首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A fundamental principle of brain organization is bilateral symmetry of structures and functions. For spatial sensory and motor information processing, this organization is generally plausible subserving orientation and coordination of a bilaterally symmetric body. However, breaking of the symmetry principle is often seen for functions that depend on convergent information processing and lateralized output control, e.g. left hemispheric dominance for the linguistic speech system. Conversely, a subtle splitting of functions into hemispheres may occur if peripheral information from symmetric sense organs is partly redundant, e.g. auditory pattern recognition, and therefore allows central conceptualizations of complex stimuli from different feature viewpoints, as demonstrated e.g. for hemispheric analysis of frequency modulations in auditory cortex (AC) of mammals including humans. Here we demonstrate that discrimination learning of rapidly but not of slowly amplitude modulated tones is non-uniformly distributed across both hemispheres: While unilateral ablation of left AC in gerbils leads to impairment of normal discrimination learning of rapid amplitude modulations, right side ablations lead to improvement over normal learning. These results point to a rivalry interaction between both ACs in the intact brain where the right side competes with and weakens learning capability maximally attainable by the dominant left side alone.  相似文献   

2.
We offer a model of how human cortex detects changes in the auditory environment. Auditory change detection has recently been the object of intense investigation via the mismatch negativity (MMN). MMN is a preattentive response to sudden changes in stimulation, measured noninvasively in the electroencephalogram (EEG) and the magnetoencephalogram (MEG). It is elicited in the oddball paradigm, where infrequent deviant tones intersperse a series of repetitive standard tones. However, little apart from the participation of tonotopically organized auditory cortex is known about the neural mechanisms underlying change detection and the MMN. In the present study, we investigate how poststimulus inhibition might account for MMN and compare the effects of adaptation with those of lateral inhibition in a model describing tonotopically organized cortex. To test the predictions of our model, we performed MEG and EEG measurements on human subjects and used both small- (<1/3 octave) and large- (>5 octaves) frequency differences between the standard and deviant tones. The experimental results bear out the prediction that MMN is due to both adaptation and lateral inhibition. Finally, we suggest that MMN might serve as a probe of what stimulus features are mapped by human auditory cortex.  相似文献   

3.
An auditory neuron can preserve the temporal fine structure of a low-frequency tone by phase-locking its response to the stimulus. Apart from sound localization, however, much about the role of this temporal information for signal processing in the brain remains unknown. Through psychoacoustic studies we provide direct evidence that humans employ temporal fine structure to discriminate between frequencies. To this end we construct tones that are based on a single frequency but in which, through the concatenation of wavelets, the phase changes randomly every few cycles. We then test the frequency discrimination of these phase-changing tones, of control tones without phase changes, and of short tones that consist of a single wavelet. For carrier frequencies below a few kilohertz we find that phase changes systematically worsen frequency discrimination. No such effect appears for higher carrier frequencies at which temporal information is not available in the central auditory system.  相似文献   

4.
5.
While studies of the gustatory cortex (GC) mostly focus on its role in taste aversion learning and memory, the necessity of GC for other fundamental taste-guided behaviors remains largely untested. Here, rats with either excitotoxic lesions targeting GC (n = 26) or sham lesions (n = 14) were assessed for postsurgical retention of a presurgically LiCl-induced conditioned taste aversion (CTA) to 0.1M sucrose using a brief-access taste generalization test in a gustometer. The same animals were then trained in a two-response operant taste detection task and psychophysically tested for their salt (NaCl or KCl) sensitivity. Next, the rats were trained and tested in a NaCl vs. KCl taste discrimination task with concentrations varied. Rats meeting our histological inclusion criterion had large lesions (resulting in a group averaging 80% damage to GC and involving surrounding regions) and showed impaired postsurgical expression of the presurgical CTA (LiCl-injected, n = 9), demonstrated rightward shifts in the NaCl (0.54 log10 shift) and KCl (0.35 log10 shift) psychometric functions, and displayed retarded salt discrimination acquisition (n = 18), but eventually learned and performed the discrimination comparable to sham-operated animals. Interestingly, the degree of deficit between tasks correlated only modestly, if at all, suggesting that idiosyncratic differences in insular cortex lesion topography were the root of the individual differences in the behavioral effects demonstrated here. This latter finding hints at some degree of interanimal variation in the functional topography of insular cortex. Overall, GC appears to be necessary to maintain normal taste sensitivity to NaCl and KCl and for salt discrimination learning. However, higher salt concentrations can be detected and discriminated by rats with extensive damage to GC suggesting that the other resources of the gustatory system are sufficient to maintain partial competence in these tasks, supporting the view that such basic sensory-discriminative taste functions involve distributed processes among central gustatory structures.  相似文献   

6.
A model of the peripheral auditory system responding to low-frequency tone stimulation is given. The model is of the type previously introduced by Weiss (1966). It includes three interconnected parts: a linear model of the ear's mechanical system, a model of the cochlear transducer, and a stochastic model of an auditory nerve fiber. The output of the model accurately mimics many characteristics of the output of some auditory nerve neurons responding to sinusoidal stimuli but is unable to successfully match all reported aspects of data obtained from other of these neurons. Characteristics of the model neurons are discussed.  相似文献   

7.
Serially presented tones are sometimes segregated into two perceptually distinct streams. An ongoing debate is whether this basic streaming phenomenon reflects automatic processes or requires attention focused to the stimuli. Here, we examined the influence of focused attention on streaming-related activity in human auditory cortex using magnetoencephalography (MEG). Listeners were presented with a dichotic paradigm in which left-ear stimuli consisted of canonical streaming stimuli (ABA_ or ABAA) and right-ear stimuli consisted of a classical oddball paradigm. In phase one, listeners were instructed to attend the right-ear oddball sequence and detect rare deviants. In phase two, they were instructed to attend the left ear streaming stimulus and report whether they heard one or two streams. The frequency difference (ΔF) of the sequences was set such that the smallest and largest ΔF conditions generally induced one- and two-stream percepts, respectively. Two intermediate ΔF conditions were chosen to elicit bistable percepts (i.e., either one or two streams). Attention enhanced the peak-to-peak amplitude of the P1-N1 complex, but only for ambiguous ΔF conditions, consistent with the notion that automatic mechanisms for streaming tightly interact with attention and that the latter is of particular importance for ambiguous sound sequences.  相似文献   

8.
Deep isoflurane anesthesia initiates a burst suppression pattern in which high-amplitude bursts are preceded by periods of nearly silent electroencephalogram. The burst suppression ratio (BSR) is the percentage of suppression (silent electroencephalogram) during the burst suppression pattern and is one parameter used to assess anesthesia depth. We investigated cortical burst activity in rats in response to different auditory stimuli presented during the burst suppression state. We noted a rapid appearance of bursts and a significant decrease in the BSR during stimulation. The BSR changes were distinctive for the different stimuli applied, and the BSR decreased significantly more when stimulated with a voice familiar to the rat as compared with an unfamiliar voice. These results show that the cortex can show differential sensory responses during deep isoflurane anesthesia.Abbreviations: BSR, burst suppression ratio; EEG, electroencephalogram; GABA, γ-aminobutyric acid; MAC, minimum alveolar anesthetic concentrationThe electroencephalogram (EEG) shows characteristic temporal patterns under different anesthetic conditions.17 During deep isoflurane anesthesia, a burst suppression pattern appears in which high-amplitude bursts are followed by periods of nearly silent EEG.7,11 The burst suppression ratio (BSR) is the percentage of suppression (silent EEG) during the burst suppression pattern and is used to assess anesthesia depth.11,15 We and others have shown late evoked burst responses synchronized to external stimuli, which might represent unconscious sensory processing.7,8,17 However a systematic analysis of BSR changes in response to different types of stimuli has not been performed. Because external stimulation during isoflurane anesthesia can initiate cortical burst activity, we investigated whether modality and context-specific cortical activation could occur during this state.The mechanisms that underlie BSR pattern generation during isoflurane anesthesia are still under investigation. However several key findings have contributed greatly to our understanding. Cortical neural networks show patterns of spontaneous intrinsic activity in the absence of sensory inputs,9 and single-neuron membrane potentials in slice preparations can transit spontaneously between 2 states, termed the ‘up’ and ‘down’ states.3 Transitions between these states are abolished by antagonists for glutamate and γ-aminobutyric acid (GABA) receptors.19 The silent periods of the isoflurane-induced burst suppression activity may be due to long periods of hyperpolarization caused either by inhibition of glutamate-mediated excitatory potentials or by increased GABA receptor-mediated inhibition.12,22 Isoflurane inhibits voltage-gated sodium channel currents and suppresses the release of glutamate through these blocked channels.22 In addition, the mechanisms that drive suppression periods during isoflurane anesthesia likely involve GABA-gated chloride currents and could also involve increased potassium channel conductance, leading to a reduction of excitatory synaptic input.12 Evidence also suggests that isoflurane may affect cortical input less than cortical output.5Because specific types of memory can be acquired during isoflurane anesthesia, limited sensory processing may be possible during this state.10 In addition, certain aspects of cortical information processing seem to be less sensitive to anesthetics than others; therefore, sensory responsiveness to some stimuli may be blocked less effectively by anesthetics at lower doses than other types of sensation, such as painful stimuli.1 Cortical responsiveness during isoflurane anesthesia may result from a decreased threshold of activation through specific thalamic pathways. Despite the observation that unresponsive conditions are characterized by hyperpolarized thalamic nuclei,16 sensory stimulation during isoflurane anesthesia can still evoke the appearance of synchronized bursts during burst suppression periods.7,8 In addition, burst activation may parallel an arousal mechanism, which could remain selectively active during isoflurane anesthesia.21In this experiment, we recorded the EEG continuously in isoflurane-anesthetized Sprague–Dawley rats while applying different types of external auditory stimulation. We hypothesized that external auditory stimulation can elicit modality-specific cortical activation and that some types of sensory discrimination might occur during this state.  相似文献   

9.
We present a rate model of the spontaneous activity in the auditory cortex, based on synaptic depression. A Stochastic integro-differential system of equations is derived and the analysis reveals two main regimes. The first regime corresponds to a normal activity. The second regime corresponds to epileptic spiking. A detailed analysis of each regime is presented and we prove in particular that synaptic depression stabilizes the global cortical dynamics. The transition between the two regimes is induced by a change in synaptic connectivity: when the overall connectivity is strong enough, an epileptic activity is spontaneously generated. Numerical simulations confirm the predictions of the theoretical analysis. In particular, our results explain the transition from normal to epileptic regime which can be induced in rats auditory cortex, following a specific pairing protocol. A change in the cortical maps reorganizes the synaptic connectivity and this transition between regimes is accounted for by our model. We have used data from recording experiments to fit synaptic weight distributions. Simulations with the fitted distributions are qualitatively similar to the real EEG recorded in vivo during the experiments. We conclude that changes in the synaptic weight function in our model, which affects excitatory synapses organization and reproduces the changes in cortical map connectivity can be understood as the main mechanism to explain the transitions of the EEG from the normal to the epileptic regime in the auditory cortex. D.H is incumbent to the Hass Russell Career Chair Development.  相似文献   

10.
Integrating information across sensory domains to construct a unified representation of multi-sensory signals is a fundamental characteristic of perception in ecological contexts. One provocative hypothesis deriving from neurophysiology suggests that there exists early and direct cross-modal phase modulation. We provide evidence, based on magnetoencephalography (MEG) recordings from participants viewing audiovisual movies, that low-frequency neuronal information lies at the basis of the synergistic coordination of information across auditory and visual streams. In particular, the phase of the 2–7 Hz delta and theta band responses carries robust (in single trials) and usable information (for parsing the temporal structure) about stimulus dynamics in both sensory modalities concurrently. These experiments are the first to show in humans that a particular cortical mechanism, delta-theta phase modulation across early sensory areas, plays an important “active” role in continuously tracking naturalistic audio-visual streams, carrying dynamic multi-sensory information, and reflecting cross-sensory interaction in real time.  相似文献   

11.
This paper presents a series of 12 cases of chronic tinnitus patients who participated in 4 weeks of auditory discrimination training either close to or far removed from the tinnitus frequency. The training was based on the assumption that tinnitus is related to a shift of the representation of the tinnitus frequency in auditory cortex outside of the normal tonotopic map and that training close to but not removed from the tinnitus frequency should result in a reduction in the severity of the tinnitus. Tinnitus severity was measured 4 times per day during the entire treatment and other tinnitus-related variables were assessed 1 week before and 1 month posttreatment. The comparison of the training close to as compared to remote from the tinnitus frequency did not yield a statistically significant difference. However, a post hoc analysis revealed that patients who engaged in regular training as compared to those who practiced irregularly were significantly more successful in reducing tinnitus severity independent of the trained frequencies. Treatment success was best predicted by days of training and general activity levels. The data suggest that auditory discrimination training shows a dose response effect irrespective of training location and that treatment success is also related to psychological variables. For more substantial changes in multiple variables an extended training period with additional consideration of emotional variables would be necessary. In addition, controls for nonspecific training effects need to be implemented.  相似文献   

12.
Perceptual training is generally assumed to improve perception by modifying the encoding or decoding of sensory information. However, this assumption is incompatible with recent demonstrations that transfer of learning can be enhanced by across-trial variation of training stimuli or task. Here we present three lines of evidence from healthy adults in support of the idea that the enhanced transfer of auditory discrimination learning is mediated by working memory (WM). First, the ability to discriminate small differences in tone frequency or duration was correlated with WM measured with a tone n-back task. Second, training frequency discrimination around a variable frequency transferred to and from WM learning, but training around a fixed frequency did not. The transfer of learning in both directions was correlated with a reduction of the influence of stimulus variation in the discrimination task, linking WM and its improvement to across-trial stimulus interaction in auditory discrimination. Third, while WM training transferred broadly to other WM and auditory discrimination tasks, variable-frequency training on duration discrimination did not improve WM, indicating that stimulus variation challenges and trains WM only if the task demands stimulus updating in the varied dimension. The results provide empirical evidence as well as a theoretic framework for interactions between cognitive and sensory plasticity during perceptual experience.  相似文献   

13.
14.
Much evidence indicates that recognition memory involves two separable processes, recollection and familiarity discrimination, with familiarity discrimination being dependent on the perirhinal cortex of the temporal lobe. Here, we describe a new neural network model designed to mimic the response patterns of perirhinal neurons that signal information concerning the novelty or familiarity of stimuli. The model achieves very fast and accurate familiarity discrimination while employing biologically plausible parameters and Hebbian learning rules. The fact that the activity patterns of the model's simulated neurons are closely similar to those of neurons recorded from the primate perirhinal cortex indicates that this brain region could discriminate familiarity using principles akin to those of the model. If so, the capacity of the model establishes that the perirhinal cortex alone may discriminate the familiarity of many more stimuli than current neural network models indicate could be recalled (recollected) by all the remaining areas of the cerebral cortex. This efficiency and speed of detecting novelty provides an evolutionary advantage, thereby providing a reason for the existence of a familiarity discrimination network in addition to networks used for recollection.  相似文献   

15.
16.
Vocal communication is an important aspect of guinea pig behaviour and a large contributor to their acoustic environment. We postulated that some cortical areas have distinctive roles in processing conspecific calls. In order to test this hypothesis we presented exemplars from all ten of their main adult vocalizations to urethane anesthetised animals while recording from each of the eight areas of the auditory cortex. We demonstrate that the primary area (AI) and three adjacent auditory belt areas contain many units that give isomorphic responses to vocalizations. These are the ventrorostral belt (VRB), the transitional belt area (T) that is ventral to AI and the small area (area S) that is rostral to AI. Area VRB has a denser representation of cells that are better at discriminating among calls by using either a rate code or a temporal code than any other area. Furthermore, 10% of VRB cells responded to communication calls but did not respond to stimuli such as clicks, broadband noise or pure tones. Area S has a sparse distribution of call responsive cells that showed excellent temporal locking, 31% of which selectively responded to a single call. AI responded well to all vocalizations and was much more responsive to vocalizations than the adjacent dorsocaudal core area. Areas VRB, AI and S contained units with the highest levels of mutual information about call stimuli. Area T also responded well to some calls but seems to be specialized for low sound levels. The two dorsal belt areas are comparatively unresponsive to vocalizations and contain little information about the calls. AI projects to areas S, VRB and T, so there may be both rostral and ventral pathways for processing vocalizations in the guinea pig.  相似文献   

17.
18.
19.

Background

Radial intra- and interlaminar connections form a basic microcircuit in primary auditory cortex (AI) that extracts acoustic information and distributes it to cortical and subcortical networks. Though the structure of this microcircuit is known, we do not know how the functional connectivity between layers relates to laminar processing.

Methodology/Principal Findings

We studied the relationships between functional connectivity and receptive field properties in this columnar microcircuit by simultaneously recording from single neurons in cat AI in response to broadband dynamic moving ripple stimuli. We used spectrotemporal receptive fields (STRFs) to estimate the relationship between receptive field parameters and the functional connectivity between pairs of neurons. Interlaminar connectivity obtained through cross-covariance analysis reflected a consistent pattern of information flow from thalamic input layers to cortical output layers. Connection strength and STRF similarity were greatest for intralaminar neuron pairs and in supragranular layers and weaker for interlaminar projections. Interlaminar connection strength co-varied with several STRF parameters: feature selectivity, phase locking to the stimulus envelope, best temporal modulation frequency, and best spectral modulation frequency. Connectivity properties and receptive field relationships differed for vertical and horizontal connections.

Conclusions/Significance

Thus, the mode of local processing in supragranular layers differs from that in infragranular layers. Therefore, specific connectivity patterns in the auditory cortex shape the flow of information and constrain how spectrotemporal processing transformations progress in the canonical columnar auditory microcircuit.  相似文献   

20.
《Current biology : CB》2014,24(23):2805-2811
  1. Download : Download high-res image (447KB)
  2. Download : Download full-size image
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号