首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
At least 10 million individuals worldwide are co-infected with immunodeficiency virus type 1 (HIV-1) and hepatitis C virus (HCV). These two viruses are transmitted most primarily by exposure to infected blood or blood products. Various nucleic acid assays have been developed for diagnostics and therapeutic monitoring of infections. In the present study, a multiplex real-time PCR assay for simultaneous detection of HCV and HIV-1 using molecular beacons were designed and validated. A well-conserved region in the HIV-1 pol gene and 5′NCR of HCV genome were used for primers and molecular beacon design. The analysis of scalar concentrations of the samples indicated that this multiplex procedure detects at least 1,000 copies/ml of HIV-1 and 100 copies/ml of HCV with linear reference curve (R 2 > 0.94). The results demonstrate that a specificity of 100 % and sensitivity of 96 % can be achieved. The analytical sensitivity study with BLAST software demonstrated that the primers do not attach to any other sequences except for that of HIV-1 or HCV. The primers and molecular beacon probes only detected HIV-1 and all major variants of HCV. This assay may represent an alternative rapid and relatively inexpensive screening method for detection of HIV-1/HCV co-infection especially in blood screening.  相似文献   

2.
Qu J  Yang Z  Zhang Q  Liu W  Li Y  Ding Q  Liu F  Liu Y  Pan Z  He B  Zhu Y  Wu J 《FEBS letters》2011,585(24):4002-4009
Coinfection with human immunodeficiency virus-1 (HIV-1) and hepatitis C virus (HCV) accelerates hepatitis C disease progression; however, the mechanism underlying this effect is unknown. Here, we investigated the role of HIV-1 in HCV gene expression and the mechanism involved in this regulation. We discovered that HIV-1 Rev protein activates HCV gene expression. We further revealed that Rev binds to the internal loop of the HCV 5′-untranslated region (5′-UTR) to stimulate HCV IRES-mediated translation.  相似文献   

3.
The analysis of plasma samples from HIV-1/HCV mono- and coinfected individuals by quantitative proteomics is an efficient strategy to investigate changes in protein abundances and to characterize the proteins that are the effectors of cellular functions involved in viral pathogenesis. In this study, the infected and healthy plasma samples (in triplicate) were treated with ProteoMiner beads to equalize protein concentrations and subjected to 4-plex iTRAQ labeling and liquid chromatography/mass spectrometry (LC-MS/MS) analysis. A total of 70 proteins were identified with high confidence in the triplicate analysis of plasma proteins and 65% of the proteins were found to be common among the three replicates. Apolipoproteins and complement proteins are the two major classes of proteins that exhibited differential regulation. The results of quantitative analysis revealed that APOA2, APOC2, APOE, C3, HRG proteins were upregulated in the plasma of all the three HIV-1 mono-, HCV mono-, and coinfected patient samples compared to healthy control samples. Ingenuity pathway analysis (IPA) of the upregulated proteins revealed that they are implicated in the hepatic lipid metabolism, inflammation, and acute-phase response signaling pathways. Thus, we identified several differentially regulated proteins in HIV-1/HCV mono and coinfected plasma samples that may be potential biomarkers for liver disease.  相似文献   

4.
There is increasing recognition of the potential morbidity and mortality associated with HIV- 1 and hepatitis C (HCV) co-infection. HIV appears to adversely affect HCV disease while the reciprocal effect of HCV on HIV remains controversial.We therefore studied the effect of co-infection on dendritic cell function versus HIV infection alone, as previous work has shown that HCV impairs dendritic cell (DC) function. HIV-1 positive individuals with HCV were matched for CD4 count, HIV-1 RNA viral load and therapy, to HIV-1 positive patients without HCV. Monocyte-derived DC were generated and mixed leukocyte reactions were performed. We assessed allostimulatory capacity with and without administration of exogenous Thl cytokines, using thymidine uptake and cell division analyses with the vital dye CFSE. We found that monocyte-derived DC from co-infected individuals showed no significant differences in allostimulatory capacity to ex vivo generated DC from HIV-1 infected individuals without HCV. Unlike the situation with HCV infection alone, this impairment was not reversed by increasing concentrations of either interleukin-2 or -12. Monocyte-derived DC from HIV- 1 and HCV co-infected individuals have a similar allostimulatory capacity to DC from matched patients with HIV-1 alone. These findings are compatible with results of prior clinical studies that found no evidence that HCV co-infection altered HIV disease progression and has implications for immunotherapeutic approaches in co-infected individuals.  相似文献   

5.
HCV-related liver disease is the main cause of morbidity and mortality of HCV/HIV-1 co-infected patients. Despite the recent advent of anti-HCV direct acting antivirals (DAAs), the treatment of HCV/HIV-1 co-infected patients remains a challenge, as these patients are refractory to most therapies and develop liver fibrosis, cirrhosis and liver cancer more often than HCV mono-infected patients. Until the present study, there was no suitable in vitro assay to test the inhibitory activity of drugs on HCV/HIV-1 co-infection. Here we developed a novel in vitro “co-infection” model where HCV and HIV-1 concurrently replicate in their respective main host target cells—human hepatocytes and CD4+ T-lymphocytes. Using this co-culture model, we demonstrate that cyclophilin inhibitors (CypI), including a novel cyclosporin A (CsA) analog, CPI-431-32, simultaneously inhibits replication of both HCV and HIV-1 when added pre- and post-infection. In contrast, the HIV-1 protease inhibitor nelfinavir or the HCV NS5A inhibitor daclatasvir only blocks the replication of a single virus in the “co-infection” system. CPI-431-32 efficiently inhibits HCV and HIV-1 variants, which are normally resistant to DAAs. CPI-431-32 is slightly, but consistently more efficacious than the most advanced clinically tested CypI—alisporivir (ALV)—at interrupting an established HCV/HIV-1 co-infection. The superior antiviral efficacy of CPI-431-32 over ALV correlates with its higher potency inhibition of cyclophilin A (CypA) isomerase activity and at preventing HCV NS5A-CypA and HIV-1 capsid-CypA interactions known to be vital for replication of the respective viruses. Moreover, we obtained evidence that CPI-431-32 prevents the cloaking of both the HIV-1 and HCV genomes from cellular sensors. Based on these results, CPI-431-32 has the potential, as a single agent or in combination with DAAs, to inhibit both HCV and HIV-1 infections.  相似文献   

6.
目的:探讨HIV/HCV重叠感染患者外周血单核细胞亚群与肝损伤的关系。方法:观察对象为HIV/HCV重叠感染患者,分为对照组(n=11)、肝纤维化组(n=12)和肝硬化组(n=7)。运用流式细胞仪检测单核细胞及其亚群变化,瞬时弹性成像(Fibroscan)检测肝纤维化情况。比较单核细胞各亚群在不同程度肝损伤中的差异,并对HIV/HCV重叠感染患者外周血的单核细胞数与肝纤维化情况进行相关性分析。结果:HIV/HCV重叠感染患者肝硬化组与对照组比较,单核细胞CD14low CD16+和CD14high CD16+亚群显著增多(P=0.047,P=0.018)。HIV/HCV重叠感染患者肝纤维化组与对照组比较,单核细胞各亚群差异无统计学意义(P=0.84,P=0.812)。HIV/HCV重叠感染患者CD14high CD16+单核细胞与肝纤维化情况存在正性线性相关,方程成立,并且系数有统计学意义(P=0.018),方程似然比(r 2)0.45。结论:HIV/HCV重叠感染患者CD14high CD16+单核细胞增高有可能是肝损伤加重的原因之一。  相似文献   

7.

Background and Aims

Hepatitis C Virus (HCV)-related liver disease progresses more rapidly in individuals co-infected with Human Immunodeficiency Virus-1 (HIV), although the underlying immunologic mechanisms are unknown. We examined whether HIV-specific T-cells are identified in the liver of HCV/HIV co-infected individuals and promote liver inflammation through bystander immune responses.

Methods

Ex-vivo intra-hepatic lymphocytes from HCV mono-infected and HCV/HIV co-infected individuals were assessed for immune responses to HIV and HCV antigens by polychromatic flow cytometry.

Results

HCV/HIV liver biopsies had similar frequencies of lymphocytes but lower percentages of CD4+ T-cells compared to HCV biopsies. In co-infection, intra-hepatic HIV-specific CD8+ and CD4+ T-cells producing IFN-γ and TNF-α were detected and were comparable in frequency to those that were HCV-specific. In co-infected individuals, viral-specific CD8+ T-cells produced more of the fibrogenic cytokine, TNF-α. In both mono- and co-infected individuals, intra-hepatic HCV-specific T-cells were poorly functional compared to HIV-specific T-cells. In co-infection, HAART was not associated with a reconstitution of intra-hepatic CD4+ T-cells and was associated with reduction in both HIV and HCV-specific intra-hepatic cytokine responses.

Conclusion

The accumulation of functional HIV-specific T-cells in the liver during HCV/HIV co-infection may represent a bystander role for HIV in inducing faster progression of liver disease.  相似文献   

8.
Human immunodeficiency virus (HIV) is the infectious agent causing acquired immunodeficiency syndrome (AIDS), a deadliest scourge of human society. Hepatitis C virus (HCV) is a major causative agent of chronic liver disease and infects an estimated 170 million people worldwide, resulting in a serious public health burden. Due to shared routes of transmission, co-infection with HIV and HCV has become common among individuals who had high risks of blood exposures. Among hemophiliacs the co-infection rate accounts for 85%; while among injection drug users (IDU) the rate can be as high as 90%. HIV can accelerate the progression of HCV-related liver disease, particularly when immunodeficiency has developed. Although the effect of HCV on HIV infection is controversial, most studies showed an increase in mortality due to liver disease. HCV may act as a direct cofactor to fasten the progression of AIDS and decrease the tolerance of highly active antiretroviral therapy (HARRT). Conversely, HAART-related hepatotoxicity may enhance the progression of liver fibrosis. Due to above complications, co-infection with HCV and HIV-1 has imposed a critical challenge in the management of these patients. In this review, we focus on the epidemiology and transmission of HIV and HCV, the impact of the two viruses on each other, and their treatment.   相似文献   

9.
Human immunodeficiency virus (HIV) is the infectious agent causing acquired immu-nodeficiency syndrome (AIDS),a deadliest scourge of human society. Hepatitis C virus (HCV) is a major causative agent of chronic liver disease and infects an estimated 170 million people worldwide,resulting in a serious public health burden. Due to shared routes of transmission,co-infection with HIV and HCV has become common among individuals who had high risks of blood exposures. Among hemophiliacs the co-infection rate accounts for 85%; while among injection drug users (IDU) the rate can be as high as 90%. HIV can accelerate the progression of HCV-related liver disease,particularly when immunodeficiency has developed. Although the effect of HCV on HIV infection is controversial,most studies showed an increase in mortality due to liver disease. HCV may act as a direct cofactor to fasten the progression of AIDS and decrease the tolerance of highly active antiretroviral therapy (HARRT). Conversely,HAART-related hepatotoxicity may enhance the progression of liver fibrosis. Due to above complications,co-infection with HCV and HIV-1 has imposed a critical challenge in the management of these patients. In this review,we focus on the epidemiology and transmission of HIV and HCV,the impact of the two viruses on each other,and their treatment.  相似文献   

10.

Background

Immune biomarkers are implicated in HCV treatment response, fibrosis, and accelerated pathogenesis of comorbidities, though only D-dimer and C-reactive protein have been consistently studied. Few studies have evaluated HIV/HCV co-infection, and little longitudinal data exists describing a broader antiviral cytokine response

Methods

Fifty immune biomarkers were analyzed at baseline(BL) and HCV end of treatment follow-up(FU) time point using the Luminex 50-plex assay in plasma samples from 15 HCV-cleared, 24 HCV mono- and 49 HIV/HCV co-infected patients receiving antiretroviral treatment, who either did or did not receive pegylated-interferon/ribavirin HCV treatment. Biomarker levels were compared among spontaneous clearance patients, mono- and co-infected, untreated and HCV-treated, and sustained virologic responders (SVR) and non-responders (NR) at BL and FU using nonparametric analyses. A Bonferroni correction, adjusting for tests of 50 biomarkers, was used to reduce Type I error

Results

Compared to HCV patients at BL, HIV/HCV patients had 22 significantly higher and 4 significantly lower biomarker levels, following correction for multiple testing. There were no significantly different BL levels when comparing SVR and NR in mono- or co-infected patients; however, FU levels changed considerably in co-infected patients, with seven becoming significantly higher and eight becoming significantly lower in SVR patients. Longitudinally between BL and FU, 13 markers significantly changed in co-infected SVR patients, while none significantly changed in co-infected NR patients. There were also no significant changes in longitudinal analyses of mono-infected patients achieving SVR or mono-infected and co-infected groups deferring treatment

Conclusions

Clear differences exist in pattern and quantity of plasma immune biomarkers among HCV mono-infected, HIV/HCV co-infected, and HCV-cleared patients; and with SVR in co-infected patients treated for HCV. Though >90% of patients were male and co-infected had a larger percentage of African American patients, our findings may have implications for better understanding HCV pathogenesis, treatment outcomes, and future therapeutic targets  相似文献   

11.
逆转运复合体(retromer)作为一种蛋白复合物,参与蛋白质从内体到反面高尔基体的逆向运输或从内体到质膜的回收过程,调节了细胞内货物的丰度及亚细胞分布.近期研究发现,retromer可与一些病毒蛋白相互作用从而影响病毒的生命周期.本文通过总结retromer与丙肝病毒、人类免疫缺陷病毒、人乳头瘤病毒、痘苗病毒以及松鼠猴疱疹病毒的相互作用,探讨retromer在病毒侵染中的作用.  相似文献   

12.
In order to study the effect of increased CD4 cell counts on the biology of hepatitis C virus (HCV), we analyzed the genetic variability of HCV generated over 8 y in eight human immunodeficiency virus-1 (HIV-1) and HCV co-infected patients. This was a retrospective study in which HIV patients were selected who had profound immune impairment evident over four years and were co-infected with HCV genotype 1 and who then went on highly active antiretroviral therapy (HAART). These patients achieved different degrees of immune reconstitution, measured as increased CD4 cell counts during a 4- to 8-y period, following initiation of HAART. HCV genetic variability was determined by measuring the genetic diversity (Hamming distance, HD), and complexity (number of viral variants) in plasma samples collected at yearly intervals just before and after the initiation of HAART. The parameters were assessed by molecular cloning and sequencing of a 575-bp fragment including the HCV envelope 1 and envelope 2 genes (E1/E2), containing the hypervariable region 1 (HVR1). significantly increased HVR1 genetic diversity was observed in analyzed samples where the patients' CD4 cell counts were > or =100 compared with CD4 cell counts <100. A significant increase in genetic diversity in HVR1 was detected in co-infected patients whose CD4 cell counts increased from <100 to >400 over a period of more than 4 y of HAART therapy. This was in contrast to a minimal increase in HCV genetic diversity of HVR1 occurring in patients whose CD4 cell counts failed to rise much over 200 over 7 y of follow up. Insertion and deletion of HCV genomic fragments in the E1/E2 region was documented in one patient who developed fulminant hepatitis C.  相似文献   

13.
In order to estimate the prevalence of human immunodeficiency virus type 1 (HIV-1) and hepatitis C virus (HCV) co-infection in hard-to-reach intravenous drug users, 199 subjects from high-risk inner-city locales, the so called "shooting galleries", were consented, interviewed, and tested in Miami, FL, US. Positive HIV-1 status was based on repeatedly reactive ELISA and confirmatory Western Blot. Positive HCV status was based on reactive ELISA and confirmatory polymerase chain reaction techniques. Overall, 50 (25%) were not infected with either virus, 61 (31%) were HIV-1/HCV co-infected, 17 (8%) infected by HIV-1 only, and 71 (36%) infected by HCV only. The results of the multivariable analyses showed that more years using heroin was the only significant risk factor for HCV only infection (odds ratio = 1.15; 95% confidence interval = 1.07, 1.24) and for HIV-1/HCV co-infection (odds ratio = 1.17; 95% confidence interval = 1.09, 1.26). This paper demonstrates that HIV-1/HCV co-infection is highly prevalent among so called "shooting galleries".  相似文献   

14.
在慢性肝炎中,乙、丙型病毒性肝炎混合感染相当多见,可使肝炎慢性化、重症化,肝组织损伤加重,肝硬化(LC)和肝癌(HCC)发生率增加[1]。本文应用血清学和分子生物学方法对196例肝病患者的血清进行检测,初步探讨了乙型肝炎病毒(Hepatitis B virus,HBV)、丙型肝类病毒(Hepatitis C virus,HCV)的复制状况以及两者间的相互作用与预后的关系。1材料和方法1.1病例受检的196例病例均为2004年1月至2005年7月我院住院及门诊病人,男149例,女47例,年龄15~82岁,其中慢性肝炎(CH)患者139例,肝硬化(LC)患者42例,肝癌(HCC)患者15例。所有病例诊断符合…  相似文献   

15.
The effects of highly active antiretroviral therapy (HAART) on progression of hepatic fibrosis in HIV-hepatitis C virus (HCV) co-infection are not well understood. Deaths from liver diseases have risen in the post-HAART era, yet some cross-sectional studies have suggested that HAART use is associated with improved fibrosis rates. In a retrospective cohort of 533 HIV mono-infected and 127 HIV/HCV co-infected patients, followed between January 1991 and July 2005 at a university-based HIV clinic, we investigated the relationship between cumulative HAART exposure and hepatic fibrosis, as measured by the aspartate aminotransferase-to-platelet ratio index (APRI). We used a novel methodological approach to estimate the dose-response relationship of the effect of HAART exposure on APRI. HAART was associated with increasing APRI over time in HIV/HCV co-infected patients suggesting that they may be experiencing cumulative hepatotoxicity from antiretrovirals. The estimated median change (95% confidence interval) in APRI per one year of HAART intake was of −0.46% (−1.61% to 0.71%) in HIV mono-infected compared to 2.54% (−1.77% to 7.03%) in HIV/HCV co-infected patients. Similar results were found when the direct effect of HAART intake since the last visit was estimated on the change in APRI. HAART use associated is with increased APRI in patients with HIV/HCV co-infection. Therefore treatment for HCV infection may be required to slow the growing epidemic of end-stage liver disease in this population.  相似文献   

16.

Aim

To analyze the expression of HMOX1 and miR-122 in liver biopsy samples obtained from HCV mono-and HIV/HCV co-infected patients in relation to selected clinical parameters, histological examination and IL-28B polymorphism as well as to determine whether HMOX1 expression is dependent on Bach-1.

Materials and Methods

The study group consisted of 90 patients with CHC: 69 with HCV mono and 21 with HIV/HCV co-infection. RT-PCR was used in the analysis of HMOX1, Bach-1 and miR-122 expression in liver biopsy samples and in the assessment of IL-28B single-nucleotide polymorphism C/T (rs12979860) in the blood. Moreover in liver biopsy samples an analysis of HO-1 and Bach-1 protein level by Western Blot was performed.

Results

HCV mono-infected patients, with lower grading score (G<2) and higher HCV viral load (>600000 IU/mL) demonstrated higher expression of HMOX1. In patients with HIV/HCV co-infection, the expression of HMOX1 was lower in patients with lower lymphocyte CD4 count and higher HIV viral load. IL28B polymorphism did not affect the expression of either HMOX1 or miR-122. Higher HMOX1 expression correlated with higher expression of Bach-1 (Spearman’s ρ = 0.586, p = 0.000001) and miR-122 (Spearman’s ρ = 0.270, p = 0.014059).

Conclusions

HMOX1 and miR-122 play an important role in the pathogenesis of CHC in HCV mono-and HIV/HCV co-infected patients. Reduced expression of HMOX1 in patients with HIV/HCV co-infection may indicate a worse prognosis in this group. Our results do not support the importance of Bach-1 in repression of HMOX1 in patients with chronic hepatitis C.  相似文献   

17.
18.
Previous studies have shown that, during infection, HIV-1 clade B and clade C differentially contribute to the neuropathogenesis and development of HIV-associated neurocognitive disorders (HANDs). The low-molecular-weight tripeptide glutathione (GSH) alters the redox balance and leads to the generation of reactive oxygen species, which play a significant role in the neuropathogenesis of HANDs. We hypothesized that the HIV-1 clade B and clade C viruses and their respective Tat proteins exert differential effects on monocyte-derived immature dendritic cells (IDCs) and neuroblastoma cells (SK-N-MC) by redox activation, which leads to immunoneuropathogenesis. The GSH/GSSG ratio and mRNA expression levels and protein modification of glutathione synthetase (GSS), glutathione peroxidase 1 (GPx1), superoxide dismutase 1 (SOD1), and catalase (CAT) were analyzed in IDCs infected with HIV-1 clade B or clade C as well as in cells treated with the respective Tat proteins. The results indicated that HIV-1 clade B virus and its Tat protein significantly increased the production of reactive oxygen species and reduced the GSH/GSSG ratio and subsequent downregulation of gene expression and protein modification of GSS, GPx1, SOD1, and CAT compared to infection with the clade C virus or treatment with the clade C Tat protein. Thus, our studies demonstrate that HIV-1 clades B and C exert differential effects of redox expression and thiol modification. HIV-1 clade B potentially induces oxidative stress, leading to more immunoneuropathogenesis than infection with HIV-1 clade C.  相似文献   

19.

Background

Hepatitis B virus (HBV) and hepatitis C virus (HCV) co-infections contributes to a substantial proportion of liver disease worldwide. The aim of this study was to assess the clinical and virological features of HBV-HCV co-infection.

Methods

Demographic data were collected for 3238 high-risk people from an HCV-endemic region in China. Laboratory tests included HCV antibody and HBV serological markers, liver function tests, and routine blood analysis. Anti-HCV positive samples were analyzed for HCV RNA levels and subgenotypes. HBsAg-positive samples were tested for HBV DNA.

Results

A total of 1468 patients had chronic HCV and/or HBV infections. Among them, 1200 individuals were classified as HCV mono-infected, 161 were classified as HBV mono-infected, and 107 were classified as co-infected. The HBV-HCV co-infected patients not only had a lower HBV DNA positive rate compared to HBV mono-infected patients (84.1% versus 94.4%, respectively; P<0.001). The median HCV RNA levels in HBV-HCV co-infected patients were significantly lower than those in the HCV mono-infected patients (1.18[Interquartile range (IQR) 0–5.57] versus 5.87[IQR, 3.54–6.71] Log10 IU/mL, respectively; P<0.001). Furthermore, co-infected patients were less likely to have detectable HCV RNA levels than HCV mono-infected patients (23.4% versus 56.5%, respectively; P<0.001). Those HBV-HCV co-infected patients had significantly lower median HBV DNA levels than those mono-infected with HBV (1.97[IQR, 1.3–3.43] versus 3.06[IQR, 2–4.28] Log10 IU/mL, respectively; P<0.001). The HBV-HCV co-infection group had higher ALT, AST, ALP, GGT, APRI and FIB-4 levels, but lower ALB and total platelet compared to the HBV mono-infection group, and similar to that of the HCV mono-infected group.

Conclusion

These results suggest that co-infection with HCV and HBV inhibits the replication of both viruses. The serologic results of HBV-HCV co-infection in patients suggests more liver injury compared to HBV mono-infected patients, but is similar to HCV mono-infection.  相似文献   

20.

Background

We assessed the effects of hepatitis B (HBV) or hepatitis C (HCV) co-infection on outcomes of antiretroviral therapy (ART) in HIV-infected patients enrolled in the TREAT Asia HIV Observational Database (TAHOD), a multi-center cohort of HIV-infected patients in the Asia-Pacific region.

Methods

Patients testing HBs antigen (Ag) or HCV antibody (Ab) positive within enrollment into TAHOD were considered HBV or HCV co-infected. Factors associated with HBV and/or HCV co-infection were assessed by logistic regression models. Factors associated with post-ART HIV immunological response (CD4 change after six months) and virological response (HIV RNA <400 copies/ml after 12 months) were also determined. Survival was assessed by the Kaplan-Meier method and log rank test.

Results

A total of 7,455 subjects were recruited by December 2012. Of patients tested, 591/5656 (10.4%) were HBsAg positive, 794/5215 (15.2%) were HCVAb positive, and 88/4966 (1.8%) were positive for both markers. In multivariate analysis, HCV co-infection, age, route of HIV infection, baseline CD4 count, baseline HIV RNA, and HIV-1 subtype were associated with immunological recovery. Age, route of HIV infection, baseline CD4 count, baseline HIV RNA, ART regimen, prior ART and HIV-1 subtype, but not HBV or HCV co-infection, affected HIV RNA suppression. Risk factors affecting mortality included HCV co-infection, age, CDC stage, baseline CD4 count, baseline HIV RNA and prior mono/dual ART. Shortest survival was seen in subjects who were both HBV- and HCV-positive.

Conclusion

In this Asian cohort of HIV-infected patients, HCV co-infection, but not HBV co-infection, was associated with lower CD4 cell recovery after ART and increased mortality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号