共查询到20条相似文献,搜索用时 15 毫秒
1.
Effective Preparation of Plasmodium vivax Field Isolates for High-Throughput Whole Genome Sequencing
Sarah Auburn Jutta Marfurt Gareth Maslen Susana Campino Valentin Ruano Rubio Magnus Manske Barbara MacHunter Enny Kenangalem Rintis Noviyanti Leily Trianty Boni Sebayang Grennady Wirjanata Kanlaya Sriprawat Daniel Alcock Bronwyn MacInnis Olivo Miotto Taane G. Clark Bruce Russell Nicholas M. Anstey Fran?ois Nosten Dominic P. Kwiatkowski Ric N. Price 《PloS one》2013,8(1)
Whole genome sequencing (WGS) of Plasmodium vivax is problematic due to the reliance on clinical isolates which are generally low in parasitaemia and sample volume. Furthermore, clinical isolates contain a significant contaminating background of host DNA which confounds efforts to map short read sequence of the target P. vivax DNA. Here, we discuss a methodology to significantly improve the success of P. vivax WGS on natural (non-adapted) patient isolates. Using 37 patient isolates from Indonesia, Thailand, and travellers, we assessed the application of CF11-based white blood cell filtration alone and in combination with short term ex vivo schizont maturation. Although CF11 filtration reduced human DNA contamination in 8 Indonesian isolates tested, additional short-term culture increased the P. vivax DNA yield from a median of 0.15 to 6.2 ng µl−1 packed red blood cells (pRBCs) (p = 0.001) and reduced the human DNA percentage from a median of 33.9% to 6.22% (p = 0.008). Furthermore, post-CF11 and culture samples from Thailand gave a median P. vivax DNA yield of 2.34 ng µl−1 pRBCs, and 2.65% human DNA. In 22 P. vivax patient isolates prepared with the 2-step method, we demonstrate high depth (median 654X coverage) and breadth (≥89%) of coverage on the Illumina GAII and HiSeq platforms. In contrast to the A+T-rich P. falciparum genome, negligible bias was observed in coverage depth between coding and non-coding regions of the P. vivax genome. This uniform coverage will greatly facilitate the detection of SNPs and copy number variants across the genome, enabling unbiased exploration of the natural diversity in P. vivax populations. 相似文献
2.
Mittal Ayushi Sasidharan Santanu Raj Shweta Balaji S. N. Saudagar Prakash 《International journal of peptide research and therapeutics》2020,26(4):2231-2240
International Journal of Peptide Research and Therapeutics - Zika is one of the most dreaded viruses which has left mankind crippled for over years. Current no vaccines for Zika are available in... 相似文献
3.
Background
Measles is a highly infectious disease caused by measles virus (MeV). Despite the availability of a safe and cost-effective vaccine, measles is one of the world-leading causes of death in young children. Within Europe, there is a target for eliminating endemic measles in 2015, with molecular epidemiology required on 80% of cases for inclusion/exclusion of outbreak transmission chains. Currently, MeV is genotyped on the basis of a 450 nucleotide region of the nucleoprotein gene (N-450) and the hemagglutinin gene (H). However, this is not sufficiently informative for distinguishing endemic from imported MeV. We have developed an amplicon-based method for obtaining whole genome sequences (WGS) using NGS or Sanger methodologies from cell culture isolates or oral fluid specimens, and have sequenced over 60 samples, including 42 from the 2012 outbreak in the UK.Results
Overall, NGS coverage was over 90% for approximately 71% of the samples tested. Analysis of 32 WGS excluding 3’ and 5’ termini (WGS-t) obtained from the outbreak indicates that the single nucleotide difference found between the two major groups of N-450 sequences detected during the outbreak is most likely a result of stochastic viral mutation during endemic transmission rather than of multiple importation events: earlier strains appear to have evolved into two distinct strain clusters in 2013, one containing strains with both outbreak-associated N-450 sequences. Additionally, phylogenetic analysis of each genomic region of MeV for the strains in this study suggests that the most information is acquired from the non-coding region located between the matrix and fusion protein genes (M/F NCR) and the N-450 genotyping sequence, an observation supported by entropy analysis across genotypes.Conclusions
We suggest that both M/F NCR and WGS-t could be used to complement the information from classical epidemiology and N-450 sequencing to address specific questions in the context of measles elimination. 相似文献4.
Benjamin Georgi David Craig Rachel L. Kember Wencheng Liu Ingrid Lindquist Sara Nasser Christopher Brown Janice A. Egeland Steven M. Paul Maja Bu?an 《PLoS genetics》2014,10(3)
Bipolar disorder is a common, heritable mental illness characterized by recurrent episodes of mania and depression. Despite considerable effort to elucidate the genetic underpinnings of bipolar disorder, causative genetic risk factors remain elusive. We conducted a comprehensive genomic analysis of bipolar disorder in a large Old Order Amish pedigree. Microsatellite genotypes and high-density SNP-array genotypes of 388 family members were combined with whole genome sequence data for 50 of these subjects, comprising 18 parent-child trios. This study design permitted evaluation of candidate variants within the context of haplotype structure by resolving the phase in sequenced parent-child trios and by imputation of variants into multiple unsequenced siblings. Non-parametric and parametric linkage analysis of the entire pedigree as well as on smaller clusters of families identified several nominally significant linkage peaks, each of which included dozens of predicted deleterious variants. Close inspection of exonic and regulatory variants in genes under the linkage peaks using family-based association tests revealed additional credible candidate genes for functional studies and further replication in population-based cohorts. However, despite the in-depth genomic characterization of this unique, large and multigenerational pedigree from a genetic isolate, there was no convergence of evidence implicating a particular set of risk loci or common pathways. The striking haplotype and locus heterogeneity we observed has profound implications for the design of studies of bipolar and other related disorders. 相似文献
5.
目的 通过全基因组测序(whole genome sequencing,WGS)获得高密度单核苷酸多态性(single nucleotide polymorphism,SNP)分型数据,评估分型准确性,研究建立WGS数据用于法医SNP系谱推断的方法。方法 通过华大MGISEQ-200RS测序平台对样本进行深度为30×的WGS,从测序数据中提取Wegene GSA芯片中的645 199个常染色体SNP位点,质控过滤后运用IBS/IBD算法计算预测亲缘关系,并对样本的族群来源进行分析。结果 从测序数据中提取的SNP分型与Wegene GSA芯片分型的一致率大于99.62%。测序获得的SNP数据使用IBS算法可预测1~4级亲缘关系,4级亲缘预测置信区间准确性达100%,使用IBD算法可预测1~7级亲缘关系,7级亲缘预测为有亲缘关系的准确性达100%,通过高深度WGS数据获取的SNP系谱推断能力与芯片预测结果无显著差异。同时,WGS数据用于族群推断与调查结果一致。结论 WGS技术可应用于法医SNP系谱推断,为案件侦破提供线索。 相似文献
6.
Sarah Abdul-Wajid Michael T. Veeman Shota Chiba Thomas L. Turner William C. Smith 《Genetics》2014,197(1):49-59
Studies in tunicates such as Ciona have revealed new insights into the evolutionary origins of chordate development. Ciona populations are characterized by high levels of natural genetic variation, between 1 and 5%. This variation has provided abundant material for forward genetic studies. In the current study, we make use of deep sequencing and homozygosity mapping to map spontaneous mutations in outbred populations. With this method we have mapped two spontaneous developmental mutants. In Ciona intestinalis we mapped a short-tail mutation with strong phenotypic similarity to a previously identified mutant in the related species Ciona savignyi. Our bioinformatic approach mapped the mutation to a narrow interval containing a single mutated gene, α-laminin3,4,5, which is the gene previously implicated in C. savignyi. In addition, we mapped a novel genetic mutation disrupting neural tube closure in C. savignyi to a T-type Ca2+ channel gene. The high efficiency and unprecedented mapping resolution of our study is a powerful advantage for developmental genetics in Ciona, and may find application in other outbred species. 相似文献
7.
8.
9.
ER Chan D Menard PH David A Ratsimbasoa S Kim P Chim C Do B Witkowski O Mercereau-Puijalon PA Zimmerman D Serre 《PLoS neglected tropical diseases》2012,6(9):e1811
Background
An estimated 2.85 billion people live at risk of Plasmodium vivax transmission. In endemic countries vivax malaria causes significant morbidity and its mortality is becoming more widely appreciated, drug-resistant strains are increasing in prevalence, and an increasing number of reports indicate that P. vivax is capable of breaking through the Duffy-negative barrier long considered to confer resistance to blood stage infection. Absence of robust in vitro propagation limits our understanding of fundamental aspects of the parasite''s biology, including the determinants of its dormant hypnozoite phase, its virulence and drug susceptibility, and the molecular mechanisms underlying red blood cell invasion.Methodology/Principal Findings
Here, we report results from whole genome sequencing of five P. vivax isolates obtained from Malagasy and Cambodian patients, and of the monkey-adapted Belem strain. We obtained an average 70–400 X coverage of each genome, resulting in more than 93% of the Sal I reference sequence covered by 20 reads or more. Our study identifies more than 80,000 SNPs distributed throughout the genome which will allow designing association studies and population surveys. Analysis of the genome-wide genetic diversity in P. vivax also reveals considerable allele sharing among isolates from different continents. This observation could be consistent with a high level of gene flow among parasite strains distributed throughout the world.Conclusions
Our study shows that it is feasible to perform whole genome sequencing of P. vivax field isolates and rigorously characterize the genetic diversity of this parasite. The catalogue of polymorphisms generated here will enable large-scale genotyping studies and contribute to a better understanding of P. vivax traits such as drug resistance or erythrocyte invasion, partially circumventing the lack of laboratory culture that has hampered vivax research for years. 相似文献10.
David J. Winter M. Andreína Pacheco Andres F. Vallejo Rachel S. Schwartz Myriam Arevalo-Herrera Socrates Herrera Reed A. Cartwright Ananias A. Escalante 《PLoS neglected tropical diseases》2015,9(12)
Plasmodium vivax is the most prevalent malarial species in South America and exerts a substantial burden on the populations it affects. The control and eventual elimination of P. vivax are global health priorities. Genomic research contributes to this objective by improving our understanding of the biology of P. vivax and through the development of new genetic markers that can be used to monitor efforts to reduce malaria transmission. Here we analyze whole-genome data from eight field samples from a region in Cordóba, Colombia where malaria is endemic. We find considerable genetic diversity within this population, a result that contrasts with earlier studies suggesting that P. vivax had limited diversity in the Americas. We also identify a selective sweep around a substitution known to confer resistance to sulphadoxine-pyrimethamine (SP). This is the first observation of a selective sweep for SP resistance in this species. These results indicate that P. vivax has been exposed to SP pressure even when the drug is not in use as a first line treatment for patients afflicted by this parasite. We identify multiple non-synonymous substitutions in three other genes known to be involved with drug resistance in Plasmodium species. Finally, we found extensive microsatellite polymorphisms. Using this information we developed 18 polymorphic and easy to score microsatellite loci that can be used in epidemiological investigations in South America. 相似文献
11.
A Modified RNA-Seq Approach for Whole Genome Sequencing of RNA Viruses from Faecal and Blood Samples
Elizabeth M. Batty T. H. Nicholas Wong Amy Trebes Karène Argoud Moustafa Attar David Buck Camilla L. C. Ip Tanya Golubchik Madeleine Cule Rory Bowden Charis Manganis Paul Klenerman Eleanor Barnes A. Sarah Walker David H. Wyllie Daniel J. Wilson Kate E. Dingle Tim E. A. Peto Derrick W. Crook Paolo Piazza 《PloS one》2013,8(6)
To date, very large scale sequencing of many clinically important RNA viruses has been complicated by their high population molecular variation, which creates challenges for polymerase chain reaction and sequencing primer design. Many RNA viruses are also difficult or currently not possible to culture, severely limiting the amount and purity of available starting material. Here, we describe a simple, novel, high-throughput approach to Norovirus and Hepatitis C virus whole genome sequence determination based on RNA shotgun sequencing (also known as RNA-Seq). We demonstrate the effectiveness of this method by sequencing three Norovirus samples from faeces and two Hepatitis C virus samples from blood, on an Illumina MiSeq benchtop sequencer. More than 97% of reference genomes were recovered. Compared with Sanger sequencing, our method had no nucleotide differences in 14,019 nucleotides (nt) for Noroviruses (from a total of 2 Norovirus genomes obtained with Sanger sequencing), and 8 variants in 9,542 nt for Hepatitis C virus (1 variant per 1,193 nt). The three Norovirus samples had 2, 3, and 2 distinct positions called as heterozygous, while the two Hepatitis C virus samples had 117 and 131 positions called as heterozygous. To confirm that our sample and library preparation could be scaled to true high-throughput, we prepared and sequenced an additional 77 Norovirus samples in a single batch on an Illumina HiSeq 2000 sequencer, recovering >90% of the reference genome in all but one sample. No discrepancies were observed across 118,757 nt compared between Sanger and our custom RNA-Seq method in 16 samples. By generating viral genomic sequences that are not biased by primer-specific amplification or enrichment, this method offers the prospect of large-scale, affordable studies of RNA viruses which could be adapted to routine diagnostic laboratory workflows in the near future, with the potential to directly characterize within-host viral diversity. 相似文献
12.
Mikhaylova Y. V. Shelenkov A. A. Yanushevich Y. G. Shagin D. A. 《Molecular Biology》2020,54(6):851-856
Molecular Biology - The high variability of the influenza A virus poses a significant threat to public health, therefore monitoring viral strains and studying their genetic properties are important... 相似文献
13.
Na Li Li Wang Hui Wang Minyue Ma Xiaohong Wang Yi Li Wenke Zhang Jianguang Zhang David S.Cram Yuanqing Yao 《遗传学报》2015,42(4):151-159
Reliable and accurate pre-implantation genetic diagnosis(PGD) of patient’s embryos by next-generation sequencing(NGS) is dependent on efficient whole genome amplification(WGA) of a representative biopsy sample. However, the performance of the current state of the art WGA methods has not been evaluated for sequencing. Using low template DNA(15 pg) and single cells, we showed that the two PCR-based WGA systems Sure Plex and MALBAC are superior to the REPLI-g WGA multiple displacement amplification(MDA) system in terms of consistent and reproducible genome coverage and sequence bias across the 24 chromosomes, allowing better normalization of test to reference sequencing data. When copy number variation sequencing(CNV-Seq) was applied to single cell WGA products derived by either Sure Plex or MALBAC amplification, we showed that known disease CNVs in the range of 3e15 Mb could be reliably and accurately detected at the correct genomic positions. These findings indicate that our CNV-Seq pipeline incorporating either Sure Plex or MALBAC as the key initial WGA step is a powerful methodology for clinical PGD to identify euploid embryos in a patient’s cohort for uterine transplantation. 相似文献
14.
15.
Oscar A Prez-Escobar Sergio Tusso Natalia A S Przelomska Shan Wu Philippa Ryan Mark Nesbitt Martina V Silber Michaela Preick Zhangjun Fei Michael Hofreiter Guillaume Chomicki Susanne S Renner 《Molecular biology and evolution》2022,39(8)
Iconographic evidence from Egypt suggests that watermelon pulp was consumed there as a dessert by 4,360 BP. Earlier archaeobotanical evidence comes from seeds from Neolithic settlements in Libya, but whether these were watermelons with sweet pulp or other forms is unknown. We generated genome sequences from 6,000- and 3,300-year-old seeds from Libya and Sudan, and from worldwide herbarium collections made between 1824 and 2019, and analyzed these data together with resequenced genomes from important germplasm collections for a total of 131 accessions. Phylogenomic and population-genomic analyses reveal that (1) much of the nuclear genome of both ancient seeds is traceable to West African seed-use “egusi-type” watermelon (Citrullus mucosospermus) rather than domesticated pulp-use watermelon (Citrullus lanatus ssp. vulgaris); (2) the 6,000-year-old watermelon likely had bitter pulp and greenish-white flesh as today found in C. mucosospermus, given alleles in the bitterness regulators ClBT and in the red color marker LYCB; and (3) both ancient genomes showed admixture from C. mucosospermus, C. lanatus ssp. cordophanus, C. lanatus ssp. vulgaris, and even South African Citrullus amarus, and evident introgression between the Libyan seed (UMB-6) and populations of C. lanatus. An unexpected new insight is that Citrullus appears to have initially been collected or cultivated for its seeds, not its flesh, consistent with seed damage patterns induced by human teeth in the oldest Libyan material. 相似文献
16.
目的:分离鉴定一株沙门菌的烈性噬菌体,观察其形态大小,完成全基因组测序,分析其基因组结构和进化关系,为治疗沙门菌感染提供新的策略和实验依据。方法:以沙门菌SAL95作为指示菌从医院废水中分离噬菌体,分离到的噬菌体经浓缩和纯化后采用透射电镜观察其形态大小,提取噬菌体的基因核酸并完成全基因组高通量测序,分析其全基因组的结构特征,通过比较基因组分析研究其进化关系。结果:从解放军307医院未经消毒处理的废水中分离到一株烈性沙门菌噬菌体。电镜观察显示,该噬菌体头部呈立体对称,有一不收缩的长尾。其基因组全长113 183 bp,比较基因组分析确定该噬菌体为一株新的沙门菌噬菌体,命名为IME-SAL1。结论:从医院废水中分离到一株烈性沙门菌噬菌体IME-SAL1,研究了该噬菌体的分类、基因组结构、进化关系,可为其实际应用提供参考。 相似文献
17.
Midori Kato-Maeda Christine Ho Ben Passarelli Niaz Banaei Jennifer Grinsdale Laura Flores Jillian Anderson Megan Murray Graham Rose L. Masae Kawamura Nader Pourmand Muhammad A. Tariq Sebastien Gagneux Philip C. Hopewell 《PloS one》2013,8(3)
Rationale
Current tools available to study the molecular epidemiology of tuberculosis do not provide information about the directionality and sequence of transmission for tuberculosis cases occurring over a short period of time, such as during an outbreak. Recently, whole genome sequencing has been used to study molecular epidemiology of Mycobacterium tuberculosis over short time periods.Objective
To describe the microevolution of M. tuberculosis during an outbreak caused by one drug-susceptible strain.Method and Measurements
We included 9 patients with tuberculosis diagnosed during a period of 22 months, from a population-based study of the molecular epidemiology in San Francisco. Whole genome sequencing was performed using Illumina’s sequencing by synthesis technology. A custom program written in Python was used to determine single nucleotide polymorphisms which were confirmed by PCR product Sanger sequencing.Main results
We obtained an average of 95.7% (94.1–96.9%) coverage for each isolate and an average fold read depth of 73 (1 to 250). We found 7 single nucleotide polymorphisms among the 9 isolates. The single nucleotide polymorphisms data confirmed all except one known epidemiological link. The outbreak strain resulted in 5 bacterial variants originating from the index case A1 with 0–2 mutations per transmission event that resulted in a secondary case.Conclusions
Whole genome sequencing analysis from a recent outbreak of tuberculosis enabled us to identify microevolutionary events observable during transmission, to determine 0–2 single nucleotide polymorphisms per transmission event that resulted in a secondary case, and to identify new epidemiologic links in the chain of transmission. 相似文献18.
Shota Nakamura Cheng-Song Yang Naomi Sakon Mayo Ueda Takahiro Tougan Akifumi Yamashita Naohisa Goto Kazuo Takahashi Teruo Yasunaga Kazuyoshi Ikuta Tetsuya Mizutani Yoshiko Okamoto Michihira Tagami Ryoji Morita Norihiro Maeda Jun Kawai Yoshihide Hayashizaki Yoshiyuki Nagai Toshihiro Horii Tetsuya Iida Takaaki Nakaya 《PloS one》2009,4(1)
With the severe acute respiratory syndrome epidemic of 2003 and renewed attention on avian influenza viral pandemics, new surveillance systems are needed for the earlier detection of emerging infectious diseases. We applied a “next-generation” parallel sequencing platform for viral detection in nasopharyngeal and fecal samples collected during seasonal influenza virus (Flu) infections and norovirus outbreaks from 2005 to 2007 in Osaka, Japan. Random RT-PCR was performed to amplify RNA extracted from 0.1–0.25 ml of nasopharyngeal aspirates (N = 3) and fecal specimens (N = 5), and more than 10 µg of cDNA was synthesized. Unbiased high-throughput sequencing of these 8 samples yielded 15,298–32,335 (average 24,738) reads in a single 7.5 h run. In nasopharyngeal samples, although whole genome analysis was not available because the majority (>90%) of reads were host genome–derived, 20–460 Flu-reads were detected, which was sufficient for subtype identification. In fecal samples, bacteria and host cells were removed by centrifugation, resulting in gain of 484–15,260 reads of norovirus sequence (78–98% of the whole genome was covered), except for one specimen that was under-detectable by RT-PCR. These results suggest that our unbiased high-throughput sequencing approach is useful for directly detecting pathogenic viruses without advance genetic information. Although its cost and technological availability make it unlikely that this system will very soon be the diagnostic standard worldwide, this system could be useful for the earlier discovery of novel emerging viruses and bioterrorism, which are difficult to detect with conventional procedures. 相似文献
19.
Plant Molecular Biology Reporter - Beet Curly Top (BCT) is a viral disease which negatively impacts crop productivity for sugar beet growers and the sugar beet industry in the western USA and dry... 相似文献
20.
In many crop species, DNA fingerprinting is required for the precise identification of cultivars to protect the rights of breeders. Many families of retrotransposons have multiple copies throughout the eukaryotic genome and their integrated copies are inherited genetically. Thus, their insertion polymorphisms among cultivars are useful for DNA fingerprinting. In this study, we conducted a DNA fingerprinting based on the insertion polymorphisms of active retrotransposon families (Rtsp-1 and LIb) in sweet potato. Using 38 cultivars, we identified 2,024 insertion sites in the two families with an Illumina MiSeq sequencing platform. Of these insertion sites, 91.4% appeared to be polymorphic among the cultivars and 376 cultivar-specific insertion sites were identified, which were converted directly into cultivar-specific sequence-characterized amplified region (SCAR) markers. A phylogenetic tree was constructed using these insertion sites, which corresponded well with known pedigree information, thereby indicating their suitability for genetic diversity studies. Thus, the genome-wide comparative analysis of active retrotransposon insertion sites using the bench-top MiSeq sequencing platform is highly effective for DNA fingerprinting without any requirement for whole genome sequence information. This approach may facilitate the development of practical polymerase chain reaction-based cultivar diagnostic system and could also be applied to the determination of genetic relationships. 相似文献