxin-3 mRNA stability or on STAT6 phosphorylation and STAT6 nuclear translocation. Rather, omeprazole blocked binding of IL-4-stimulated STAT6, RNA polymerase II, and trimethylated H3K4 to the eotaxin-3 promoter.

Conclusions/Significance

PPIs, in concentrations achieved in blood with conventional dosing, significantly inhibit IL-4-stimulated eotaxin-3 expression in EoE esophageal cells and block STAT6 binding to the promoter. These findings elucidate molecular mechanisms whereby patients with Th2 cytokine-driven esophageal eosinophilia can respond to PPIs, independent of effects on gastric acid secretion.  相似文献   

11.
12.

Background

Asthma leads to structural changes in the airways, including the modification of extracellular matrix proteins such as tenascin-C. The role of tenascin-C is unclear, but it might act as an early initiator of airway wall remodelling, as its expression is increased in the mouse and human airways during allergic inflammation. In this study, we examined whether Th1 or Th2 cells are important regulators of tenascin-C in experimental allergic asthma utilizing mice with impaired Th1 (STAT4-/-) or Th2 (STAT6-/-) immunity.

Methods

Balb/c wildtype (WT), STAT4-/- and STAT6-/- mice were sensitized with intraperitoneally injected ovalbumin (OVA) followed by OVA or PBS airway challenge. Airway hyperreactivity (AHR) was measured and samples were collected. Real time PCR and immunohistochemistry were used to study cytokines and differences in the expression of tenascin-C. Tenascin-C expression was measured in human fibroblasts after treatment with TNF-α and IFN-γ in vitro.

Results

OVA-challenged WT mice showed allergic inflammation and AHR in the airways along with increased expression of TNF-α, IFN-γ, IL-4 and tenascin-C in the lungs. OVA-challenged STAT4-/- mice exhibited elevated AHR and pulmonary eosinophilia. The mRNA expression of TNF-α and IFN-γ was low, but the expression of IL-4 was significantly elevated in these mice. OVA-challenged STAT6-/- mice had neither AHR nor pulmonary eosinophilia, but had increased expression of mRNA for TNF-α, IFN-γ and IL-4. The expression of tenascin-C in the lungs of OVA-challenged STAT4-/- mice was weaker than in those of OVA-challenged WT and STAT6-/- mice suggesting that TNF-α and IFN-γ may regulate tenascin-C expression in vivo. The stimulation of human fibroblasts with TNF-α and IFN-γ induced the expression of tenascin-C confirming our in vivo findings.

Conclusions

Expression of tenascin-C is significantly attenuated in the airways of STAT4-/- mice, which may be due to the impaired secretion of TNF-α and IFN-γ in these mice.  相似文献   

13.
14.

Background & Aims

CCL25/CCR9 is a non-promiscuous chemokine/receptor pair and a key regulator of leukocyte migration to the small intestine. We investigated here whether CCL25/CCR9 interactions also play a role in the regulation of inflammatory responses in the large intestine.

Methods

Acute inflammation and recovery in wild-type (WT) and CCR9−/− mice was studied in a model of dextran sulfate sodium (DSS)-induced colitis. Distribution studies and phenotypic characterization of dendritic cell subsets and macrophage were performed by flow cytometry. Inflammatory bowel disease (IBD) scores were assessed and expression of inflammatory cytokines was studied at the mRNA and the protein level.

Results

CCL25 and CCR9 are both expressed in the large intestine and are upregulated during DSS colitis. CCR9−/− mice are more susceptible to DSS colitis than WT littermate controls as shown by higher mortality, increased IBD score and delayed recovery. During recovery, the CCR9−/− colonic mucosa is characterized by the accumulation of activated macrophages and elevated levels of Th1/Th17 inflammatory cytokines. Activated plasmacytoid dendritic cells (DCs) accumulate in mesenteric lymph nodes (MLNs) of CCR9−/− animals, altering the local ratio of DC subsets. Upon re-stimulation, T cells isolated from these MLNs secrete significantly higher levels of TNFα, IFNγ, IL2, IL-6 and IL-17A while down modulating IL-10 production.

Conclusions

Our results demonstrate that CCL25/CCR9 interactions regulate inflammatory immune responses in the large intestinal mucosa by balancing different subsets of dendritic cells. These findings have important implications for the use of CCR9-inhibitors in therapy of human IBD as they indicate a potential risk for patients with large intestinal inflammation.  相似文献   

15.
16.

Background

Epithelial cells(EC)-derived interleukin-7 (IL-7) plays a crucial role in control of development and homeostasis of neighboring intraepithelial lymphocytes (IEL), and keratinocyte growth factor (KGF) exerts protective effects on intestinal epithelial cells and up-regulates EC-derived IL-7 expression through KGFR pathway. This study was to further investigate the molecular mechanism involved in the regulation of IL-7 expression by KGF in the intestine.

Methods

Intestinal epithelial cells (LoVo cells) and adult C57BL/6J mice were treated with KGF. Epithelial cell proliferation was studied by flow cytometry for BrdU-incorporation and by immunohistochemistry for PCNA staining. Western blot was used to detect the changes of expression of P-Tyr-STAT1, STAT1, and IL-7 by inhibiting STAT1. Alterations of nuclear extracts and total proteins of IRF-1, IRF-2 and IL-7 following IRF-1 and IRF-2 RNA interference with KGF treatment were also measured with western blot. Moreover, IL-7 mRNA expressions were also detected by Real-time PCR and IL-7 protein level in culture supernatants was measured by enzyme linked immunosorbent assay(ELISA).

Results

KGF administration significantly increased LoVo cell proliferation and also increased intestinal wet weight, villus height, crypt depth and crypt cell proliferation in mice. KGF treatment led to increased levels of P-Tyr-STAT1, RAPA and AG490 both blocked P-Tyr-STAT1 and IL-7 expression in LoVo cells. IRF-1 and IRF-2 expression in vivo and in vitro were also up-regulated by KGF, and IL-7 expression was decreased after IRF-1 and IRF-2 expression was silenced by interfering RNA, respectively.

Conclusion

KGF could up-regulate IL-7 expression through the STAT1/IRF-1, IRF-2 signaling pathway, which is a new insight in potential effects of KGF on the intestinal mucosal immune system.  相似文献   

17.

Background

Glyceroneogenesis is an important step in the control of fatty acid re-esterification with PEPCK and PDK4 being identified as key enzymes in this process. We have previously shown that glyceroneogenic enzymes such as PDK4 are rapidly induced in white adipose tissue during exercise. Recent studies have suggested that IL-6 regulates adipose tissue metabolism and gene expression during exercise. Interestingly, IL-6 has been reported to directly decrease PEPCK expression. The purpose of this investigation was to determine the role of IL-6 in modulating the effects of exercise on the expression of glyceroneogenic enzymes in mouse adipose tissue. We hypothesized that the exercise-mediated induction of PDK4 and PEPCK would be greater in adipose tissue from IL-6 deficient mice compared to wild type controls.

Methodology and Principle Findings

Treatment of cultured epididymal adipose tissue (eWAT) with IL-6 (150 ng/ml) increased the phosphorylation of AMPK, ACC and STAT3 and induced SOCS3 mRNA levels while decreasing PEPCK and PDK4 mRNA. AICAR decreased the expression of PDK4 and PEPCK. The activation of AMPK by IL-6 was independent of increases in lipolysis. An acute bout of treadmill running (15 meters/minute, 5% incline, 90 minutes) did not induce SOCS3 or increase phosphorylation of STAT3 in eWAT, indicating that IL-6 signalling was not activated. Exercise-induced increases in PEPCK and PDK4 mRNA expression were attenuated in eWAT from IL-6−/− mice in parallel with a greater relative increase in AMPK phosphorylation compared to exercised WT mice. These changes occurred independent of alterations in beta-adrenergic signalling in adipose tissue from IL-6−/− mice.

Conclusions and Significance

Our findings question the role of IL-6 signalling in adipose tissue during exercise and suggest an indirect effect of this cytokine in the regulation of adipose tissue gene expression during exercise.  相似文献   

18.

Background

High mobility group box-1 (HMGB1) is a DNA-binding protein that is released from injured cells during inflammation. Advances in targeting HMGB1 represent a major challenge to improve the treatment of acute/chronic inflammation.

Aim

This study is aimed at verifying whether the inhibition of HMGB1 through dipotassium glycyrrhizate (DPG) is a good strategy to reduce intestinal inflammation.

Methods

Human colon adenocarcinoma cell line, HT29, human epithelial colorectal adenocarcinoma, Caco2, and murine macrophage cell line, RAW 264.7, were cultured to investigate the effect of DPG on the secretion of HMGB1. Acute colitis was induced in C57BL/6 mice through administration of 3% dextran sodium sulphate (DSS); a combined treatment with DSS and 3 or 8 mg/kg/day DPG was used to investigate the effects of DPG on intestinal inflammation. Animals were euthanized at seventh day and colonic samples underwent molecular and histological analyses.

Results

DPG significantly reduces in vitro the release of HMGB1 in the extracellular matrix as well as expression levels of pro-inflammatory cytokines, TNF-alpha, IL-1beta and IL-6, by inhibiting HMGB1. Moreover, DPG significantly decreases the severity of DSS-induced colitis in mice. Murine colonic samples show decreased mRNA levels of pro-inflammatory cytokines TNF-alpha, IL-1beta and IL-6, as well as HMGB1 receptors, RAGE and TLR4. Finally, HMGB1, abundantly present in the feces of mice with DSS-induced colitis, is strongly reduced by DPG.

Conclusions

HMGB1 is an early pro-inflammatory cytokine and an active protagonist of mucosal gut inflammation. DPG exerts inhibitory effects against HMGB1 activity, significantly reducing intestinal inflammation. Thus, we reason that DPG could represent an innovative tool for the management of human intestinal inflammation.  相似文献   

19.

Background

Colitis is a common clinical complication in chronic granulomatous disease (CGD), a primary immunodeficiency caused by impaired oxidative burst. Existing experimental data from NADPH-oxidase knockout mice propose contradictory roles for the involvement of reactive oxygen species in colitis chronicity and severity. Since genetically controlled mice with a point-mutation in the Ncf1 gene are susceptible to chronic inflammation and autoimmunity, we tested whether they presented increased predisposition to develop chronic colitis.

Methods

Colitis was induced in Ncf1-mutant and wild-type mice by a 1st 7-days cycle of dextran sulfate sodium (DSS), intercalated by a 7-days resting period followed by a 2nd 7-days DSS-cycle. Cytokines were quantified locally in the colon inflammatory infiltrates and in the serum. Leukocyte infiltration and morphological alterations of the colon mucosa were assessed by immunohistochemistry.

Results

Clinical scores demonstrated a more severe colitis in Ncf1-mutant mice than controls, with no recovery during the resting period and a severe chronic colitis after the 2nd cycle, confirmed by histopathology and presence of infiltrating neutrophils, macrophages, plasmocytes and lymphocytes in the colon. Severe colitis was mediated by increased local expression of cytokines (IL-6, IL-10, TNF-α, IFN-γ and IL-17A) and phosphorylation of Leucine-rich repeat kinase 2 (LRRK2). Serological cytokine titers of those inflammatory cytokines were more elevated in Ncf1-mutant than control mice, and were accompanied by systemic changes in functional subsets of monocytes, CD4+T and B cells.

Conclusion

This suggests that an ineffective oxidative burst leads to severe chronic colitis through local accumulation of peroxynitrites, pro-inflammatory cytokines and lymphocytes and systemic immune deregulation similar to CGD.  相似文献   

20.

Background

IL-25 is emerging as a key regulator of inflammation in the intestinal mucosa because of its ability to promote type 2 while suppressing Th1 and Th17 responses. Several previous studies reported inconsistent results on the role of exogenous IL-25 in development of colonic inflammation and none were performed in animals with a genetic deletion of IL-25. We investigated the contribution of endogenous IL-25 to DSS-induced colitis using mice deficient in IL-25.

Results

Mice were exposed to DSS in drinking water ad libitum either for seven days (acute) or for three cycles of seven days with DSS followed by 14 days without DSS (chronic) to induce colitis, respectively. The loss of body weight, appearance of diarrhea and bloody stools, and shortening of colon length were significantly less pronounced in IL-25?/? mice compared to WT mice after exposure to acute DSS. Histological examination showed that DSS-treated IL-25?/? mice had only mild inflammation in the colon, while severe inflammation developed in DSS-treated WT mice. A significant up-regulation of IL-33 was observed in acute DSS-treated WT but not in the IL-25?/? mice. There was significantly lower expression of pro-inflammatory cytokines in the colon of acute DSS-treated IL-25?/? compared to WT mice. IL-25?/? mice were also partially protected from chronic DSS challenge especially during the first 2 cycles of DSS exposure. In contrast to IL-25?/? mice, IL-13?/? mice were more susceptible to DSS-induced colitis. Finally, stimulation of T84 colonic epithelial cells with IL-25 up-regulated the expression of IL-33 and several pro-inflammatory cytokines.

Conclusions

These data indicate that endogenous IL-25 acts as a pro-inflammatory factor in DSS-induced colitis, which is unlikely to be mediated by IL-13 but possibly the induction of IL-33 and other pro-inflammatory mediators from colonic epithelial cells. The present study suggests that IL-25 may contribute to the pathogenesis of inflammatory bowel disease in at least a subgroup of patients.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号