首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Active vibrissal touch can be used to replace or to supplement sensory systems such as computer vision and, therefore, improve the sensory capacity of mobile robots. This paper describes how arrays of whisker-like touch sensors have been incorporated onto mobile robot platforms taking inspiration from biology for their morphology and control. There were two motivations for this work: first, to build a physical platform on which to model, and therefore test, recent neuroethological hypotheses about vibrissal touch; second, to exploit the control strategies and morphology observed in the biological analogue to maximize the quality and quantity of tactile sensory information derived from the artificial whisker array. We describe the design of a new whiskered robot, Shrewbot, endowed with a biomimetic array of individually controlled whiskers and a neuroethologically inspired whisking pattern generation mechanism. We then present results showing how the morphology of the whisker array shapes the sensory surface surrounding the robot's head, and demonstrate the impact of active touch control on the sensory information that can be acquired by the robot. We show that adopting bio-inspired, low latency motor control of the rhythmic motion of the whiskers in response to contact-induced stimuli usefully constrains the sensory range, while also maximizing the number of whisker contacts. The robot experiments also demonstrate that the sensory consequences of active touch control can be usefully investigated in biomimetic robots.  相似文献   

2.
Nearly all mammals have a vibrissal system specialized for tactile sensation, composed of whiskers growing from sensor-rich follicles in the skin. When a whisker deflects against an object, it deforms within the follicle and exerts forces on the mechanoreceptors inside. In addition, during active whisking behavior, muscle contractions around the follicle and increases in blood pressure in the ring sinus will affect the whisker deformation profile. To date, however, it is not yet possible to experimentally measure how the whisker deforms in an intact follicle or its effects on different groups of mechanoreceptors. The present study develops a novel model to predict vibrissal deformation within the follicle sinus complex. The model is based on experimental results from a previous ex vivo study on whisker deformation within the follicle, and on a new histological analysis of follicle tissue. It is then used to simulate whisker deformation within the follicle during passive touch and active whisking. Results suggest that the most likely whisker deformation profile is “S-shaped,” crossing the midline of the follicle right below the ring sinus. Simulations of active whisking indicate that an increase in overall muscle stiffness, an increase in the ratio between deep and superficial intrinsic muscle stiffness, and an increase in sinus blood pressure will all enhance tactile sensitivity. Finally, we discuss how the deformation profiles might map to the responses of primary afferents of each mechanoreceptor type. The mechanical model presented in this study is an important first step in simulating mechanical interactions within whisker follicles.  相似文献   

3.
In all sensory modalities, the data acquired by the nervous system is shaped by the biomechanics, material properties, and the morphology of the peripheral sensory organs. The rat vibrissal (whisker) system is one of the premier models in neuroscience to study the relationship between physical embodiment of the sensor array and the neural circuits underlying perception. To date, however, the three-dimensional morphology of the vibrissal array has not been characterized. Quantifying array morphology is important because it directly constrains the mechanosensory inputs that will be generated during behavior. These inputs in turn shape all subsequent neural processing in the vibrissal-trigeminal system, from the trigeminal ganglion to primary somatosensory ("barrel") cortex. Here we develop a set of equations for the morphology of the vibrissal array that accurately describes the location of every point on every whisker to within ±5% of the whisker length. Given only a whisker's identity (row and column location within the array), the equations establish the whisker's two-dimensional (2D) shape as well as three-dimensional (3D) position and orientation. The equations were developed via parameterization of 2D and 3D scans of six rat vibrissal arrays, and the parameters were specifically chosen to be consistent with those commonly measured in behavioral studies. The final morphological model was used to simulate the contact patterns that would be generated as a rat uses its whiskers to tactually explore objects with varying curvatures. The simulations demonstrate that altering the morphology of the array changes the relationship between the sensory signals acquired and the curvature of the object. The morphology of the vibrissal array thus directly constrains the nature of the neural computations that can be associated with extraction of a particular object feature. These results illustrate the key role that the physical embodiment of the sensor array plays in the sensing process.  相似文献   

4.
In rats, the long facial whiskers (mystacial macrovibrissae) are repetitively and rapidly swept back and forth during exploration in a behaviour known as 'whisking'. In this paper, we summarize previous evidence from rats, and present new data for rat, mouse and the marsupial grey short-tailed opossum (Monodelphis domestica) showing that whisking in all three species is actively controlled both with respect to movement of the animal's body and relative to environmental structure. Using automatic whisker tracking, and Fourier analysis, we first show that the whisking motion of the mystacial vibrissae, in the horizontal plane, can be approximated as a blend of two sinusoids at the fundamental frequency (mean 8.5, 11.3 and 7.3 Hz in rat, mouse and opossum, respectively) and its second harmonic. The oscillation at the second harmonic is particularly strong in mouse (around 22 Hz) consistent with previous reports of fast whisking in that species. In all three species, we found evidence of asymmetric whisking during head turning and following unilateral object contacts consistent with active control of whisker movement. We propose that the presence of active vibrissal touch in both rodents and marsupials suggests that this behavioural capacity emerged at an early stage in the evolution of therian mammals.  相似文献   

5.
Rats sweep their facial whiskers back and forth to generate tactile sensory information through contact with environmental structure. The neural processes operating on the signals arising from these whisker contacts are widely studied as a model of sensing in general, even though detailed knowledge of the natural circumstances under which such signals are generated is lacking. We used digital video tracking and wireless recording of mystacial electromyogram signals to assess the effects of whisker-object contact on whisking in freely moving animals exploring simple environments. Our results show that contact leads to reduced protraction (forward whisker motion) on the side of the animal ipsilateral to an obstruction and increased protraction on the contralateral side. Reduced ipsilateral protraction occurs rapidly and in the same whisk cycle as the initial contact. We conclude that whisker movements are actively controlled so as to increase the likelihood of environmental contacts while constraining such interactions to involve a gentle touch. That whisking pattern generation is under strong feedback control has important implications for understanding the nature of the signals reaching upstream neural processes.  相似文献   

6.
Activity-dependent adaptive changes in the nervous system involve structural and functional changes in the cortical circuitry. In this work the cortical function was studied by repeated recording of the somatosensory and motor potentials evoked by whisker deflections after altered sensory-motor experience in adult mice. The latencies of motor and somatosensory evoked potentials were found to shorten, while their amplitudes decreased, after a behavioural challenge involving the vibrissal apparatus. Sensory deprivation achieved by whisker trimming resulted in a partial reversal of the changes observed after increased activity. The derived parameters imply that cortical information processing speeds up as a result of experience, while decreased activity has the opposite effect. The methods used throughout the experiment were minimally invasive, and thus proved to be sufficient for the long-term follow-up of cortical functions.  相似文献   

7.
Rodent whisking behavior provides active touch as input into a widely studied model system of information processing and behavior. We previously developed a simple optoelectronic system to monitor whisker movements in "real time" in head held rats at rest or performing various tasks such as tactile discrimination. We now describe a simple piezioelectic film device for detecting initial whisker contacts during whisking also in real time. In some applications this is as effective as high-speed videos and can be configured to isolate the contacts from different whiskers. The construction of this simple device is detailed. In addition to providing information during recordings from awake animals, the device could be used, for example, as an operant "manipulandum" for contingent reinforcement of object detection with a whisker.  相似文献   

8.
9.
Whisking mediated touch is an active sense whereby whisker movements are modulated by sensory input and behavioral context. Here we studied the effects of touching an object on whisking in head-fixed rats. Simultaneous movements of whiskers C1, C2, and D1 were tracked bilaterally and their movements compared. During free-air whisking, whisker protractions were typically characterized by a single acceleration-deceleration event, whisking amplitude and velocity were correlated, and whisk duration correlated with neither amplitude nor velocity. Upon contact with an object, a second acceleration-deceleration event occurred in about 25% of whisk cycles, involving both contacting (C2) and non-contacting (C1, D1) whiskers ipsilateral to the object. In these cases, the rostral whisker (C2) remained in contact with the object throughout the double-peak phase, which effectively prolonged the duration of C2 contact. These “touch-induced pumps” (TIPs) were detected, on average, 17.9 ms after contact. On a slower time scale, starting at the cycle following first touch, contralateral amplitude increased while ipsilateral amplitude decreased. Our results demonstrate that sensory-induced motor modulations occur at various timescales, and directly affect object palpation.  相似文献   

10.
Rats repeatedly sweep their facial whiskers back and forth in order to explore their environment. Such explorative whisking appears to be driven by central pattern generators (CPGs) that operate independently of direct sensory feedback. Nevertheless, whisking can be modulated by sensory feedback, and it has been hypothesized that some of this modulation already occurs within the brainstem. However, the interaction between sensory feedback and CPG activity is poorly understood. Using the visual language of statecharts, a dynamic, bottom-up computerized model of the brainstem loop of the whisking system was built in order to investigate the interaction between sensory feedback and CPG activity during whisking behavior. As a benchmark, we used a previously quantified closed-loop phenomenon of the whisking system, touched-induced pump (TIP), which is thought to be mediated by the brainstem loop. First, we showed that TIPs depend on sensory feedback, by comparing TIP occurrence in intact rats with that in rats whose sensory nerve was experimentally cut. We then inspected several possible feedback mechanisms of TIPs using our model. The model ruled out all hypothesized mechanisms but one, which adequately simulated the corresponding motion observed in the rat. Results of the simulations suggest that TIPs are generated via sensory feedback that activates extrinsic retractor muscles in the mystacial pad. The model further predicted that in addition to the touching whisker, all whiskers found on the same side of the snout should exhibit a TIP. We present experimental results that confirm the predicted movements in behaving rats, establishing the validity of the hypothesized interaction between sensory feedback and CPG activity we suggest here for the generation of TIPs in the whisking system.  相似文献   

11.
The first central stage of electrosensory processing in fish takes place in structures with local circuitry that resembles the cerebellum. Cerebellum-like structures and the cerebellum itself share common patterns of gene expression and may also share developmental and evolutionary origins. Given these similarities it is natural to ask whether insights gleaned from the study of cerebellum-like structures might be useful for understanding aspects of cerebellar function and vice versa. Work from electrosensory systems has shown that cerebellum-like circuitry acts to generate learned predictions about the sensory consequences of the animals’ own behavior through a process of associative plasticity at parallel fiber synapses. Subtraction of these predictions from the actual sensory input serves to highlight unexpected and hence behaviorally relevant features. Learning and prediction are also central to many current ideas regarding the function of the cerebellum itself. The present review draws comparisons between cerebellum-like structures and the cerebellum focusing on the properties and sites of synaptic plasticity in these structures and on connections between plasticity and learning. Examples are drawn mainly from the electrosensory lobe (ELL) of mormyrid fish and from extensive work characterizing the role of the cerebellum in Pavlovian eyelid conditioning and vestibulo-ocular reflex (VOR) modification. Parallels with other cerebellum-like structures, including the gymnotid ELL, the elasmobranch dorsal octavolateral nucleus (DON), and the mammalian dorsal cochlear nucleus (DCN) are also discussed.  相似文献   

12.
Rodent whisking behavior provides active touch as input into a widely studied model system of information processing and behavior. We previously developed a simple optoelectronic system to monitor whisker movements in “real time” in head held rats at rest or performing various tasks such as tactile discrimination. We now describe a simple piezioelectic film device for detecting initial whisker contacts during whisking also in real time. In some applications this is as effective as high-speed videos and can be configured to isolate the contacts from different whiskers. The construction of this simple device is detailed. In addition to providing information during recordings from awake animals, the device could be used, for example, as an operant manipulandum for contingent reinforcement of object detection with a whisker.  相似文献   

13.
The peripheral effector system mediating rodent whisking produces protraction/retraction movements of the whiskers and translation movements of the collagenous mystacial pad. To examine the interaction of these movements during whisking in air we used high-resolution, optoelectronic methods for two-dimensional monitoring of whisker and pad movements in head-fixed rats. Under these testing conditions (1) whisker movements on the same side of the face are synchronous and of similar amplitude; (2) pad movements exhibit the characteristic 'exploratory' rhythm (6-12 Hz) of whisking but their movements often have a low frequency (1-2 Hz) component; (3) Pad movements occur in both antero-posterior and dorso-ventral planes but there are considerable variations in the amplitude and topography of movement parameters in the two planes. We conclude that (a) both whisker and pad receive input from a common central rhythm generator; (b) differences in whisker and pad amplitude and topography probably reflect differences in the biomechanical properties of the structures receiving that input; (c) pad movements make a significant contribution to the kinematics of whisking behavior and (d) the two-dimensional nature of pad translation movements significantly increases the rat's flexible control of its mobile sensor.  相似文献   

14.
The subcortical saccade-generating system consists of the retina, superior colliculus, cerebellum and brainstem motoneuron areas. The superior colliculus is the site of sensory-motor convergence within this basic visuomotor loop preserved throughout the vertebrates. While the system has been extensively studied, there are still several outstanding questions regarding how and where the saccade eye movement profile is generated and the contribution of respective parts within this system. Here we construct a spiking neuron model of the whole intermediate layer of the superior colliculus based on the latest anatomy and physiology data. The model consists of conductance-based spiking neurons with quasi-visual, burst, buildup, local inhibitory, and deep layer inhibitory neurons. The visual input is given from the superficial superior colliculus and the burst neurons send the output to the brainstem oculomotor nuclei. Gating input from the basal ganglia and an integral feedback from the reticular formation are also included.We implement the model in the NEST simulator and show that the activity profile of bursting neurons can be reproduced by a combination of NMDA-type and cholinergic excitatory synaptic inputs and integrative inhibitory feedback. The model shows that the spreading neural activity observed in vivo can keep track of the collicular output over time and reset the system at the end of a saccade through activation of deep layer inhibitory neurons. We identify the model parameters according to neural recording data and show that the resulting model recreates the saccade size-velocity curves known as the saccadic main sequence in behavioral studies. The present model is consistent with theories that the superior colliculus takes a principal role in generating the temporal profiles of saccadic eye movements, rather than just specifying the end points of eye movements.  相似文献   

15.
Studies of sensorimotor systems such as the whisking system of rodents have suggested that associations between body movements and their sensory consequences during development may make an important contribution to the functional organization of the system. In the present study we have explored the possible utility of Botulinum toxin for developmental studies of whisking. Botox selectively blocks whisking-generated afference leaving other sources of whisker afference intact. We describe appropriate modes of injection, define dosage levels, and assess the effects of prolonged whisking paralysis during development upon the basic motor competency of the adult rat. Our findings indicate that: (a) Botulinum toxin may be used to block whisking behavior in adult and developing rats, (b) that the duration of the whisking paralysis produced by Botox treatment blockade is dose dependent in both developing and adult animals, (c) that the blockade is functionally reversible and (d) that Botox treatment during development does not impair either the kinematics or the rhythmic patterning of adult whisking behavior. Botox may be a useful tool for studying the role of experiential factors in the development of "active touch" in rodents.  相似文献   

16.
Inhibition of Return (IOR) is one of the most consistent and widely studied effects in experimental psychology. The effect refers to a delayed response to visual stimuli in a cued location after initial priming at that location. This article presents a dynamic field model for IOR. The model describes the evolution of three coupled activation fields. The decision field, inspired by the intermediate layer of the superior colliculus, receives endogenous input and input from a sensory field. The sensory field, inspired by earlier sensory processing, receives exogenous input. Habituation of the sensory field is implemented by a reciprocal coupling with a third field, the habituation field. The model generates IOR because, due to the habituation of the sensory field, the decision field receives a reduced target-induced input in cue-target-compatible situations. The model is consistent with single-unit recordings of neurons of monkeys that perform IOR tasks. Such recordings have revealed that IOR phenomena parallel the activity of neurons in the intermediate layer of the superior colliculus and that neurons in this layer receive reduced input in cue-target-compatible situations. The model is also consistent with behavioral data concerning temporal expectancy effects. In a discussion, the multi-layer dynamic field account of IOR is used to illustrate the broader view that behavior consists of a tuning of the organism to the environment that continuously and concurrently takes place at different spatiotemporal scales.  相似文献   

17.
Studies of sensorimotor systems such as the whisking system of rodents have suggested that associations between body movements and their sensory consequences during development may make an important contribution to the functional organization of the system. In the present study we have explored the possible utility of Botulinum toxin for developmental studies of whisking. Botox selectively blocks whisking-generated afference leaving other sources of whisker afference intact. We describe appropriate modes of injection, define dosage levels, and assess the effects of prolonged whisking paralysis during development upon the basic motor competency of the adult rat. Our findings indicate that: (a) Botulinum toxin may be used to block whisking behavior in adult and developing rats, (b) that the duration of the whisking paralysis produced by Botox treatment blockade is dose dependent in both developing and adult animals, (c) that the blockade is functionally reversible and (d) that Botox treatment during development does not impair either the kinematics or the rhythmic patterning of adult whisking behavior. Botox may be a useful tool for studying the role of experiential factors in the development of "active touch" in rodents.  相似文献   

18.
The present series of experiments assessed how information from the whiskers controls and modulates infant rat behavior during early learning and attachment. Passive vibrissal stimulation can elicit behavioral activity in pups throughout the first two postnatal weeks, although orienting to the source of stimulation is evident only after ontogenetic emergence of whisking. In addition, while pups were capable of demonstrating learning in a classical conditioning paradigm pairing vibrissa stimulation with electric shock, no corresponding changes were detected in the anatomy of the barrel cortex as determined by cytochrome oxidase (CO) staining. Finally, the role of whiskers in a more naturalistic setting was determined in postnatal day (PN)3-5 and PN11-12 pups. Our results showed that both nipple attachment and huddling were disrupted in whisker-clipped PN3-5 pups but only marginally altered in PN1I 1-12 pups. Together, these results suggest that the neonatal whisker system is behaviorally functional and relevant for normal mother-infant interactions, though it lacks the sophistication of a mature whisker system that evokes very specific and directed responses.  相似文献   

19.
Correlation among neocortical neurons is thought to play an indispensable role in mediating sensory processing of external stimuli. The role of temporal precision in this correlation has been hypothesized to enhance information flow along sensory pathways. Its role in mediating the integration of information at the output of these pathways, however, remains poorly understood. Here, we examined spike timing correlation between simultaneously recorded layer V neurons within and across columns of the primary somatosensory cortex of anesthetized rats during unilateral whisker stimulation. We used bayesian statistics and information theory to quantify the causal influence between the recorded cells with millisecond precision. For each stimulated whisker, we inferred stable, whisker-specific, dynamic bayesian networks over many repeated trials, with network similarity of 83.3±6% within whisker, compared to only 50.3±18% across whiskers. These networks further provided information about whisker identity that was approximately 6 times higher than what was provided by the latency to first spike and 13 times higher than what was provided by the spike count of individual neurons examined separately. Furthermore, prediction of individual neurons' precise firing conditioned on knowledge of putative pre-synaptic cell firing was 3 times higher than predictions conditioned on stimulus onset alone. Taken together, these results suggest the presence of a temporally precise network coding mechanism that integrates information across neighboring columns within layer V about vibrissa position and whisking kinetics to mediate whisker movement by motor areas innervated by layer V.  相似文献   

20.
In active sensation, sensory information is acquired via movements of sensory organs; rats move their whiskers repetitively to scan the environment, thus detecting, localizing, and identifying objects. Sensory information, in turn, affects future motor movements. How this motor-sensory-motor functional loop is implemented across anatomical loops of the whisker system is not yet known. While inducing artificial whisking in anesthetized rats, we recorded the activity of individual neurons from three thalamic nuclei of the whisker system, each belonging to a different major afferent pathway: paralemniscal, extralemniscal (a recently discovered pathway), or lemniscal. We found that different sensory signals related to active touch are conveyed separately via the thalamus by these three parallel afferent pathways. The paralemniscal pathway conveys sensor motion (whisking) signals, the extralemniscal conveys contact (touch) signals, and the lemniscal pathway conveys combined whisking–touch signals. This functional segregation of anatomical pathways raises the possibility that different sensory-motor processes, such as those related to motion control, object localization, and object identification, are implemented along different motor-sensory-motor loops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号