首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
How social-living animals make collective decisions is currently the subject of intense scientific interest, with increasing focus on the role of individual variation within the group. Previously, we demonstrated that during paired flight in homing pigeons, a fully transitive leadership hierarchy emerges as birds are forced to choose between their own and their partner''s habitual routes. This stable hierarchy suggests a role for individual differences mediating leadership decisions within homing pigeon pairs. What these differences are, however, has remained elusive. Using novel quantitative techniques to analyse habitual route structure, we show here that leadership can be predicted from prior route-following fidelity. Birds that are more faithful to their own route when homing alone are more likely to emerge as leaders when homing socially. We discuss how this fidelity may relate to the leadership phenomenon, and propose that leadership may emerge from the interplay between individual route confidence and the dynamics of paired flight.  相似文献   

2.
Virtual environments are becoming ubiquitous, and used in a variety of contexts–from entertainment to training and rehabilitation. Recently, technology for making them more accessible to blind or visually impaired users has been developed, by using sound to represent visual information. The ability of older individuals to interpret these cues has not yet been studied. In this experiment, we studied the effects of age and sensory modality (visual or auditory) on navigation through a virtual maze. We added a layer of complexity by conducting the experiment in a rotating room, in order to test the effect of the spatial bias induced by the rotation on performance. Results from 29 participants showed that with the auditory cues, it took participants a longer time to complete the mazes, they took a longer path length through the maze, they paused more, and had more collisions with the walls, compared to navigation with the visual cues. The older group took a longer time to complete the mazes, they paused more, and had more collisions with the walls, compared to the younger group. There was no effect of room rotation on the performance, nor were there any significant interactions among age, feedback modality and room rotation. We conclude that there is a decline in performance with age, and that while navigation with auditory cues is possible even at an old age, it presents more challenges than visual navigation.  相似文献   

3.
Zimmer U  Macaluso E 《Neuron》2005,47(6):893-905
Our brain continuously receives complex combinations of sounds originating from different sources and relating to different events in the external world. Timing differences between the two ears can be used to localize sounds in space, but only when the inputs to the two ears have similar spectrotemporal profiles (high binaural coherence). We used fMRI to investigate any modulation of auditory responses by binaural coherence. We assessed how processing of these cues depends on whether spatial information is task relevant and whether brain activity correlates with subjects' localization performance. We found that activity in Heschl's gyrus increased with increasing coherence, irrespective of whether localization was task relevant. Posterior auditory regions also showed increased activity for high coherence, primarily when sound localization was required and subjects successfully localized sounds. We conclude that binaural coherence cues are processed throughout the auditory cortex and that these cues are used in posterior regions for successful auditory localization.  相似文献   

4.
Accurate auditory localization relies on neural computations based on spatial cues present in the sound waves at each ear. The values of these cues depend on the size, shape, and separation of the two ears and can therefore vary from one individual to another. As with other perceptual skills, the neural circuits involved in spatial hearing are shaped by experience during development and retain some capacity for plasticity in later life. However, the factors that enable and promote plasticity of auditory localization in the adult brain are unknown. Here we show that mature ferrets can rapidly relearn to localize sounds after having their spatial cues altered by reversibly occluding one ear, but only if they are trained to use these cues in a behaviorally relevant task, with greater and more rapid improvement occurring with more frequent training. We also found that auditory adaptation is possible in the absence of vision or error feedback. Finally, we show that this process involves a shift in sensitivity away from the abnormal auditory spatial cues to other cues that are less affected by the earplug. The mature auditory system is therefore capable of adapting to abnormal spatial information by reweighting different localization cues. These results suggest that training should facilitate acclimatization to hearing aids in the hearing impaired.  相似文献   

5.
It is often unclear which factor plays a more critical role in determining a group's performance: the diversity among members of the group or their individual abilities. In this study, we addressed this "diversity vs. ability" issue in a decision-making task. We conducted three simulation studies in which we manipulated agents' individual ability (or accuracy, in the context of our investigation) and group diversity by varying (1) the heuristics agents used to search task-relevant information (i.e., cues); (2) the size of their groups; (3) how much they had learned about a good cue search order; and (4) the magnitude of errors in the information they searched. In each study, we found that a manipulation reducing agents' individual accuracy simultaneously increased their group's diversity, leading to a conflict between the two. These conflicts enabled us to identify certain conditions under which diversity trumps individual accuracy, and vice versa. Specifically, we found that individual accuracy is more important in task environments in which cues differ greatly in the quality of their information, and diversity matters more when such differences are relatively small. Changing the size of a group and the amount of learning by an agent had a limited impact on this general effect of task environment. Furthermore, we found that a group achieves its highest accuracy when there is an intermediate amount of errors in the cue information, regardless of the environment and the heuristic used, an effect that we believe has not been previously reported and warrants further investigation.  相似文献   

6.
This study examined task specific effects of third-party ostracism on imitative fidelity in early childhood (N = 96, 3–6-year-olds). Start- and end-states of action sequences were manipulated to examine the effects of priming third-party ostracism versus affiliation on children's imitation of instrumental (i.e., action sequence with a different start- and end-state) versus social convention (i.e., action sequence with an identical start- and end-state) tasks. Children's performance was coded for imitative fidelity and children's explanations for their behavior. As predicted, imitative fidelity was highest and social convention explanations were most common when primed with ostracism in the social convention task. The data are consistent with our proposal that imitation serves an affiliative function in response to the threat of ostracism, a response amplified for social conventions.  相似文献   

7.
For songbirds, experience with conspecific vocalizations during development is important for the ontogeny of both production of vocalizations and perceptual abilities in young oscines. We examined the effects of reduced experience with conspecific vocalizations during development on two auditory perceptual tasks: discrimination of distance cues and discrimination between individual vocalizations in black-capped chickadees, Poecile atricapillus. Discrimination of distance cues was nearly identical in field- and isolate-reared chickadees, but the capacity for memorization of numbers of individual vocalizations was lower in isolate-reared chickadees. We conclude that discrimination of distance cues, and thus distance perception, is probably not learned through experience but is an innate skill. We also conclude that discrimination between many individual vocalizations, a task demanding memorization, is aided by early experience with conspecific vocalizations.Copyright 2003 Published by Elsevier Science Ltd on behalf of The Association for the Study of Animal Behaviour.   相似文献   

8.
Nest-site fidelity and breeding success in White Stork Ciconia ciconia   总被引:1,自引:0,他引:1  
Nest-site fidelity is a life-history trait of birds that may produce benefits in terms of fitness. We studied the relationship between breeding success and nest fidelity in the White Stork Ciconia ciconia . We also studied how other factors such as age, sex, habitat, colony size and productivity in previous breeding attempts might interfere with this relationship. Our results showed that pairs with higher fidelity rates also have lower failure rates, and that breeding failure and productivity in the previous season influenced the frequency of nest change in the following season. In addition, a curvilinear relationship was found between age and nest fidelity. These results suggest that age is a major factor related to nest fidelity and therefore individual experience could explain this behaviour in the White Stork. Changing the nest involves a reproductive cost for which nest fidelity can be considered as an adaptive strategy to increase fitness.  相似文献   

9.
The present study examined the effects of spatial sound-source density and reverberation on the spatiotemporal window for audio-visual motion coherence. Three different acoustic stimuli were generated in Virtual Auditory Space: two acoustically “dry” stimuli via the measurement of anechoic head-related impulse responses recorded at either 1° or 5° spatial intervals (Experiment 1), and a reverberant stimulus rendered from binaural room impulse responses recorded at 5° intervals in situ in order to capture reverberant acoustics in addition to head-related cues (Experiment 2). A moving visual stimulus with invariant localization cues was generated by sequentially activating LED''s along the same radial path as the virtual auditory motion. Stimuli were presented at 25°/s, 50°/s and 100°/s with a random spatial offset between audition and vision. In a 2AFC task, subjects made a judgment of the leading modality (auditory or visual). No significant differences were observed in the spatial threshold based on the point of subjective equivalence (PSE) or the slope of psychometric functions (β) across all three acoustic conditions. Additionally, both the PSE and β did not significantly differ across velocity, suggesting a fixed spatial window of audio-visual separation. Findings suggest that there was no loss in spatial information accompanying the reduction in spatial cues and reverberation levels tested, and establish a perceptual measure for assessing the veracity of motion generated from discrete locations and in echoic environments.  相似文献   

10.
How animals use their range can have physiological, ecological, and demographic repercussions, as well as impact management decisions, species conservation, and human society. Fidelity, the predictable return to certain places, can improve fitness if it is associated with high‐quality habitat or helps enable individuals to locate heterogenous patches of higher‐quality habitat within a lower‐quality habitat matrix. Our goal was to quantify patterns of fidelity at different spatial scales to better understand the relative plasticity of habitat use of a vital subsistence species that undergoes long‐distance migrations. We analyzed a decade (2010–2019) of GPS data from 240 adult, female Western Arctic Herd (WAH) caribou (Rangifer tarandus) from northwest Alaska, U.S.A. We assessed fidelity at 2 spatial scales: to site‐specific locations within seasonal ranges and to regions within the herd''s entire range by using 2 different null datasets. We assessed both area and consistency of use during 6 different seasons of the year. We also assessed the temporal consistency of migration and calving events. At the scale of the overall range, we found that caribou fidelity was greatest during the calving and insect relief (early summer) seasons, where the herd tended to maximally aggregate in the smallest area, and lowest in winter when the seasonal range is largest. However, even in seasons with lower fidelity, we found that caribou still showed fidelity to certain regions within the herd''s range. Within those seasonal ranges, however, there was little individual site‐specific fidelity from year to year, with the exception of summer periods. Temporally, we found that over 90% of caribou gave birth within 7 days of the day they gave birth the previous year. This revealed fairly high temporal consistency, especially given the spatial and temporal variability of spring migration. Fall migration exhibited greater temporal variability than spring migration. Our results support the hypothesis that higher fidelity to seasonal ranges is related to greater environmental and resource predictability. Interestingly, this fidelity was stronger at larger scales and at the population level. Almost the entire herd would seek out these areas with predictable resources, and then, individuals would vary their use, likely in response to annually varying conditions. During seasons with lower presumed spatial and/or temporal predictability of resources, population‐level fidelity was lower but individual fidelity was higher. The herd would be more spread out during the seasons of low‐resource predictability, leading to lower fidelity at the scale of their entire range, but individuals could be closer to locations they used the previous year, leading to greater individual fidelity, perhaps resulting from memory of a successful outcome the previous year. Our results also suggest that fidelity in 1 season is related to fidelity in the subsequent season. We hypothesize that some differences in patterns of range fidelity may be driven by seasonal differences in group size, degree of sociality, and/or density‐dependent factors. Climate change may affect resource predictability and, thus, the spatial fidelity and temporal consistency of use of animals to certain seasonal ranges.  相似文献   

11.
Anodal transcranial direct current stimulation (tDCS) over the primary motor cortex (M1) has been proposed as a possible therapeutic rehabilitation technique for motor impairment. However, despite extensive investigation into the effects of anodal tDCS on motor output, there is little information on how anodal tDCS affects response processes. In this study, we used a cued go/nogo task with both directional and non-directional cues to assess the effects of anodal tDCS over the dominant (left) primary motor cortex on prepared and unprepared motor responses. Three experiments explored whether the effectiveness of tDCS varied with timing between stimulation and test. Healthy, right-handed young adults participated in a double-blind randomised controlled design with crossover of anodal tDCS and sham stimulation. In Experiment 1, twenty-four healthy young adults received anodal tDCS over dominant M1 at least 40 mins before task performance. In Experiment 2, eight participants received anodal tDCS directly before task performance. In Experiment 3, twenty participants received anodal tDCS during task performance. In all three experiments, participants responded faster to directional compared to non-directional cues and with their right hand. However, anodal tDCS had no effect on go/nogo task performance at any stimulation – test interval. Bayesian analysis confirmed that anodal stimulation had no effect on response speed. We conclude that anodal tDCS over M1 does not improve response speed of prepared or unprepared responses of young adults in a go/nogo task.  相似文献   

12.
Anecdotally, middle-aged listeners report difficulty conversing in social settings, even when they have normal audiometric thresholds [1-3]. Moreover, young adult listeners with "normal" hearing vary in their ability to selectively attend to speech amid similar streams of speech. Ignoring age, these individual differences correlate with physiological differences in temporal coding precision present in the auditory brainstem, suggesting that the fidelity of encoding of suprathreshold sound helps explain individual differences [4]. Here, we revisit the conundrum of whether early aging influences an individual's ability to communicate in everyday settings. Although absolute selective attention ability is not predicted by age, reverberant energy interferes more with selective attention as age increases. Breaking the brainstem response down into components corresponding to coding of?stimulus fine structure and envelope, we find that age alters which brainstem component predicts performance. Specifically, middle-aged listeners appear to rely heavily on temporal fine structure, which is more disrupted by reverberant energy than temporal envelope structure is. In contrast, the fidelity of envelope cues predicts performance in younger adults. These results hint that temporal envelope cues influence spatial hearing in reverberant settings more than is commonly appreciated and help explain why middle-aged listeners have particular difficulty communicating in daily life.  相似文献   

13.
We investigate the effect that noise has on the evolution of measurement strategies and competition in populations of organisms with sensory systems of differing fidelities. We address two questions motivated by experimental and theoretical work on sensory systems in noisy environments: (1) How complex must a sensory system be in order to face the need to develop adaptive measurement strategies that change depending on the noise level? (2) Does the principle of competitive exclusion for sensory systems force one population to win out over all others? We find that the answer to the first question is that even very simple sensory systems will need to change measurement strategies depending on the amount of noise in the environment. Interestingly, the answer to the second question is that, in general, at most two populations with different fidelity sensory systems may co-exist within a single environment.  相似文献   

14.
Odor supported place cell model and goal navigation in rodents   总被引:1,自引:1,他引:0  
Experiments with rodents demonstrate that visual cues play an important role in the control of hippocampal place cells and spatial navigation. Nevertheless, rats may also rely on auditory, olfactory and somatosensory stimuli for orientation. It is also known that rats can track odors or self-generated scent marks to find a food source. Here we model odor supported place cells by using a simple feed-forward network and analyze the impact of olfactory cues on place cell formation and spatial navigation. The obtained place cells are used to solve a goal navigation task by a novel mechanism based on self-marking by odor patches combined with a Q-learning algorithm. We also analyze the impact of place cell remapping on goal directed behavior when switching between two environments. We emphasize the importance of olfactory cues in place cell formation and show that the utility of environmental and self-generated olfactory cues, together with a mixed navigation strategy, improves goal directed navigation.  相似文献   

15.
The aim of this study was to verify the contribution of haptic and auditory cues in the quick discrimination of an object mass. Ten subjects had to brake with the right hand the movement of a cup due to the falling impact of an object that could be of two different masses. They were asked to perform a quick left hand movement if the object was of the prescribed mass according to the proprioceptive and auditory cues they received from object contact with the cup and did not react to the other object. Three conditions were established: with both proprioceptive and auditory cues, only with proprioceptive cue or only with an auditory cue. When proprioceptive information was available subjects advanced responses time to the impact of the heavy object as compared with that of the light object. The addition of an auditory cue did not improve the advancement for the heavy object. We conclude that when a motor response has to be chosen according to different combinations of auditory and proprioceptive load-related information, subjects used mainly haptic information to fast respond and that auditory cues do not add relevant information that could ameliorate the quickness of a correct response.  相似文献   

16.
Many sound sources can only be recognised from the pattern of sounds they emit, and not from the individual sound events that make up their emission sequences. Auditory scene analysis addresses the difficult task of interpreting the sound world in terms of an unknown number of discrete sound sources (causes) with possibly overlapping signals, and therefore of associating each event with the appropriate source. There are potentially many different ways in which incoming events can be assigned to different causes, which means that the auditory system has to choose between them. This problem has been studied for many years using the auditory streaming paradigm, and recently it has become apparent that instead of making one fixed perceptual decision, given sufficient time, auditory perception switches back and forth between the alternatives—a phenomenon known as perceptual bi- or multi-stability. We propose a new model of auditory scene analysis at the core of which is a process that seeks to discover predictable patterns in the ongoing sound sequence. Representations of predictable fragments are created on the fly, and are maintained, strengthened or weakened on the basis of their predictive success, and conflict with other representations. Auditory perceptual organisation emerges spontaneously from the nature of the competition between these representations. We present detailed comparisons between the model simulations and data from an auditory streaming experiment, and show that the model accounts for many important findings, including: the emergence of, and switching between, alternative organisations; the influence of stimulus parameters on perceptual dominance, switching rate and perceptual phase durations; and the build-up of auditory streaming. The principal contribution of the model is to show that a two-stage process of pattern discovery and competition between incompatible patterns can account for both the contents (perceptual organisations) and the dynamics of human perception in auditory streaming.  相似文献   

17.
Chimpanzee cognition has been studied predominantly through the visual modality, and much less through the auditory modality. The aim of this study was to explore possible differences in chimpanzees’ processing of visual and auditory stimuli. We developed a new conditional position discrimination (CPD) task requiring the association between a stimulus (from either the auditory or the visual modality), and a spatial position (left or right). The stimuli consisted of the face and voice of two individuals well known to the subjects (one chimpanzee and one human). Six chimpanzees participated in both the visual and the auditory conditions. We found contrasting results between the two conditions: the subjects acquired the CPD more easily in the visual than in the auditory condition. This supports previous findings on the difficulties encountered by chimpanzees in learning tasks involving auditory stimuli. Our experiments also revealed individual differences: the chimpanzee with the most extensive experience in symbolic visual matching tasks showed good performance in both conditions. In contrast, the chimpanzee expert in an auditory-visual intermodal matching task showed no sign of learning in either condition. Future work should focus on finding the most appropriate procedure for exploring chimpanzees’ auditory-visual cognitive skills.  相似文献   

18.
Association patterns and shoal fidelity in the three-spined stickleback   总被引:3,自引:0,他引:3  
We investigated pairwise association patterns and shoal fidelity in free-ranging, individual three-spine sticklebacks (Gasterosteus aculeatus) by capturing entire shoals of sticklebacks and tagging each shoal member with a unique individual mark before releasing the shoal at the point of capture. We recaptured tagged fishes in the study area on five subsequent days, noting their identity, their location and the individuals with which they were associated. Stable partner associations between fishes were observed which might provide the basis for shoal fidelity via social networks. These results suggest the potential for the kinds of inter-individual association patterns assumed by models of predator inspection and 'tit-for-tat' behaviours in free-ranging fishes.  相似文献   

19.
Using fluorescence in situ hybridisation (FISH) we have analysed the segregational fidelity of all the human chromosomes during mitotic cell division. The losses and gains of chromosomes were analysed in human polyploid cell lines derived from a well-differentiated papillary thyroid cancer. These thyroid cells can be cultured for more than 300 population doublings. For the purpose of our study the polyploid nature of the cells may act as a protective buffer against the cell-lethal effects of the loss of individual chromosomes. To evaluate the role of the p53 gene product in maintaining the fidelity of chromosome segregation we compared the frequencies of chromosome loss and gain in cultures with wild-type p53 activity (K1E7neo3) and cultures transfected with plasmids expressing a mutant p53 product (K1E7scx6). Cultures were analysed for the presence of both structurally normal and rearranged chromosomes at both early and late passages. Cell cultures with defective p53 activity showed progressive chromosome loss from a median chromosome number of 87–97 to 75–86. Cell growth in cultures with wild-type p53 activity showed the loss of chromosomes 6, 7, and 8 and the gain of 17 and 20. Cultures expressing mutant p53 activity showed the loss of chromosomes 2, 5, 14 and 17 and the gain of 4 and 22. The combination of defective p53 and growth resulted in further destabilisation with the additional losses of chromosomes 3, 11, 15, 16 and 21. Chromosomes 1, 9, 10, 12, 13, 18, 19, X and Y segregated stably under all the culture conditions as did the structurally rearranged marker chromosomes. The study has demonstrated variation in the fidelity of mitotic chromosome segregation and the influence of p53 gene activity upon the segregation of individual human chromosomes. Received: 7 August 1998; in revised form: 28 August 1998 / Accepted: 29 August 1998  相似文献   

20.

Background

When stimuli are presented over headphones, they are typically perceived as internalized; i.e., they appear to emanate from inside the head. Sounds presented in the free-field tend to be externalized, i.e., perceived to be emanating from a source in the world. This phenomenon is frequently attributed to reverberation and to the spectral characteristics of the sounds: those sounds whose spectrum and reverberation matches that of free-field signals arriving at the ear canal tend to be more frequently externalized. Another factor, however, is that the virtual location of signals presented over headphones moves in perfect concert with any movements of the head, whereas the location of free-field signals moves in opposition to head movements. The effects of head movement have not been systematically disentangled from reverberation and/or spectral cues, so we measured the degree to which movements contribute to externalization.

Methodology/Principal Findings

We performed two experiments: 1) Using motion tracking and free-field loudspeaker presentation, we presented signals that moved in their spatial location to match listeners’ head movements. 2) Using motion tracking and binaural room impulse responses, we presented filtered signals over headphones that appeared to remain static relative to the world. The results from experiment 1 showed that free-field signals from the front that move with the head are less likely to be externalized (23%) than those that remain fixed (63%). Experiment 2 showed that virtual signals whose position was fixed relative to the world are more likely to be externalized (65%) than those fixed relative to the head (20%), regardless of the fidelity of the individual impulse responses.

Conclusions/Significance

Head movements play a significant role in the externalization of sound sources. These findings imply tight integration between binaural cues and self motion cues and underscore the importance of self motion for spatial auditory perception.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号