首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We generated fusions between three Arabidopsis (Arabidopsis thaliana) tonoplast intrinsic proteins (TIPs; alpha-, gamma-, and delta-TIP) and yellow fluorescent protein (YFP). We also produced soluble reporters consisting of the monomeric red fluorescent protein (RFP) and either the C-terminal vacuolar sorting signal of phaseolin or the sequence-specific sorting signal of proricin. In transgenic Arabidopsis leaves, mature roots, and root tips, all TIP fusions localized to the tonoplast of the central vacuole and both of the lumenal RFP reporters were found within TIP-delimited vacuoles. In embryos from developing, mature, and germinating seeds, all three TIPs localized to the tonoplast of protein storage vacuoles. To determine the temporal TIP expression patterns and to rule out mistargeting due to overexpression, we generated plants expressing YFP fused to the complete genomic sequences of the three TIP isoforms. In transgenic Arabidopsis, gamma-TIP expression was limited to vegetative tissues, but specifically excluded from root tips, whereas alpha-TIP was exclusively expressed during seed maturation. delta-TIP was expressed in vegetative tissues, but not root tips, at a later stage than gamma-TIP. Our findings indicate that, in the Arabidopsis tissues analyzed, two different vacuolar sorting signals target soluble proteins to a single vacuolar location. Moreover, TIP isoform distribution is tissue and development specific, rather than organelle specific.  相似文献   

2.
The delivery of proteins to the vacuole and its limiting membrane (the tonoplast) by the secretory system is thought to be a dissociative process in which vesicles bud from one compartment and fuse with another. We studied the transport kinetics of phytohemagglutinin (PHA) and tonoplast intrinsic protein (TIP) in mesophyll protoplasts obtained from transgenic tobacco plants transformed with genes encoding these two proteins. In pulse-chase experiments, arrival of PHA in the vacuole was found to be slower (completed 24 hr after synthesis) than the arrival of TIP in the tonoplast (completed 6 hr after synthesis). Brefeldin A and monensin block protein transport by interfering in specific vesicle transport steps. Brefeldin A prevents anterograde vesicle transport between the endoplasmic reticulum and the Golgi, whereas monensin inhibits correct sorting in the trans-Golgi network by disrupting the proton gradient across the membrane. Both inhibitors blocked the transport of PHA to the vacuole and altered the rate at which its complex glycan is processed by Golgi enzymes. Neither drug stopped the arrival of TIP in the tonoplast, suggesting that the flow of vesicles continues in the presence of these inhibitors. We suggest that soluble proteins like PHA and membrane proteins like TIP reach their vacuolar destinations by different paths.  相似文献   

3.
Membrane proteins on the tonoplast are indispensible for vacuolar functions in plants. However, how these proteins are transported to the vacuole and how they become separated from plasma membrane proteins remain largely unknown. In this study, we used Arabidopsis thaliana vacuolar ion transporter1 (VIT1) as a reporter to study the mechanisms of tonoplast targeting. We showed that VIT1 reached the tonoplast through a pathway involving the endoplasmic reticulum (ER), Golgi, trans-Golgi network (TGN), prevacuolar compartment, and tonoplast. VIT1 contains a putative N-terminal dihydrophobic type ER export signal, and its N terminus has a conserved dileucine motif (EKQTLL), which is responsible for tonoplast targeting. In vitro peptide binding assays with synthetic VIT1 N terminus identified adaptor protein complex-1 (AP1) subunits that interacted with the dileucine motif. A deficiency of AP1 gamma adaptins in Arabidopsis cells caused relocation of tonoplast proteins containing the dileucine motif, such as VIT1 and inositol transporter1, to the plasma membrane. The dileucine motif also effectively rerouted the plasma membrane protein SCAMP1 to the tonoplast. Together with subcellular localization studies showing that AP1 gamma adaptins localize to the TGN, we propose that the AP1 complex on the TGN mediates tonoplast targeting of membrane proteins with the dileucine motif.  相似文献   

4.
We tested if different classes of vacuolar cargo reach the vacuole via distinct mechanisms by interference at multiple steps along the transport route. We show that nucleotide-free mutants of low molecular weight GTPases, including Rab11, the Rab5 members Rha1 and Ara6, and the tonoplast-resident Rab7, caused induced secretion of both lytic and storage vacuolar cargo. In situ analysis in leaf epidermis cells indicates a sequential action of Rab11, Rab5, and Rab7 GTPases. Compared with Rab5 members, mutant Rab11 mediates an early transport defect interfering with the arrival of cargo at prevacuoles, while mutant Rab7 inhibits the final delivery to the vacuole and increases cargo levels in prevacuoles. In contrast with soluble cargo, membrane cargo may follow different routes. Tonoplast targeting of an α-TIP chimera was impaired by nucleotide-free Rha1, Ara6, and Rab7 similar to soluble cargo. By contrast, the tail-anchored tonoplast SNARE Vam3 shares only the Rab7-mediated vacuolar deposition step. The most marked difference was observed for the calcineurin binding protein CBL6, which was insensitive to all Rab mutants tested. Unlike soluble cargo, α-TIP and Vam3, CBL6 transport to the vacuole was COPII independent. The results indicate that soluble vacuolar proteins follow a single route to vacuoles, while membrane spanning proteins may use at least three different transport mechanisms.  相似文献   

5.
The vacuole is the main cellular storage pool, where sucrose (Suc) accumulates to high concentrations. While a limited number of vacuolar membrane proteins, such as V-type H(+)-ATPases and H(+)-pyrophosphatases, are well characterized, the majority of vacuolar transporters are still unidentified, among them the transporter(s) responsible for vacuolar Suc uptake and release. In search of novel tonoplast transporters, we used a proteomic approach, analyzing the tonoplast fraction of highly purified mesophyll vacuoles of the crop plant barley (Hordeum vulgare). We identified 101 proteins, including 88 vacuolar and putative vacuolar proteins. The Suc transporter (SUT) HvSUT2 was discovered among the 40 vacuolar proteins, which were previously not reported in Arabidopsis (Arabidopsis thaliana) vacuolar proteomic studies. To confirm the tonoplast localization of this Suc transporter, we constructed and expressed green fluorescent protein (GFP) fusion proteins with HvSUT2 and its closest Arabidopsis homolog, AtSUT4. Transient expression of HvSUT2-GFP and AtSUT4-GFP in Arabidopsis leaves and onion (Allium cepa) epidermal cells resulted in green fluorescence at the tonoplast, indicating that these Suc transporters are indeed located at the vacuolar membrane. Using a microcapillary, we selected mesophyll protoplasts from a leaf protoplast preparation and demonstrated unequivocally that, in contrast to the companion cell-specific AtSUC2, HvSUT2 and AtSUT4 are expressed in mesophyll protoplasts, suggesting that HvSUT2 and AtSUT4 are involved in transport and vacuolar storage of photosynthetically derived Suc.  相似文献   

6.
The tonoplast mediates the transport of various ions and metabolites between the vacuole and cytosol by mechanisms that remain to be elucidated at the molecular level. The primary structure of only one tonoplast protein, the H(+)-ATPase, has been reported to date. Here we report the primary structure of tonoplast intrinsic protein (TIP), a 27-kilodalton intrinsic membrane protein that occurs widely in the tonoplasts of the protein storage vacuoles (protein bodies) of seeds [Johnson, K.D., et al. (1989). Plant Physiol. 91, 1006-1013]. Hydropathy plots and secondary structure analysis of the polypeptide predict six membrane-spanning domains connected by short loops and hydrophilic, cytoplasmically oriented N- and C-terminal regions. TIP displays significant homology with several other membrane proteins from diverse sources: major intrinsic polypeptide from bovine lens fiber plasma membrane; NOD 26, a peribacteroid membrane protein in the nitrogen-fixing root nodules of soybean; and interestingly, GIpF, the glycerol facilitator transport protein in the cytoplasmic membrane of Escherichia coli. Based on the homology between TIP and GIpF and the knowledge that the protein storage vacuolar membrane and the peribacteroid membrane are active in solute transport, we propose that TIP transports small metabolites between the storage vacuoles and cytoplasm of seed storage tissues.  相似文献   

7.
Plant cells contain several types of vacuoles with specialized functions. Although the biogenesis of these organelles is well understood at the morphological level, the machinery involved in plant vacuole formation is largely unknown. We have recently identified an Arabidopsis mutant, vcl1, that is deficient in vacuolar formation. VCL1 is homologous to a protein that regulates membrane fusion at the tonoplast in yeast. On the basis of these observations, VCL1 is predicted to play a direct role in vacuolar biogenesis and vesicular trafficking to the vacuole in plants. In this work, we show that VCL1 forms a complex with AtVPS11 and AtVPS33 in vivo. These two proteins are homologues of proteins that have a well-characterized role in membrane fusion at the tonoplast in yeast. VCL1, AtVPS11, and AtVPS33 are membrane-associated and cofractionate with tonoplast and denser endomembrane markers in subcellular fractionation experiments. Consistent with this, VCL1, AtVPS11, and AtVPS33 are found on the tonoplast and the prevacuolar compartment (PVC) by immunoelectron microscopy. We also show that a VCL1-containing complex includes SYP2-type syntaxins and is most likely involved in membrane fusion on both the PVC and tonoplast in vivo. VCL1, AtVPS11, and AtVPS33 are the first components of the vacuolar biogenesis machinery to be identified in plants.  相似文献   

8.
Vacuoles perform a multitude of functions in plant cells, including the storage of amino acids and sugars. Tonoplast-localized transporters catalyze the import and release of these molecules. The mechanisms determining the targeting of these transporters to the tonoplast are largely unknown. Using the paralogous Arabidopsis thaliana inositol transporters INT1 (tonoplast) and INT4 (plasma membrane), we performed domain swapping and mutational analyses and identified a C-terminal di-leucine motif responsible for the sorting of higher plant INT1-type transporters to the tonoplast in Arabidopsis mesophyll protoplasts. We demonstrate that this motif can reroute other proteins, such as INT4, SUCROSE TRANSPORTER2 (SUC2), or SWEET1, to the tonoplast and that the position of the motif relative to the transmembrane helix is critical. Rerouted INT4 is functionally active in the tonoplast and complements the growth phenotype of an int1 mutant. In Arabidopsis plants defective in the β-subunit of the AP-3 adaptor complex, INT1 is correctly localized to the tonoplast, while sorting of the vacuolar sucrose transporter SUC4 is blocked in cis-Golgi stacks. Moreover, we demonstrate that both INT1 and SUC4 trafficking to the tonoplast is sensitive to brefeldin A. Our data show that plants possess at least two different Golgi-dependent targeting mechanisms for newly synthesized transporters to the tonoplast.  相似文献   

9.
Two‐pore channels (TPCs) constitute a family of endolysosomal cation channels with functions in Ca2+ signaling. We used a mutational analysis to investigate the role of channel domains for the trafficking of the Arabidopsis TPC1 to the tonoplast, a process that is generally not well understood in plants. The results show that the soluble C‐terminus was not essential for targeting but for channel function, while further C‐terminal truncations of two or more transmembrane domains impaired protein trafficking. An N‐terminal dileucine motif (EDPLI) proved to be critical for vacuolar targeting of TPC1, which was independent of the adaptor protein AP‐3. Deletion or mutation of this sorting motif, which is conserved among TPCs caused redirection of the protein transport to the plasma membrane. An N‐terminal region with a predicted α‐helical structure was shown to support efficient vacuolar trafficking and was essential for TPC1 function. Similar to their localization in mammalian endosomes and lysosomes, MmTPC1 and MmTPC2 were targeted to small organelles and the membrane of the lytic vacuole, respectively, when expressed in plant cells. These results shed new light on the largely uncharacterized sorting signals of plant tonoplast proteins and reveal similarities between the targeting machinery of plants and mammals.  相似文献   

10.
Plant cell vacuoles are diverse and dynamic structures. In particular, during seed germination, the protein storage vacuoles are rapidly replaced by a central lytic vacuole enabling rapid elongation of embryo cells. In this study, we investigate the dynamic remodeling of vacuolar compartments during Arabidopsis seed germination using immunocytochemistry with antibodies against tonoplast intrinsic protein (TIP) isoforms as well as proteins involved in nutrient mobilization and vacuolar acidification. Our results confirm the existence of a lytic compartment embedded in the protein storage vacuole of dry seeds, decorated by γ-TIP, the vacuolar proton pumping pyrophosphatase (V-PPase) and the metal transporter NRAMP4. They further indicate that this compartment disappears after stratification. It is then replaced by a newly formed lytic compartment, labeled by γ-TIP and V-PPase but not AtNRAMP4, which occupies a larger volume as germination progresses. Altogether, our results indicate the successive occurrence of two different lytic compartments in the protein storage vacuoles of germinating Arabidopsis cells. We propose that the first one corresponds to globoids specialized in mineral storage and the second one is at the origin of the central lytic vacuole in these cells.  相似文献   

11.
Soluble proteins are transported to the plant vacuole through the secretory pathway via membrane-bound vesicles. Targeting of vesicles to appropriate organelles requires several membrane-bound and soluble factors that have been characterized in yeast and mammalian systems. For example, the yeast PEP12 protein is a syntaxin homolog that is involved in protein transport to the yeast vacuole. Previously, we isolated an Arabidopsis thaliana homolog of PEP12 by functional complementation of the yeast pep12 mutant. Antibodies raised against the cytoplasmic portion of AtPEP12 have been prepared and used for intracellular localization of this protein. Biochemical analysis indicates that AtPEP12 does not localize to the endoplasmic reticulum, Golgi apparatus, plasma membrane, or tonoplast in Arabidopsis plants; furthermore, based on biochemical and electron microscopy immunogold labeling analyses, AtPEP12 is likely to be localized to a post-Golgi compartment in the vacuolar pathway.  相似文献   

12.
The vacuolar membrane, the tonoplast, is a proteinrich membranehitherto only few proteins in it have been identified. As anapproach for the identification of tonoplast proteins by monoclonalantibodies (MABs), purified tonoplast from cress roots (Lepidiumsativum L.) were used for immunization and plasma membranesas a control membrane to test the absence of antigen. The MABTOP 35 identified a glycoprotein of about 35 kDa in purifiedtonoplast of cress roots. Triton X-114 phase separation showedthat it was a hydrophobic integral membrane protein. In immunocytochemistrythe MAB TOP 35 strongly labelled the vacuolar membrane. Theabsence of cell wall or plasma membrane labelling by TOP 35indicates a distinct biosynthetic pathway of this protein tothe vacuolar membrane in plants. Key words: Immnocytochemistry, Lepidium sativum, monoclonal antibody, secretion, vacuole  相似文献   

13.
The vacuolar membrane (tonoplast) of higher plant cells contains an abundant 27 kDa protein called TIP (tonoplast intrinsic protein) that occurs in different isoforms and belongs to a large family of homologous channel-like proteins found in bacteria, plants and animals. In the present study, we identified and characterized the function of gamma-TIP from Arabidopsis thaliana by expression of the protein in Xenopus oocytes. gamma-TIP increased the osmotic water permeability of oocytes 6- to 8-fold, to values in the range 1-1.5 x 10(-2) cm/s. Similar results were obtained with the homologous human erythrocyte protein CHIP28, recently identified as the erythrocyte water channel. The bacterial homolog GlpF did not affect the osmotic water permeability of oocytes, but facilitated glycerol uptake, in accordance with its known function. By contrast, gamma-TIP did not promote glycerol permeability. Voltage clamp experiments provided evidence showing that gamma-TIP induced no electrogenic ion transport in oocytes, especially during osmotic challenge that resulted in massive transport of water. These results allow us to conclude that the various protein members of the MIP family have unique and specific transport functions and that the plant protein gamma-TIP likely functions as a water specific channel in the vacuolar membrane.  相似文献   

14.
The plant vacuole is a multifunctional organelle which is essential for growth and development. To visualize the dynamics of plant vacuolar membranes, gamma-TIP (tonoplast intrinsic protein) was fused to GFP and expressed in Arabidopsis thaliana. The marker molecule was targeted to the vacuolar membranes in most tissues, as expected. In rapidly expanding cells, some additional spherical structures were often observed within the lumen of vacuoles, which emitted strong fluorescence. To confirm their normal presence, we examined wild-type Arabidopsis cotyledons by transmission electron microscopy. The metal-contact rapid-freezing method revealed that the vacuolar lumen of epidermal cells contained many cytoplasmic projections, which often formed spherical structures (1-3 microm diameter) consisting of double membranes. Thus we concluded that these structures are authentic and named them 'bulbs'. Three-dimensional reconstruction from serial electron microscopic images demonstrates that bulbs are very intricately folded, but are continuous with the limiting vacuolar membrane. The fluorescence intensity of bulbs is about threefold higher than that of vacuolar membrane. GFP-AtRab75c, another marker of the vacuole, did not give fluorescent signals of bulbs in transgenic plants, but the existence of bulbs was still confirmed by electron microscopy. These results suggest that bulbs define a subregion in the continuous vacuolar membrane, where some proteins are concentrated and others segregated.  相似文献   

15.
Because they are immotile organisms, higher plants have developed efficient strategies for adaptation to temperature changes. During cold acclimation, plants accumulate specific types of solutes to enhance freezing tolerance. The vacuole is a major solute storage organelle, but until now the role of tonoplast proteins in cold acclimation has not been investigated. In a comparative tonoplast proteome analysis, we identified several membrane proteins with altered abundance upon cold acclimation. We found an increased protein abundance of the tonoplast pyrophosphatase and subunits of the vacuolar V-ATPase and a significantly increased V-ATPase activity. This was accompanied by increased vacuolar concentrations of dicarbonic acids and soluble sugars. Consistently, the abundance of the tonoplast dicarbonic acid transporter was also higher in cold-acclimatized plants. However, no change in the protein abundance of tonoplast monosaccharide transporters was detectable. However, a generally higher cold-induced phosphorylation of members of this sugar transporter sub-group was observed. Our results indicate that cold-induced solute accumulation in the vacuole is mediated by increased acidification of this organelle. Thus solute transport activity is either modulated by increased protein amounts or by modification of proteins via phosphorylation.  相似文献   

16.
Proteins synthesized on membrane-bound ribosomes are sorted at the Golgi apparatus level for delivery to various cellular destinations: the plasma membrane or the extracellular space, and the lytic vacuole or lysosome. Sorting involves the assembly of vesicles, which preferentially package soluble proteins with a common destination. The selection of proteins for a particular vesicle type involves the recognition of proteins by specific receptors, such as the vacuolar sorting receptors for vacuolar targeting. Most eukaryotic organisms have one or two receptors to target proteins to the lytic vacuole. Surprisingly, plants have several members of the same family, seven in Arabidopsis thaliana. Why do plants have so many proteins to sort soluble proteins to their respective destinations? The presence of at least two types of vacuoles, lytic and storage, seems to be a partial answer. In this review we analyze the last experimental evidence supporting the presence of different subfamilies of plant vacuolar sorting receptors.  相似文献   

17.
Calcineurin B-like (CBL) proteins contribute to decoding calcium signals by interacting with CBL-interacting protein kinases (CIPKs). Currently, there is still very little information about the function and specific targeting mechanisms of CBL proteins that are localized at the vacuolar membrane. In this study, we focus on CBL2, an abundant vacuolar membrane-localized calcium sensor of unknown function from Arabidopsis thaliana. We show that vacuolar targeting of CBL2 is specifically brought about by S-acylation of three cysteine residues in its N-terminus and that CBL2 S-acylation and targeting occur by a Brefeldin A-insensitive pathway. Loss of CBL2 function renders plants hypersensitive to the phytohormone abscisic acid (ABA) during seed germination and only fully S-acylated and properly vacuolar-targeted CBL2 proteins can complement this mutant phenotype. These findings define an S-acylation-dependent vacuolar membrane targeting pathway for proteins and uncover a crucial role of vacuolar calcium sensors in ABA responses.  相似文献   

18.
Protein sorting to the vacuolar membrane.   总被引:14,自引:5,他引:9       下载免费PDF全文
The vacuolar membrane (tonoplast) of plant cells contains a polytopic integral membrane protein with six membrane-spanning domains and cytoplasmically oriented amino-terminal and carboxy-terminal domains. This protein, tonoplast intrinsic protein (TIP), is a member of the membrane intrinsic protein (MIP) family of proteins, a family of channel proteins found in a variety of organisms. In bean seeds, alpha-TIP is synthesized on the rough endoplasmic reticulum and its transport to the tonoplast is mediated by the secretory system. In this study, we report that a polypeptide segment that includes the sixth membrane domain and the cytoplasmic tail of 18 amino acids of alpha-TIP is sufficient to target the reporter protein phosphinotricine acetyltransferase to the tonoplast of stably transformed tobacco cells. To determine if the carboxy-terminal cytoplasmic tail of alpha-TIP contains important tonoplast targeting information, a deletion construct lacking the 15 carboxy-terminal amino acids was introduced for transient expression in tobacco cells; we found that the slightly truncated protein still accumulated in the tonoplast. From these results, we concluded that a transmembrane domain of a tonoplast protein probably contains sufficient information for transport to the tonoplast. Whether such transport occurs by bulk flow or involves specific cellular machinery remains to be determined.  相似文献   

19.
The vacuole/lysosome serves an essential role in allowing cellular components to be degraded and recycled under starvation conditions. Vacuolar hydrolases are key proteins in this process. In Saccharyomces cerevisiae, some resident vacuolar hydrolases are delivered by the cytoplasm to vacuole targeting (Cvt) pathway, which shares mechanistic features with autophagy. Autophagy is a degradative pathway that is used to degrade and recycle cellular components under starvation conditions. Both the Cvt pathway and autophagy employ double-membrane cytosolic vesicles to deliver cargo to the vacuole. As a result, these pathways share a common terminal step, the degradation of subvacuolar vesicles. We have identified a protein, Cvt17, which is essential for this membrane lytic event. Cvt17 is a membrane glycoprotein that contains a motif conserved in esterases and lipases. The active-site serine of this motif is required for subvacuolar vesicle lysis. This is the first characterization of a putative lipase implicated in vacuolar function in yeast.  相似文献   

20.
Srivastava A  Woolford CA  Jones EW 《Genetics》2000,156(1):105-122
Pep3p and Pep5p are known to be necessary for trafficking of hydrolase precursors to the vacuole and for vacuolar biogenesis. These proteins are present in a hetero-oligomeric complex that mediates transport at the vacuolar membrane. PEP5 interacts genetically with VPS8, implicating Pep5p in the earlier Golgi to endosome step and/or in recycling from the endosome to the Golgi. To understand further the cellular roles of Pep3p and Pep5p, we isolated and characterized a set of pep3 conditional mutants. Characterization of mutants revealed that pep3(ts) mutants are defective in the endosomal and nonendosomal Golgi to vacuole transport pathways, in the cytoplasm to vacuole targeting pathway, in recycling from the endosome back to the late Golgi, and in endocytosis. PEP3 interacts genetically with two members of the endosomal SNARE complex, PEP12 (t-SNARE) and PEP7 (homologue of mammalian EEA1); Pep3p and Pep5p associate physically with Pep7p as revealed by two-hybrid analysis. Our results suggest that a core Pep3p/Pep5p complex promotes vesicular docking/fusion reactions in conjunction with SNARE proteins at multiple steps in transport routes to the vacuole. We propose that this complex may be responsible for tethering transport vesicles on target membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号