首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Coral-associated bacteria are increasingly considered to be important in coral health, and altered bacterial community structures have been linked to both coral disease and bleaching. Despite this, assessments of bacterial communities on corals rarely apply sufficient replication to adequately describe the natural variability. Replicated data such as these are crucial in determining potential roles of bacteria on coral.

Methodology/Principal Findings

Denaturing Gradient Gel Electrophoresis (DGGE) of the V3 region of the 16S ribosomal DNA was used in a highly replicated approach to analyse bacterial communities on both healthy and diseased corals. Although site-specific variations in the bacterial communities of healthy corals were present, host species-specific bacterial associates within a distinct cluster of gamma-proteobacteria could be identified, which are potentially linked to coral health. Corals affected by “White Syndrome” (WS) underwent pronounced changes in their bacterial communities in comparison to healthy colonies. However, the community structure and bacterial ribotypes identified in diseased corals did not support the previously suggested theory of a bacterial pathogen as the causative agent of the syndrome.

Conclusions/Significance

This is the first study to employ large numbers of replicated samples to assess the bacterial communities of healthy and diseased corals, and the first culture-independent assessment of bacterial communities on WS affected Acroporid corals on the GBR. Results indicate that a minimum of 6 replicate samples are required in order to draw inferences on species, spatial or health-related changes in community composition, as a set of clearly distinct bacterial community profiles exist in healthy corals. Coral bacterial communities may be both site and species specific. Furthermore, a cluster of gamma-proteobacterial ribotypes may represent a group of specific common coral and marine invertebrate associates. Finally, the results did not support the contention that a single bacterial pathogen may be the causative agent of WS Acroporids on the GBR.  相似文献   

2.
Diseases of hermatypic corals pose a global threat to coral reefs, and investigations of bacterial communities associated with healthy corals and those exhibiting signs of disease are necessary for proper diagnosis. One disease, commonly called white plague (WP), is characterized by acute tissue loss. This investigation compared the bacterial communities associated with healthy coral tissue (N = 15), apparently healthy tissue on WP-diseased colonies (N = 15), and WP-diseased tissues (N = 15) from Montastraea annularis (species complex) colonies inhabiting a Bahamian reef. Aliquots of sediment (N = 15) and water (N = 15) were also obtained from the proximity of each coral colony sampled. Samples for culture-dependent analyses were inoculated onto one-half strength Marine Agar (½ MA) and Thiosulfate Citrate Bile Salts Sucrose Agar to quantify the culturable communities. Length heterogeneity PCR (LH-PCR) of the 16S rRNA gene characterized the bacterial operational taxonomic units (OTU) associated with lesions on corals exhibiting signs of a white plague-like disease as well as apparently healthy tissue from diseased and non-diseased conspecifics. Analysis of Similarity was conducted on the LH-PCR fingerprints, which indicated no significant difference in the composition of bacterial communities associated with apparently healthy and diseased corals. Comparisons of the 16S rRNA gene amplicons from cultured bacterial colonies (½ MA; N = 21) with all amplicons obtained from the whole coral-associated bacterial community indicated ≥39 % of coral-associated bacterial taxa could be cultured. Amplicons from these bacterial cultures matched amplicons from the whole coral-associated bacterial community that, when combined, accounted for >70 % total bacterial abundance. An OTU with the same amplicon length as Aurantimonas coralicida (313.1 bp), the reported etiological agent of WPII, was detected in relatively low abundance (<0.1 %) on all tissue types. These findings suggest a coral disease resembling WP may result from multiple etiologies.  相似文献   

3.
The scleractinian coral Porites lutea, an important reef-building coral on western Indian Ocean reefs (WIO), is affected by a newly-reported white syndrome (WS) the Porites white patch syndrome (PWPS). Histopathology and culture-independent molecular techniques were used to characterise the microbial communities associated with this emerging disease. Microscopy showed extensive tissue fragmentation generally associated with ovoid basophilic bodies resembling bacterial aggregates. Results of 16S rRNA sequence analysis revealed a high variability between bacterial communities associated with PWPS-infected and healthy tissues in P. lutea, a pattern previously reported in other coral diseases such as black band disease (BBD), white band disease (WBD) and white plague diseases (WPD). Furthermore, substantial variations in bacterial communities were observed at the different sampling locations, suggesting that there is no strong bacterial association in Porites lutea on WIO reefs. Several sequences affiliated with potential pathogens belonging to the Vibrionaceae and Rhodobacteraceae were identified, mainly in PWPS-infected coral tissues. Among them, only two ribotypes affiliated to Shimia marina (NR043300.1) and Vibrio hepatarius (NR025575.1) were consistently found in diseased tissues from the three geographically distant sampling localities. The role of these bacterial species in PWPS needs to be tested experimentally.  相似文献   

4.
Over the last half-century, coral diseases have contributed to the rapid decline of coral populations throughout the Caribbean region. Some coral diseases appear to be potentially infectious, yet little is known about their modes of transmission. This study experimentally tested whether dark-spot syndrome on Siderastrea siderea was directly or indirectly transmissible to neighboring coral colonies. We also tested whether open wounds were necessary to facilitate disease transmission. At the completion of the experiments, we sampled bacterial communities on diseased, exposed, and healthy coral colonies to determine whether bacterial pathogens had transmitted to the susceptible colonies. We saw no evidence of either direct or waterborne transmission of dark-spot syndrome, and corals that received lesions by direct contact with diseased tissue, healed and showed no signs of infection. There were no significant differences among bacterial communities on healthy, exposed, and diseased colonies, although nine individual ribotypes were significantly higher in diseased corals compared with healthy and exposed corals, indicating a lack of transmission. Although our experiments do not fully refute the possibility that dark-spot syndrome is infectious and transmissible, our results suggest that in situ macroscopic signs of dark-spot syndrome are not always contagious.  相似文献   

5.
Coral disease is one of the major causes of reef degradation. Dark Spot Syndrome (DSS) was described in the early 1990''s as brown or purple amorphous areas of tissue on a coral and has since become one of the most prevalent diseases reported on Caribbean reefs. It has been identified in a number of coral species, but there is debate as to whether it is in fact the same disease in different corals. Further, it is questioned whether these macroscopic signs are in fact diagnostic of an infectious disease at all. The most commonly affected species in the Caribbean is the massive starlet coral Siderastrea siderea. We sampled this species in two locations, Dry Tortugas National Park and Virgin Islands National Park. Tissue biopsies were collected from both healthy colonies and those with dark spot lesions. Microbial-community DNA was extracted from coral samples (mucus, tissue, and skeleton), amplified using bacterial-specific primers, and applied to PhyloChip G3 microarrays to examine the bacterial diversity associated with this coral. Samples were also screened for the presence of a fungal ribotype that has recently been implicated as a causative agent of DSS in another coral species, but the amplifications were unsuccessful. S. siderea samples did not cluster consistently based on health state (i.e., normal versus dark spot). Various bacteria, including Cyanobacteria and Vibrios, were observed to have increased relative abundance in the discolored tissue, but the patterns were not consistent across all DSS samples. Overall, our findings do not support the hypothesis that DSS in S. siderea is linked to a bacterial pathogen or pathogens. This dataset provides the most comprehensive overview to date of the bacterial community associated with the scleractinian coral S. siderea.  相似文献   

6.
Coral reefs are the most biodiverse and biologically productive of all marine ecosystems. Corals harbor diverse and abundant prokaryotic communities. However, little is known about the diversity of coral-associated bacterial communities. Mucus is a characteristic product of all corals, forming a coating over their polyps. The coral mucus is a rich substrate for microorganisms. Mucus was collected with a procedure using sterile cotton swabs that minimized contamination of the coral mucus by surrounding seawater. We used molecular techniques to characterize and compare the bacterial assemblages associated with the mucus of the solitary coral Fungia scutaria and the massive coral Platygyra lamellina from the Gulf of Eilat, northern Red Sea. The bacterial communities of the corals F. scutaria and P. lamellina were found to be diverse, with representatives within the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Deltaproteobacteria and Epsilonproteobacteria, as well as the Actinobacteria, Cytophaga-Flavobacter/Flexibacter-Bacteroides group, Firmicutes, Planctomyces, and several unclassified bacteria. However, the total bacterial assemblage of these two corals was different. In contrast to the bacterial communities of corals analyzed in previous studies by culture-based and culture-independent approaches, we found that the bacterial clone libraries of the coral species included a substantial proportion of Actinobacteria. The current study further supports the finding that bacterial communities of coral mucus are diverse.  相似文献   

7.
Interactions between corals and associated bacteria and amongst these bacterial groups are likely to play a key role in coral health. However, the complexity of these interactions is poorly understood. We investigated the functional role of specific coral-associated bacteria in maintaining microbial communities on the coral Acropora millepora (Ehrenberg 1834) and the ability of coral mucus to support or inhibit bacterial growth. Culture-independent techniques were used to assess bacterial community structures whilst bacterial culture was employed to assess intra- and inter-specific antimicrobial activities of bacteria. Members of Pseudoalteromonas and ribotypes closely related to Vibrio coralliilyticus displayed potent antimicrobial activity against a range of other cultured isolates and grew readily on detached coral mucus. Although such bacterial ribotypes would be expected to have a competitive advantage, they were rare or absent on intact and healthy coral colonies growing in situ (analysed using denaturing gradient gel electrophoresis and 16S rRNA gene sequencing). The most abundant bacterial ribotypes found on healthy corals were Gammaproteobacteria, previously defined as type A coral associates. Our results indicate that this group of bacteria and specific members of the Alphaproteobacteria described here as ‘type B associates’ may be important functional groups for coral health. We suggest that bacterial communities on coral are kept in check by a combination of host-derived and microbial interactions and that the type A associates in particular may play a key role in maintaining stability of microbial communities on healthy coral colonies.  相似文献   

8.

Background

Multiple independent culture-based studies have identified the presence of Pseudomonas aeruginosa in respiratory samples as a positive risk factor for bronchiolitis obliterans syndrome (BOS). Yet, culture-independent microbiological techniques have identified a negative association between Pseudomonas species and BOS. Our objective was to investigate whether there may be a unifying explanation for these apparently dichotomous results.

Methods

We performed bronchoscopies with bronchoalveolar lavage (BAL) on lung transplant recipients (46 procedures in 33 patients) and 26 non-transplant control subjects. We analyzed bacterial communities in the BAL fluid using qPCR and pyrosequencing of 16S rRNA gene amplicons and compared the culture-independent data with the clinical metadata and culture results from these subjects.

Findings

Route of bronchoscopy (via nose or via mouth) was not associated with changes in BAL microbiota (p = 0.90). Among the subjects with positive Pseudomonas bacterial culture, P. aeruginosa was also identified by culture-independent methods. In contrast, a distinct Pseudomonas species, P. fluorescens, was often identified in asymptomatic transplant subjects by pyrosequencing but not detected via standard bacterial culture. The subject populations harboring these two distinct pseudomonads differed significantly with respect to associated symptoms, BAL neutrophilia, bacterial DNA burden and microbial diversity. Despite notable differences in culturability, a global database search of UM Hospital Clinical Microbiology Laboratory records indicated that P. fluorescens is commonly isolated from respiratory specimens.

Interpretation

We have reported for the first time that two prominent and distinct Pseudomonas species (P. fluorescens and P. aeruginosa) exist within the post-transplant lung microbiome, each with unique genomic and microbiologic features and widely divergent clinical associations, including presence during acute infection.  相似文献   

9.
Coral tumors are atypical skeletal forms found on coral reefs worldwide. Here we present an analysis of the microbial communities associated with skeletal tumors on the coral Porites compressa. Microbial growth rates on both healthy and tumorous P. compressa were decoupled from the surrounding water column. Microbial communities associated with tumorous colonies had a significantly faster growth rate than those associated with healthy P. compressa. The microbial community associated with the tumors contained more culturable Vibrio spp. and could utilize more carbon sources than the microbes associated with healthy colonies. Presence of tumors affected the composition and dynamics of the microbial population associated with the entire colony.  相似文献   

10.
Acropora white syndrome (AWS) is characterized by rapid tissue loss revealing the white underlying skeleton and affects corals worldwide; however, reports of causal agents are conflicting. Samples were collected from healthy and diseased corals and seawater around American Samoa and bacteria associated with AWS characterized using both culture-dependent and culture-independent methods, from coral mucus and tissue slurries, respectively. Bacterial 16S rRNA gene clone libraries derived from coral tissue were dominated by the Gammaproteobacteria, and Jaccard's distances calculated between the clone libraries showed that those from diseased corals were more similar to each other than to those from healthy corals. 16S rRNA genes from 78 culturable coral mucus isolates also revealed a distinct partitioning of bacterial genera into healthy and diseased corals. Isolates identified as Vibrionaceae were further characterized by multilocus sequence typing, revealing that whilst several Vibrio spp. were found to be associated with AWS lesions, a recently described species, Vibrio owensii, was prevalent amongst cultured Vibrio isolates. Unaffected tissues from corals with AWS had a different microbiota than normal Acropora as found by others. Determining whether a microbial shift occurs prior to disease outbreaks will be a useful avenue of pursuit and could be helpful in detecting prodromal signs of coral disease prior to manifestation of lesions.  相似文献   

11.
Bacterial diseases affecting scleractinian corals pose an enormous threat to the health of coral reefs, yet we still have a limited understanding of the bacteria associated with coral diseases. White band disease is a bacterial disease that affects the two Caribbean acroporid corals, the staghorn coral Acropora cervicornis and the elkhorn coral A. palmate. Species of Vibrio and Rickettsia have both been identified as putative WBD pathogens. Here we used Illumina 16S rRNA gene sequencing to profile the bacterial communities associated with healthy and diseased A. cervicornis collected from four field sites during two different years. We also exposed corals in tanks to diseased and healthy (control) homogenates to reduce some of the natural variation of field-collected coral bacterial communities. Using a combination of multivariate analyses, we identified community-level changes between diseased and healthy corals in both the field-collected and tank-exposed datasets. We then identified changes in the abundances of individual operational taxonomic units (OTUs) between diseased and healthy corals. By comparing the diseased and healthy-associated bacteria in field-collected and tank-exposed corals, we were able to identify 16 healthy-associated OTUs and 106 consistently disease-associated OTUs, which are good candidates for putative WBD pathogens. A large percentage of these disease-associated OTUs belonged to the order Flavobacteriales. In addition, two of the putative pathogens identified here belong to orders previously suggested as WBD pathogens: Vibronales and Rickettsiales.  相似文献   

12.
The increase in seawater temperature associated with global warming is a significant threat to coral health and is linked to increasing mass mortality events and Vibrio-related coral diseases. In the Mediterranean Sea, the endemic Cladocora caespitosa and the invasive species Oculina patagonica are the main scleractinian corals affected by mass mortalities. In this study, culturable Vibrio spp. assemblages associated with healthy and unhealthy colonies of these two shallow coral species were characterized to assess the presence of Vibrio pathogens in tissue necrosis. Vibrio communities associated with O. patagonica and C. caespitosa showed geographical differences, although these became more homogeneous in unhealthy specimens of both species. Furthermore, the number of recovered Vibrio specimens was more than five times higher in unhealthy than in healthy corals. Within these culturable vibrios, the known pathogens Vibrio mediterranei and Vibrio coralliilyticus were present in unhealthy colonies of both coral species in the two localities, suggesting that they could play a role in the health status of C. caespitosa and thus act as generalist pathogens in Mediterranean corals. Nonetheless, a clonal type of V. coralliilyticus detected in C. caespitosa was not associated with disease signs, suggesting that this species could encompass assemblages with different levels of virulence.  相似文献   

13.
The bacterial communities associated with the Caribbean coral Montastrea annularis showing tissue lesions indicative of a White Plague (WP)-like disease were investigated. Two molecular screening techniques using bacterial 16S rDNA genes were used and demonstrated distinct differences between the bacterial communities of diseased and non-diseased coral tissues, and also in relation to the proximity of tissue lesions on diseased corals. Differences between non-diseased corals and the apparently healthy tissues remote from the tissue lesion in affected corals indicates a 'whole coral' response to a relatively small area of infection with a perturbation in the normal microbial flora occurring prior to the onset of visible signs of disease. These whole organism changes in the microbial flora may serve as a bioindicator of environmental stress and disease. There were striking similarities between the 16S rDNA sequence composition associated with the WP-like disease studied here and that previously reported in association with black band disease (BBD) in coral. Similarities included the presence of a potential pathogen, an alpha-proteobacterium identified as the causal agent of juvenile oyster disease (JOD). The WP-like disease studied here is apparently different to WP Type ii because the bacterial species previously identified as the causal agent of WP Type ii was not detected, although the symptoms of the two diseases are similar.  相似文献   

14.
The microbial community associated with the reef building coral Pocillopora damicornis located on the Great Barrier Reef was investigated using culture-independent molecular microbial techniques. The microbial communities of three separate coral colonies were assessed using clone library construction alongside restriction fragment length polymorphism and phylogenetic analysis. Diversity was also investigated spatially across six replicate samples within each single coral colony using 16S rDNA and rpoB-DGGE analysis. Clone libraries demonstrated that the majority of retrieved sequences from coral tissue slurry libraries affiliated with gamma-Proteobacteria. This contrasted with clone libraries of seawater and coral mucus, which were dominated by alpha-Proteobacteria. A number of retrieved clone sequences were conserved between coral colonies; a result consistent with previous studies suggesting a specific microbe-coral association. rpoB-DGGE patterns of replicate tissue slurry samples underestimated microbial diversity, but demonstrated that fingerprints were identical within the same coral. These fingerprints were also conserved across coral colonies. The 16S rDNA-DGGE patterns of replicate tissue slurry samples were more complex, although non-metric multidimensional scaling (nMDS) analysis showed groupings of these banding patterns indicating that some bacterial diversity was uniform within a coral colony. Sequence data retrieved from DGGE analysis support clone library data in that the majority of affiliations were within the gamma-Proteobacteria. Many sequences retrieved also affiliated closely with sequences derived from previous studies of microbial diversity of healthy corals in the Caribbean. Clones showing high 16S rDNA sequence identity to both Vibrio shiloi and Vibrio coralliilyticus were retrieved, suggesting that these may be opportunist pathogens. Comparisons of retrieved microbial diversity between two different sampling methods, a syringe extracted coral mucus sample and an airbrushed coral tissue slurry sample were also investigated. Non-metric multidimensional scaling of clone library data highlighted that clone diversity retrieved from a coral mucus library more closely reflected the diversity of surrounding seawater than a corresponding coral tissue clone library.  相似文献   

15.
The bacterial community associated with black band disease (BBD) of the scleractinian corals Diploria strigosa, Montastrea annularis and Colpophyllia natans was examined using culture-independent techniques. Two complementary molecular screening techniques of 16S rDNA genes [amplified 16S ribosomal DNA restriction analysis (ARDRA) of clone libraries and denaturing gradient gel electrophoresis (DGGE)] were used to give a comprehensive characterization of the community. Findings support previous studies indicating low bacterial abundance and diversity associated with healthy corals. A single cyanobacterial ribotype was present in all the diseased samples, but this was not the same as that identified from Phormidium corallyticum culture isolated from BBD. The study confirms the presence of Desulfovibrio spp. and sulphate-reducing bacteria that have previously been associated with the BBD consortium. However, the species varied between diseased coral samples. We found no evidence of bacteria from terrestrial, freshwater or human sources in any of the samples. We report the presence of previously unrecognized potential pathogens [a Cytophaga sp. and an alpha-proteobacterium identified as the aetiological agent of juvenile oyster disease (JOD)] that were consistently present in all the diseased coral samples. The molecular biological approach described here gives an increasingly comprehensive and more precise picture of the bacterial population associated with BBD. To understand the pathogenesis of BBD, our attention should be focused on the pervasive ribotypes identified in this study (the Cyanobacterium sp., the Cytophaga sp. and the JOD pathogen).  相似文献   

16.
17.
Culture-independent molecular (16S ribosomal RNA) techniques showed distinct differences in bacterial communities associated with white band disease (WBD) Type I and healthy elkhorn coral Acropora palmata. Differences were apparent at all levels, with a greater diversity present in tissues of diseased colonies. The bacterial community associated with remote, non-diseased coral was distinct from the apparently healthy tissues of infected corals several cm from the disease lesion. This demonstrates a whole-organism effect from what appears to be a localised disease lesion, an effect that has also been recently demonstrated in white plague-like disease in star coral Montastraea annularis. The pattern of bacterial community structure changes was similar to that recently demonstrated for white plague-like disease and black band disease. Some of the changes are likely to be explained by the colonisation of dead and degrading tissues by a micro-heterotroph community adapted to the decomposition of coral tissues. However, specific ribosomal types that are absent from healthy tissues appear consistently in all samples of each of the diseases. These ribotypes are closely related members of a group of alpha-proteobacteria that cause disease, notably juvenile oyster disease, in other marine organisms. It is clearly important that members of this group are isolated for challenge experiments to determine their role in the diseases.  相似文献   

18.
Despite recent advances in identifying the causative agents of disease in corals and understanding the impact of epizootics on reef communities, little is known regarding the interactions among diseases, corals, and their dinoflagellate endosymbionts (Symbiodinium spp.). Since the genotypes of both corals and their resident Symbiodinium contribute to colony-level phenotypes, such as thermotolerance, symbiont genotypes might also contribute to the resistance or susceptibility of coral colonies to disease. To explore this, Symbiodinium were identified using the internal transcribed spacer-2 region of ribosomal DNA from diseased and healthy tissues within individual coral colonies infected with black band disease (BB), dark spot syndrome (DSS), white plague disease (WP), or yellow blotch disease (YB) in the Florida Keys (USA) and the US Virgin Islands. Most of the diseased colonies sampled contained B1, B5a, or C1 (depending on host species), while apparently healthy colonies of the same coral species frequently hosted these types and/or additional symbiont diversity. No potentially “parasitic” Symbiodinium types, uniquely associated with diseased coral tissue, were detected. Within most individual colonies, the same dominant Symbiodinium type was detected in diseased and visually healthy tissues. These data indicate that specific Symbiodinium types are not correlated with the infected tissues of diseased colonies and that DSS and WP onset do not trigger symbiont shuffling within infected tissues. However, few diseased colonies contained clade D symbionts suggesting a negative correlation between hosting Symbiodinium clade D and disease incidence in scleractinian corals. Understanding the influence of Symbiodinium diversity on colony phenotypes may play a critical role in predicting disease resistance and susceptibility in scleractinian corals.  相似文献   

19.
Corals harbor diverse bacterial associations that contribute to the health of the host. Using 16S rRNA pyrosequencing, we compared the bacterial communities of red and orange morphs of the Hawaiian coral Montipora capitata. Although both color morphs shared dominant bacterial genera, weighted and unweighted UniFrac analyses showed distinct bacterial communities. A single operational taxonomic unit (OTU), classified as Vibrio, represented the largest driver of differences between the color morphs. This OTU comprised 35.4% (±5.5%) of the orange morph bacterial community yet comprised 1.1% (±0.6%) of the red morph bacterial community. Cultivable bacteria from the two color morphs were also compared and tested for antibacterial activity. Cultured isolates represented 14 genera (7% of the total genera identified from sequencing data), and all but two cultured isolates had a matching OTU from the sequencing data. Half of the isolates tested (8 out of 16) displayed antibacterial activity against other cultured isolates but not against two known bacterial pathogens of M. capitata. The results from this study demonstrate that the specificity of coral-bacterial associations extends beyond the level of coral species. In addition, culture-dependent methods captured bacterial diversity that was representative of both rare and abundant members of the associated bacterial community, as characterized by culture-independent methods.  相似文献   

20.
Coral reefs are threatened throughout the world. A major factor contributing to their decline is outbreaks and propagation of coral diseases. Due to the complexity of coral-associated microbe communities, little is understood in terms of disease agents, hosts and vectors. It is known that compromised health in corals is correlated with shifts in bacterial assemblages colonizing coral mucus and tissue. However, general disease patterns remain, to a large extent, ambiguous as comparative studies over species, regions, or diseases are scarce. Here, we compare bacterial assemblages of samples from healthy (HH) colonies and such displaying signs of White Plague Disease (WPD) of two different coral species (Pavona duerdeni and Porites lutea) from the same reef in Koh Tao, Thailand, using 16S rRNA gene microarrays. In line with other studies, we found an increase of bacterial diversity in diseased (DD) corals, and a higher abundance of taxa from the families that include known coral pathogens (Alteromonadaceae, Rhodobacteraceae, Vibrionaceae). In our comparative framework analysis, we found differences in microbial assemblages between coral species and coral health states. Notably, patterns of bacterial community structures from HH and DD corals were maintained over species boundaries. Moreover, microbes that differentiated the two coral species did not overlap with microbes that were indicative of HH and DD corals. This suggests that while corals harbor distinct species-specific microbial assemblages, disease-specific bacterial abundance patterns exist that are maintained over coral species boundaries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号