首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The phage lambda-derived Red recombination system is a powerful tool for making targeted genetic changes in Escherichia coli, providing a simple and versatile method for generating insertion, deletion, and point mutations on chromosomal, plasmid, or BAC targets. However, despite the common use of this system, the detailed mechanism by which lambda Red mediates double-stranded DNA recombination remains uncertain. Current mechanisms posit a recombination intermediate in which both 5′ ends of double-stranded DNA are recessed by λ exonuclease, leaving behind 3′ overhangs. Here, we propose an alternative in which lambda exonuclease entirely degrades one strand, while leaving the other strand intact as single-stranded DNA. This single-stranded intermediate then recombines via beta recombinase-catalyzed annealing at the replication fork. We support this by showing that single-stranded gene insertion cassettes are recombinogenic and that these cassettes preferentially target the lagging strand during DNA replication. Furthermore, a double-stranded DNA cassette containing multiple internal mismatches shows strand-specific mutations cosegregating roughly 80% of the time. These observations are more consistent with our model than with previously proposed models. Finally, by using phosphorothioate linkages to protect the lagging-targeting strand of a double-stranded DNA cassette, we illustrate how our new mechanistic knowledge can be used to enhance lambda Red recombination frequency. The mechanistic insights revealed by this work may facilitate further improvements to the versatility of lambda Red recombination.OVER the past decade, lambda Red recombination (“recombineering”) has been used as a powerful technique for making precisely defined insertions, deletions, and point mutations in Escherichia coli, requiring as few as 35 bp of homology on each side of the desired alteration (Thomason et al. 2007a; Sharan et al. 2009). With this system, single-stranded DNA (ssDNA) oligonucleotides have been used to efficiently modify E. coli chromosomal targets (Ellis et al. 2001; Costantino and Court 2003), BACs (Swaminathan et al. 2001), and plasmids (Thomason et al. 2007b), as well as to rapidly optimize a metabolic pathway coding for the production of lycopene (Wang et al. 2009). Furthermore, linear double-stranded DNA (dsDNA) recombineering has been used to replace chromosomal genes (Murphy 1998; Murphy et al. 2000), to disrupt gene function (Datsenko and Wanner 2000), and to develop novel cloning methods (Lee et al. 2001; Li and Elledge 2005). Large-scale dsDNA recombineering projects include creating a library of single-gene knockout E. coli strains (Baba et al. 2006) and removing 15% of the genomic material from a single E. coli strain (Posfai et al. 2006). Linear dsDNA recombineering has also been used to insert heterologous genes and entire pathways into the E. coli chromosome (Zhang et al. 1998; Wang and Pfeifer 2008) and BACs (Lee et al. 2001; Warming et al. 2005), including those used for downstream applications in eukaryotes (Chaveroche et al. 2000; Bouvier and Cheng 2009). However, despite the broad use of this method, the mechanism of lambda Red recombination has not achieved scientific consensus, particularly in the case of dsDNA recombination. A clearer understanding of the mechanism underlying this process could suggest ways to improve the functionality, ease, and versatility of lambda Red recombination.Three phage-derived lambda Red proteins are necessary for carrying out dsDNA recombination: Gam, Exo, and Beta. Gam prevents the degradation of linear dsDNA by the E. coli RecBCD and SbcCD nucleases; lambda exonuclease (Exo) degrades dsDNA in a 5′ to 3′ manner, leaving single-stranded DNA in the recessed regions; and Beta binds to the single-stranded regions produced by Exo and facilitates recombination by promoting annealing to the homologous genomic target site (Sawitzke et al. 2007). Current mechanisms claim that Exo binds to both 5′ ends of the dsDNA and degrades in both directions simultaneously to produce a double-stranded region flanked on both sides by 3′ overhangs (Sharan et al. 2009; Szczepanska 2009). However, a comprehensive explanation of how this construct ultimately recombines with the chromosome has not yet been advanced.Initially, it was proposed that this recombination occurs via strand invasion (Thaler et al. 1987). However, it has more recently been shown that strand invasion is unlikely to be the dominant mechanism in the absence of long regions of homology, as recombination remains highly proficient in a recA- background (Yu et al. 2000). Furthermore, a detailed analysis of lambda Red recombination products showed characteristics consistent with strand annealing rather than a strand invasion model (Stahl et al. 1997). Finally, lambda Red dsDNA recombination has been shown to preferentially target the lagging strand during DNA replication, which suggests strand annealing rather than strand invasion (Lim et al. 2008; Poteete 2008).To explain these results, Court et al. (2002) proposed a strand-annealing model for insertional dsDNA recombination (Figure 1A), in which one single-stranded 3′ end anneals to its homologous target at the replication fork. The replication fork then stalls, due to the presence of a large dsDNA nonhomology (i.e., the insertion cassette). The stalled replication fork is ultimately rescued by the other replication fork traveling in the opposite direction around the circular bacterial chromosome. The other 3′ end of the recombinogenic DNA anneals to the homology region exposed by the second replication fork, forming a crossover structure, which is then resolved by unspecified E. coli enzymes (Court et al. 2002).Open in a separate windowFigure 1.—Previously proposed lambda Red-mediated dsDNA recombination mechanisms. Heterologous dsDNA is shown in green; Exo is an orange oval, and Beta is a yellow oval. In both mechanisms the recombination intermediate is proposed to be a dsDNA core flanked on either side by 3′ ssDNA overhangs. (A) The Court mechanism posits that (1) Beta facilitates annealing of one 3′ overhang to the lagging strand of the replication fork. (2) This replication fork then stalls and backtracks so that the leading strand can template switch onto the synthetic dsDNA. The heterologous dsDNA blocks further replication from this fork. (3) Once the second replication fork reaches the stalled fork, the other 3′ end of the integration cassette is annealed to the lagging strand in the same manner as prior. Finally, the crossover junctions must be resolved by unspecified E. coli enzymes (Court et al. 2002). (B) The Poteete mechanism suggests that (1) Beta facilitates 3′ overhang annealing to the lagging strand of the replication fork and (2) positions the invading strand to serve as the new template for leading-strand synthesis. This structure is resolved by an unspecified host endonuclease (red triangle), and (3) the synthetic dsDNA becomes template for both lagging and leading-strand synthesis. A second template switch must then occur at the other end of the synthetic dsDNA (Poteete 2008). The figure was adapted from the references cited.The Court mechanism was challenged by Poteete (2008), who showed that the dsDNA recombination of a linear lambda phage chromosome occurs readily onto a unidirectionally replicating plasmid, which does not have the second replication fork required by the Court mechanism (Court et al. 2002). Thus, Poteete proposed an alternate mechanism (Poteete 2008), termed “replisome invasion” (Figure 1B), in which a 3′ overhang of the Exo-processed dsDNA first anneals to its complementary sequence on the lagging strand of the recombination target. Subsequently, this overhang displaces the leading strand, thereby serving as the new template for leading-strand synthesis. The resulting structure is resolved by an unspecified endonuclease, after which the recombinogenic DNA becomes the template for the synthesis of both new strands. In the context of recombineering using a linear dsDNA cassette, the author indicates that a second strand-switching event must occur at the other end of the incoming dsDNA.While Poteete''s mechanism addresses some of the weaknesses of the Court mechanism, it remains largely speculative. This mechanism does not identify the endonuclease responsible for resolving the structure after the first template switching event, nor does it explain how the recombinogenic DNA and replication machinery form a new replication fork. Additionally, this template-switching mechanism would have to operate two times in a well-controlled manner, which may not be consistent with the high-recombination frequencies often observed (Murphy et al. 2000) for lambda Red-mediated dsDNA insertion. Finally, little experimental evidence has been advanced to directly support this hypothesis.To address the deficiencies in these mechanisms, we propose that lambda Red dsDNA recombination proceeds via a ssDNA intermediate rather than a dsDNA core flanked by 3′ overhangs (Figure 2). In this mechanism, Exo binds to one of the two dsDNA strands and degrades that strand completely, leaving behind full-length ssDNA. This ssDNA then anneals to its homology target at the lagging strand of the replication fork and is incorporated as part of the newly synthesized strand as if it were an Okazaki fragment. This process is analogous to the accepted mechanism for the lambda Red-mediated recombination of ssDNA oligonucleotides (Court et al. 2002) and, therefore, unifies the mechanisms for ssDNA and dsDNA recombination. Notably, our mechanism uses one replication fork for the incorporation of a full-length heterologous cassette, thereby addressing Poteete''s criticism of the Court mechanism.Open in a separate windowFigure 2.—Lambda Red mediated dsDNA recombination proceeds via a ssDNA intermediate. Instead of a recombination intermediate involving dsDNA flanked by 3′-ssDNA overhangs, we propose that one strand of linear dsDNA is entirely degraded by Exo (orange oval). Beta (yellow oval) then facilitates annealing to the lagging strand of the replication fork in place of an Okazaki fragment. The heterologous region does not anneal to the genomic sequence. This mechanism could account for gene replacement (as shown) or for insertions in which no genomic DNA is removed.The degradation of an entire strand by lambda Exo is feasible, given the highly processive nature of the enzyme (Subramanian et al. 2003). Whereas previously proposed mechanisms assume that both dsDNA ends are degraded approximately simultaneously, our hypothesis implies that some dsDNA molecules will be entirely degraded to ssDNA before a second Exo can bind to the other end. In this article, we demonstrate that single-stranded DNA is a viable recombinogenic intermediate with lagging-strand bias. Furthermore, we show that genetic information from one strand of a recombinogenic dsDNA cassette cosegregates during lambda Red-mediated recombination. These results provide strong support of our proposed mechanism.  相似文献   

2.
Red同源重组技术发展迅速,已广泛应用于大肠杆菌基因组修饰,在点突变、基因敲除、序列整合等方面发挥着重要作用。简要综述了Red同源重组的重组机制和操作策略等研究进展,并介绍了Red同源重组在大肠杆菌基因组减小及多基因代谢途径优化方面的应用情况。  相似文献   

3.
锌指核酸酶(zinc finger nucleases,ZFNs)由3到4个锌指结构(zinc fingers,ZFs)和FokⅠ核酸内切酶的剪切结构域组成。锌指核酸酶(ZFNs)通过锌指结构(ZFs)与特异核酸位点结合,再利用FokⅠ的酶切作用切割DNA,引起特异位点DNA双链断裂(double strand break,DSB)。DNA双链断裂可以通过非同源末端连接(non-homologous end joining,NHEJ) 或同源重组(homologous recombination,HR)来修复。在修复过程中实现对基因组DNA的靶向修饰。介绍了锌指核酸酶结构、人工构建途径,作用机理和试验步骤,重点综述了锌指核酸酶技术在植物基因工程的应用。  相似文献   

4.
Genetic modifications of bacterial chromosomes are important for both fundamental and applied research. In this study, we developed an efficient, easy-to-use system for genetic modification of the Escherichia coli chromosome, a two-plasmid method involving lambda Red (λ-Red) recombination and I-SceI cleavage. An intermediate strain is generated by integration of a resistance marker gene(s) and I-SceI recognition sites in or near the target gene locus, using λ-Red PCR targeting. The intermediate strain is transformed with a donor plasmid carrying the target gene fragment with the desired modification flanked by I-SceI recognition sites, together with a bifunctional helper plasmid for λ-Red recombination and I-SceI endonuclease. I-SceI cleavage of the chromosome and the donor plasmid allows λ-Red recombination between chromosomal breaks and linear double-stranded DNA from the donor plasmid. Genetic modifications are introduced into the chromosome, and the placement of the I-SceI sites determines the nature of the recombination and the modification. This method was successfully used for cadA knockout, gdhA knock-in, seamless deletion of pepD, site-directed mutagenesis of the essential metK gene, and replacement of metK with the Rickettsia S-adenosylmethionine transporter gene. This effective method can be used with both essential and nonessential gene modifications and will benefit basic and applied genetic research.  相似文献   

5.
6.
Escherichia coli only maintains a small amount of cellular malonyl-CoA, impeding its utility for overproducing natural products such as polyketides and flavonoids. Here, we report the use of various metabolic engineering strategies to redirect the carbon flux inside E. coli to pathways responsible for the generation of malonyl-CoA. Overexpression of acetyl-CoA carboxylase (Acc) resulted in 3-fold increase in cellular malonyl-CoA concentration. More importantly, overexpression of Acc showed a synergistic effect with increased acetyl-CoA availability, which was achieved by deletion of competing pathways leading to the byproducts acetate and ethanol as well as overexpression of an acetate assimilation enzyme. These engineering efforts led to the creation of an E. coli strain with 15-fold elevated cellular malonyl-CoA level. To demonstrate its utility, this engineered E. coli strain was used to produce an important polyketide, phloroglucinol, and showed near 4-fold higher titer compared with wild-type E. coli, despite the toxicity of phloroglucinol to cell growth. This engineered E. coli strain with elevated cellular malonyl-CoA level should be highly useful for improved production of important natural products where the cellular malonyl-CoA level is rate-limiting.  相似文献   

7.
An efficient genome-scale editing tool is required for construction of industrially useful microbes. We describe a targeted, continual multigene editing strategy that was applied to the Escherichia coli genome by using the Streptococcus pyogenes type II CRISPR-Cas9 system to realize a variety of precise genome modifications, including gene deletion and insertion, with a highest efficiency of 100%, which was able to achieve simultaneous multigene editing of up to three targets. The system also demonstrated successful targeted chromosomal deletions in Tatumella citrea, another species of the Enterobacteriaceae, with highest efficiency of 100%.  相似文献   

8.
9.
Isolation of the Bacteriophage Lambda Receptor from Escherichia coli   总被引:30,自引:49,他引:30       下载免费PDF全文
A factor which inactivates the phage lambda can be extracted from Escherichia coli. This factor is a protein and is located in the outer membrane of the bacterial envelope. It is found in extracts of strains which are sensitive to phage lambda, but not in extracts of strains specifically resistant to this phage. We conclude that this factor is the lambda receptor, responsible for the specific adsorption of the phage lambda to E. coli cells. A partial purification of the lambda receptor is described. Inactivation of the phage by purified receptor is shown to be accompanied by the release of deoxyribonucleic acid from the phage.  相似文献   

10.
Carcinogenic N-nitrosamines were tested for their ability to induce λ in a lysogenic strain of Escherichia coli K-12 (58-161 F+). Dimethylnitrosamine, di-n-propylnitrosamine, methyl-n-propylnitrosamine, and N-nitrosopiperidine were shown to be inducers of prophage.  相似文献   

11.
Endogenous protein phosphorylation in Escherichia coli extracts   总被引:5,自引:0,他引:5  
The protein kinase activity ofEscherichia coli was analyzed through its ability to phosphorylate endogenous proteins at the expense of adenosine triphosphate in cellular extracts. The nature of the amino acids phosphorylated in these proteins was determined.  相似文献   

12.
To date, most genetic engineering approaches coupling the type II Streptococcus pyogenes clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 system to lambda Red recombineering have involved minor single nucleotide mutations. Here we show that procedures for carrying out more complex chromosomal gene replacements in Escherichia coli can be substantially enhanced through implementation of CRISPR/Cas9 genome editing. We developed a three-plasmid approach that allows not only highly efficient recombination of short single-stranded oligonucleotides but also replacement of multigene chromosomal stretches of DNA with large PCR products. By systematically challenging the proposed system with respect to the magnitude of chromosomal deletion and size of DNA insertion, we demonstrated DNA deletions of up to 19.4 kb, encompassing 19 nonessential chromosomal genes, and insertion of up to 3 kb of heterologous DNA with recombination efficiencies permitting mutant detection by colony PCR screening. Since CRISPR/Cas9-coupled recombineering does not rely on the use of chromosome-encoded antibiotic resistance, or flippase recombination for antibiotic marker recycling, our approach is simpler, less labor-intensive, and allows efficient production of gene replacement mutants that are both markerless and “scar”-less.  相似文献   

13.
Five mutants of Escherichia coli K12 (lam 24, lam 25, lam 26, lam 27 and lam 646) that block head formation of λ are described. In vitro complementation tests and electron microscopy demonstrated that in these bacteria phage tails were produced normally, whereas head formation was abnormal, aberrant head-related structures being produced. In lysates prepared from lam 24, lam 25 and lam 26, monsters and empty heads without tail were the predominant structures, whereas in lysates from lam 27 and lam 646, petit λ and empty heads were the most common structures. The five lam mutations were located in two regions on the bacterial chromosome; lam 24, lam 25 and lam 26 were near the dnaB gene and lam 27 and lam 646 near the lac gene. It was suggested that the former three mutants are new isolates that belong to GroE mutants, whereas the latter two comprise a new group of mutants. Analyses of phage mutants (ov mutants) that overcome the interference by the lam 646 mutation revealed that this mutation blocks normal expression of the gene E of λ.  相似文献   

14.
15.
Nicotinamide adenine dinucleotide (NAD+) is an essential coenzyme involved in numerous physiological processes. As an attractive product in the industrial field, NAD+ also plays an important role in oxidoreductase-catalyzed reactions, drug synthesis, and the treatment of diseases, such as dementia, diabetes, and vascular dysfunction. Currently, although the biotechnology to construct NAD+-overproducing strains has been developed, limited regulation and low productivity still hamper its use on large scales. Here, we describe multi-strategy metabolic engineering to address the NAD+-production bottleneck in E. coli. First, blocking the degradation pathway of NAD(H) increased the accumulation of NAD+ by 39%. Second, key enzymes involved in the Preiss-Handler pathway of NAD+ synthesis were overexpressed and led to a 221% increase in the NAD+ concentration. Third, the PRPP synthesis module and Preiss-Handler pathway were combined to strengthen the precursors supply, which resulted in enhancement of NAD+ content by 520%. Fourth, increasing the ATP content led to an increase in the concentration of NAD+ by 170%. Finally, with the combination of all above strategies, a strain with a high yield of NAD+ was constructed, with the intracellular NAD+ concentration reaching 26.9 μmol/g DCW, which was 834% that of the parent strain. This study presents an efficient design of an NAD+-producing strain through global regulation metabolic engineering.  相似文献   

16.
Previous studies have demonstrated the feasibility of producing fatty-acid-derived hydrocarbons in Escherichia coli. However, product titers and yields remain low. In this work, we demonstrate new methods for improving fatty acid production by modifying central carbon metabolism and storing fatty acids in triacylglycerol. Based on suggestions from a computational model, we deleted seven genes involved in aerobic respiration, mixed-acid fermentation, and glyoxylate bypass (in the order of cyoA, nuoA, ndh, adhE, dld, pta, and iclR) to modify the central carbon metabolic/regulatory networks. These gene deletions led to increased total fatty acids, which were the highest in the mutants containing five or six gene knockouts. Additionally, when two key enzymes in the fatty acid biosynthesis pathway were over-expressed, we observed further increase in strain △cyoAadhEnuoAndhptadld, leading to 202 mg/g dry cell weight of total fatty acids, ~250% of that in the wild-type strain. Meanwhile, we successfully introduced a triacylglycerol biosynthesis pathway into E. coli through heterologous expression of wax ester synthase/acyl-coenzyme:diacylglycerol acyltransferase (WS/DGAT) enzymes. The added pathway improved both the amount and fuel quality of the fatty acids. These new metabolic engineering strategies are providing promising directions for future investigation.  相似文献   

17.
Escherichia coli B strains that have acquired the malB region from E. coli K-12 are able to utilize maltose and to adsorb phage lambda when grown at 30 C, but when grown at 40 C they do not absorb phage lambda and are devoid of amylomaltase activity. These Mal(ts) Lam(ts) cells can be mutated or transduced to become able to grow on maltose at 40 C, but they still have no detectable amylomaltase activity nor functional lambda receptors at that temperature. This Mal(40) phenotype is governed by a gene located near or at malA. It is suggested that the temperature sensitivity of both characters results from a defect in malT. However, transduction of malA from E. coli B to E. coli K-12 results in a wild-type phenotype, whereas E. coli B cells that have acquired malA from E. coli K-12 donors are still temperature sensitive for both amylomaltase and lambda-receptor production.  相似文献   

18.
We have analysed the complete sequence of the Escherichia coli K12 isolate MG1655 genome for chromatin-associated protein binding sites, and compared the predicted location of predicted sites with experimental expression data from 'DNA chip' experiments. Of the dozen proteins associated with chromatin in E. coli, only three have been shown to have significant binding preferences: integration host factor (IHF) has the strongest binding site preference, and FIS sites show a weak consensus, and there is no clear consensus site for binding of the H-NS protein. Using hidden Markov models (HMMs), we predict the location of 608 IHF sites, scattered throughout the genome. A subset of the IHF sites associated with repeats tends to be clustered around the origin of replication. We estimate there could be roughly 6000 FIS sites in E. coli, and the sites tend to be localised in two regions flanking the replication termini. We also show that the regions upstream of genes regulated by H-NS are more curved and have a higher AT content than regions upstream of other genes. These regions in general would also be localised near the replication terminus.  相似文献   

19.
20.
Multiplex genome engineering is a standalone recombineering tool for large-scale programming and accelerated evolution of cells. However, this advanced genome engineering technique has been limited to use in selected bacterial strains. We developed a simple and effective strain-independent method for effective genome engineering in Escherichia coli. The method involves introducing a suicide plasmid carrying the λ Red recombination system into the mutS gene. The suicide plasmid can be excised from the chromosome via selection in the absence of antibiotics, thus allowing transient inactivation of the mismatch repair system during genome engineering. In addition, we developed another suicide plasmid that enables integration of large DNA fragments into the lacZ genomic locus. These features enable this system to be applied in the exploitation of the benefits of genome engineering in synthetic biology, as well as the metabolic engineering of different strains of E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号