首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 633 毫秒
1.
Conclusive evidence exists on the protective role against clinical Plasmodium falciparum malaria of Haemoglobin S (beta 6Glu-->Val) and HbC (HbC; beta 6Glu-->Lys), both occurring in sub-Saharan Africa. However, the mechanism/s of the protection exerted remain/s debated for both haemoglobin variants, HbC and HbS. Recently, an abnormal display of PfEMP1, an antigen involved in malaria pathogenesis, was reported on HbAC and HbCC infected erythrocytes that showed reduced cytoadhesion and impaired rosetting in vitro. On this basis it has been proposed that HbC protection might be attributed to the reduced PfEMP1-mediated adherence of parasitized erythrocytes in the microvasculature. Furthermore, impaired cytoadherence was observed in HbS carriers suggesting for the first time a convergence in the protection mechanism of these two haemoglobin variants. We investigated the impact of this hypothesis on the development of acquired immunity against P. falciparum variant surface antigens (VSA) encoding PfEMP1 in HbC and HbS carriers in comparison with HbA of Burkina Faso. Higher immune response against a VSA panel and several malaria antigens were observed in all adaptive genotypes containing at least one allelic variant HbC or HbS in the low transmission urban area whereas no differences were detected in the high transmission rural area. In both contexts the response against tetanus toxoid was not influenced by the beta-globin genotype. Thus, these findings suggest that both HbC and HbS affect the early development of naturally acquired immunity against malaria. We reviewed the hypothesized mechanisms so far proposed in light of these recent results.  相似文献   

2.
A recently proposed mechanism of protection for haemoglobin C (HbC; beta6Glu-->Lys) links an abnormal display of PfEMP1, an antigen involved in malaria pathogenesis, on the surface of HbC infected erythrocytes together with the observation of reduced cytoadhesion of parasitized erythrocytes and impaired rosetting in vitro. We investigated the impact of this hypothesis on the development of acquired immunity against Plasmodium falciparum variant surface antigens (VSA) encoding PfEMP1 in HbC in comparison with HbA and HbS carriers of Burkina Faso. We measured: i) total IgG against a single VSA, A4U, and against a panel of VSA from severe malaria cases in human sera from urban and rural areas of Burkina Faso of different haemoglobin genotypes (CC, AC, AS, SC, SS); ii) total IgG against recombinant proteins of P. falciparum asexual sporozoite, blood stage antigens, and parasite schizont extract; iii) total IgG against tetanus toxoid. Results showed that the reported abnormal cell-surface display of PfEMP1 on HbC infected erythrocytes observed in vitro is not associated to lower anti- PfEMP1 response in vivo. Higher immune response against the VSA panel and malaria antigens were observed in all adaptive genotypes containing at least one allelic variant HbC or HbS in the low transmission urban area whereas no differences were detected in the high transmission rural area. In both contexts the response against tetanus toxoid was not influenced by the beta-globin genotype. These findings suggest that both HbC and HbS affect the early development of naturally acquired immunity against malaria. The enhanced immune reactivity in both HbC and HbS carriers supports the hypothesis that the protection against malaria of these adaptive genotypes might be at least partially mediated by acquired immunity against malaria.  相似文献   

3.
Human genetic background strongly influences susceptibility to malaria infection and progression to severe disease and death. Classical genetic studies identified haemoglobinopathies and erythrocyte-associated polymorphisms, as protective against severe disease. High throughput genotyping by mass spectrometry allows multiple single nucleotide polymorphisms (SNPs) to be examined simultaneously. We compared the prevalence of 65 human SNP''s, previously associated with altered risk of malaria, between Tanzanian children with and without severe malaria. Five hundred children, aged 1–10 years, with severe malaria were recruited from those admitted to hospital in Muheza, Tanzania and compared with matched controls. Genotyping was performed by Sequenom MassArray, and conventional PCR was used to detect deletions in the alpha-thalassaemia gene. SNPs in two X-linked genes were associated with altered risk of severe malaria in females but not in males: heterozygosity for one or other of two SNPs in the G6PD gene was associated with protection from all forms of severe disease whilst two SNPs in the gene encoding CD40L were associated with respiratory distress. A SNP in the adenyl cyclase 9 (ADCY9) gene was associated with protection from acidosis whilst a polymorphism in the IL-1α gene (IL1A) was associated with an increased risk of acidosis. SNPs in the genes encoding IL-13 and reticulon-3 (RTN3) were associated with increased risk of cerebral malaria. This study confirms previously known genetic associations with protection from severe malaria (HbS, G6PD). It identifies two X-linked genes associated with altered risk of severe malaria in females, identifies mutations in ADCY9, IL1A and CD40L as being associated with altered risk of severe respiratory distress and acidosis, both of which are characterised by high serum lactate levels, and also identifies novel genetic associations with severe malaria (TRIM5) and cerebral malaria(IL-13 and RTN3). Further studies are required to test the generality of these associations and to understand their functional consequences.  相似文献   

4.
BackgroundHaemoglobin variants, Sickle (HbS) and foetal (HbF) have been associated with malaria protection. This study explores epistatic interactions between HbS and HbF on malaria infection.MethodsThe study was conducted between March 2004 and December 2013 within the sickle cell disease (SCD) programme at Muhimbili National Hospital, Tanzania. SCD status was categorized into HbAA, HbAS and HbSS using hemoglobin electrophoresis and High Performance Liquid Chromatography (HPLC). HbF levels were determined by HPLC. Malaria was diagnosed using rapid diagnostic test and/or blood film. Logistic regression and generalized estimating equations models were used to evaluate associations between SCD status, HbF and malaria.Findings2,049 individuals with age range 0-70 years, HbAA 311(15.2%), HbAS 241(11.8%) and HbSS 1,497(73.1%) were analysed. At enrolment, malaria prevalence was significantly higher in HbAA 13.2% compared to HbAS 1.24% and HbSS 1.34% (p<0.001). Mean HbF was lower in those with malaria compared to those without malaria in HbAA (0.43% vs 0.82%) but was the reverse in HbSS (8.10% vs 5.59%). An increase in HbF was associated with a decrease in risk of malaria OR=0.50 (95%CI: 0.28, 0.90; p=0.021) in HbAA, whereas for HbSS the risk of malaria increased OR=2.94 (1.44, 5.98; p=0.003). A similar pattern was seen during multiple visits; HbAA OR=0.52 (0.34, 0.80; p=0.003) vs HbSS OR=2.01 (1.27, 3.23; p=0.003).ConclusionHigher prevalence of malaria in HbAA compared to HbAS and HbSS confirmed the protective effect of HbS. Lower prevalence of malaria in HbAA with high HbF supports a protective effect of HbF. However, in HbSS, the higher prevalence of malaria with high levels of HbF suggests loss of malaria protection. This is the first epidemiological study to suggest a negative epistasis between HbF and HbS on malaria.  相似文献   

5.
6.
Menge DM  Zhong D  Guda T  Gouagna L  Githure J  Beier J  Yan G 《Genetics》2006,173(1):235-241
Natural anopheline populations exhibit much variation in ability to support malaria parasite development, but the genetic mechanisms underlying this variation are not clear. Previous studies in Mali, West Africa, identified two quantitative trait loci (QTL) in Anopheles gambiae mosquitoes that confer refractoriness (failure of oocyst development in mosquito midguts) to natural Plasmodium falciparum parasites. We hypothesize that new QTL may be involved in mosquito refractoriness to malaria parasites and that the frequency of natural refractoriness genotypes may be higher in the basin region of Lake Victoria, East Africa, where malaria transmission intensity and parasite genetic diversity are among the highest in the world. Using field-derived F2 isofemale families and microsatellite marker genotyping, two loci significantly affecting oocyst density were identified: one on chromosome 2 between markers AG2H135 and AG2H603 and the second on chromosome 3 near marker AG3H93. The first locus was detected in three of the five isofemale families studied and colocalized to the same region as Pen3 and pfin1 described in other studies. The second locus was detected in two of the five isofemale families, and it appears to be a new QTL. QTL on chromosome 2 showed significant additive effects while those on chromosome 3 exhibited significant dominant effects. Identification of P. falciparum-refractoriness QTL in natural An. gambiae mosquitoes is critical to the identification of the genes involved in malaria parasite transmission in nature and for understanding the coevolution between malaria parasites and mosquito vectors.  相似文献   

7.
P. falciparum malaria is one of the most widespread and deadliest infectious diseases in children under five years in endemic areas. The disease has been a strong force for evolutionary selection in the human genome, and uncovering the critical human genetic factors that confer resistance to the disease would provide clues to the molecular basis of protective immunity that would be invaluable for vaccine development. We investigated the effect of single nucleotide polymorphisms (SNPs) on malaria pathology in a case- control study of 1862 individuals from two major ethnic groups in three regions with intense perennial P. falciparum transmission in Cameroon. Twenty nine polymorphisms in cytokine and toll-like receptor (TLR) genes as well as the sickle cell trait (HbS) were assayed on the Sequenom iPLEX platform. Our results confirm the known protective effect of HbS against severe malaria and also reveal a protective effect of SNPs in interleukin-10 (IL10) cerebral malaria and hyperpyrexia. Furthermore, IL17RE rs708567 GA and hHbS rs334 AT individuals were associated with protection from uncomplicated malaria and anaemia respectively in this study. Meanwhile, individuals with the hHbS rs334 TT, IL10 rs3024500 AA, and IL17RD rs6780995 GA genotypes were more susceptible to severe malarial anaemia, cerebral malaria, and hyperpyrexia respectively. Taken together, our results suggest that polymorphisms in some immune response genes may have important implications for the susceptibility to severe malaria in Cameroonians. Moreover using uncomplicated malaria may allow us to identify novel pathways in the early development of the disease.  相似文献   

8.
In this paper, we introduce a deterministic malaria model for determining the drug administration protocol that leads to the smallest first malaria episodes during the wet season. To explore the effects of administering the malaria drug on different days during the wet season while minimizing the potential harmful effects of drug overdose, we define 40 drug administration protocols. Our results fit well with the clinical studies of Coulibaly et al. at a site in Mali. In addition, we provide protocols that lead to smaller number of first malaria episodes during the wet season than the protocol of Coulibaly et al.  相似文献   

9.

Background

Antibodies that protect against Plasmodium falciparum (Pf) malaria are only acquired after years of repeated infections. The B cell biology that underlies this observation is poorly understood. We previously reported that “atypical” memory B cells are increased in children and adults exposed to intense Pf transmission in Mali, similar to what has been observed in individuals infected with HIV. In this study we examined B cell subsets of Pf -infected adults in Peru and Mali to determine if Pf transmission intensity correlates with atypical memory B cell expansion.

Methodology/Principal Findings

In this cross-sectional study venous blood was collected from adults in areas of zero (U.S., n = 10), low (Peru, n = 18) and high (Mali, n = 12) Pf transmission. Adults in Peru and Mali were infected with Pf at the time of blood collection. Thawed lymphocytes were analyzed by flow cytometry to quantify B cell subsets, including atypical memory B cells, defined by the cell surface markers CD19+ CD20+ CD21 CD27 CD10. In Peru, the mean level of atypical memory B cells, as a percent of total B cells, was higher than U.S. adults (Peru mean: 5.4% [95% CI: 3.61–7.28]; U.S. mean: 1.4% [95% CI: 0.92–1.81]; p<0.0001) but lower than Malian adults (Mali mean 13.1% [95% CI: 10.68–15.57]; p = 0.0001). In Peru, individuals self-reporting ≥1 prior malaria episodes had a higher percentage of atypical memory B cells compared to those reporting no prior episodes (≥1 prior episodes mean: 6.6% [95% CI: 4.09–9.11]; no prior episodes mean: 3.1% [95% CI: 1.52–4.73]; p = 0.028).

Conclusions/Significance

Compared to Pf-naive controls, atypical memory B cells were increased in Peruvian adults exposed to low Pf transmission, and further increased in Malian adults exposed to intense Pf transmission. Understanding the origin, function and antigen specificity of atypical memory B cells in the context of Pf infection could contribute to our understanding of naturally-acquired malaria immunity.  相似文献   

10.
The process by which malaria parasites are killed in sickled erythrocytes was studied by electron microscopy. In vitro cultures of Plasmodium falciparum in sickle cell hemoglobin (HbS) homozygous (SS) and heterozygous (SA) red cells were deoxygenated for up to 6 h and fixed under anaerobic conditions. Parasites in SS cells appeared to be disrupted by intrusions of needle-like deoxyHbS aggregates; disintegration of cytoplasm and membranes followed. In SA red cells, the parasites were generally not disrupted. Instead, extensive vacuolization occurred, a sign of metabolic inhibition. The resistance of HbS gene carriers to malaria results partly from these causes of intracellular parasite death.  相似文献   

11.

Background

Haemoglobin S (HbS) and C (HbC) are variants of the HBB gene which both protect against malaria. It is not clear, however, how these two alleles have evolved in the West African countries where they co-exist at high frequencies. Here we use haplotypic signatures of selection to investigate the evolutionary history of the malaria-protective alleles HbS and HbC in the Kassena-Nankana District (KND) of Ghana.

Methodology/Principal Findings

The haplotypic structure of HbS and HbC alleles was investigated, by genotyping 56 SNPs around the HBB locus. We found that, in the KND population, both alleles reside on extended haplotypes (approximately 1.5 Mb for HbS and 650 Kb for HbC) that are significantly less diverse than those of the ancestral HbA allele. The extended haplotypes span a recombination hotspot that is known to exist in this region of the genome

Significance

Our findings show strong support for recent positive selection of both the HbS and HbC alleles and provide insights into how these two alleles have both evolved in the population of northern Ghana.  相似文献   

12.
13.
The process by which malaria parasites are killed in sickled erythrocytes was studied by electron microscopy. In vitro cultures of Plasmodium falciparum in sickle cell hemoglobin (HbS) homozygous (SS) and heterozygous (SA) red cells were deoxygenated for up to 6 h and fixed under anaerobic conditions. Parasites in SS cells appeared to be disrupted by intrusions of needle-like deoxyHbS aggregates; disintegration of cytoplasm and membranes followed. In SA red cells, the parasites were generally not disrupted. Instead, extensive vacuolization occurred, a sign of metabolic inhibition. The resistance of HbS gene carriers to malaria results partly from these causes of intracellular parasite death.  相似文献   

14.
Summary The identification of genetically coherent populations is essential for understanding human evolution. Among the culturally uniform ethnic groups of west Africa, there are two geographically distinct populations with high frequencies of sickle-cell hemoglobin (HbS). Although the HbS mutation in each group is found on distinguishable chromosomes 11, these populations have been assumed to be parts of a single population. Analysis of mitochondrial DNA (mtDNA) in these populations demonstrated that the two populations identified by alternative chromosomes 11 bearing HbS have distinct distributions of mitochondrial genotypes, i.e., they are maternally separate. These studies also showed that, contrary to expectation, the mtDNA of some individuals is heteroplasmic. For nuclear loci, a comparison of the frequency of alternative alleles established that these populations are genetically distinct. Both the mitochondrial and nuclear data indicate that these populations have been separate for approximately 50,000 years. Although HbS in the two populations is usually attributed to recent, independent mutations, the duration of the separation and the observed geographic distribution of the population allow for the possibility of an ancient origin of HbS. Assuming an ancient mutation and considering the known biogeography, we suggest that HbS protected selected populations from malaria in rain forest refuges during the most recent ice age.Offprint requests to: O.C. Stine  相似文献   

15.
Hemoglobin (Hb) variants are associated with reduced risk of life-threatening Plasmodium falciparum malaria syndromes, including cerebral malaria and severe malarial anemia. Despite decades of research, the mechanisms by which common Hb variants - sickle HbS, HbC, α-thalassemia, fetal HbF - protect African children against severe and fatal malaria have not been fully elucidated. In vitro experimental and epidemiological data have long suggested that Hb variants do not confer malaria protection by restricting the growth of parasites in red blood cells (RBCs). Recently, four Hb variants were found to impair cytoadherence, the binding of P. falciparum-infected RBCs (PfRBCs) to microvascular endothelial cells (MVECs), a centrally important event in both parasite survival and malaria pathogenesis in humans. Impaired cytoadherence is associated with abnormal display of P. falciparum erythrocyte membrane protein 1 (PfEMP1), the parasite's major cytoadherence ligand and virulence factor, on the surface of host RBCs. We propose a model in which Hb variants allow parasites to display relatively low levels of PfEMP1, sufficient for sequestering PfRBCs in microvessels and avoiding their clearance from the bloodstream by the spleen. By preventing the display of high levels of PfEMP1, Hb variants may weaken the binding of PfRBCs to MVECs, compromising their ability to activate endothelium and initiate the downstream microvascular events that drive the pathogenesis of malaria.  相似文献   

16.
17.
Cell-mediated immunity plays a crucial role in the control of many infectious diseases, necessitating the need for adjuvants that can augment cellular immune responses elicited by vaccines. It is well established that protection against one such disease, malaria, requires strong CD8(+) T cell responses targeted against the liver stages of the causative agent, Plasmodium spp. In this report we show that the dendritic cell-specific chemokine, dendritic cell-derived CC chemokine 1 (DC-CK1), which is produced in humans and acts on naive lymphocytes, can enhance Ag-specific CD8(+) T cell responses when coadministered with either irradiated Plasmodium yoelii sporozoites or a recombinant adenovirus expressing the P. yoelii circumsporozoite protein in mice. We further show that these enhanced T cell responses result in increased protection to malaria in immunized mice challenged with live P. yoelii sporozoites, revealing an adjuvant activity for DC-CK1. DC-CK1 appears to act preferentially on naive mouse lymphocytes, and its adjuvant effect requires IL-12, but not IFN-gamma or CD40. Overall, our results show for the first time an in vivo role for DC-CK1 in the establishment of primary T cell responses and indicate the potential of this chemokine as an adjuvant for vaccines against malaria as well as other diseases in which cellular immune responses are important.  相似文献   

18.
The mechanisms underlying the modulation of both the malaria-specific immune response and the course of clinical malaria in the context of concomitant helminth infection are poorly understood. We used multiparameter flow cytometry to characterize the quality and the magnitude of malaria-specific T cell responses in filaria-infected and -uninfected individuals with concomitant asymptomatic Plasmodium falciparum malaria in Mali. In comparison with filarial-uninfected subjects, filarial infection was associated with higher ex vivo frequencies of CD4(+) cells producing IL-4, IL-10, and IL-17A (p = 0.01, p = 0.001, and p = 0.03, respectively). In response to malaria Ag stimulation, however, filarial infection was associated with lower frequencies of CD4(+) T cells producing IFN-γ, TNF-α, and IL-17A (p < 0.001, p = 0.04, and p = 0.04, respectively) and with higher frequencies of CD4(+)IL10(+)T cells (p = 0.0005). Importantly, filarial infection was associated with markedly lower frequencies of malaria Ag-specific Th1 (p < 0.0001), Th17 (p = 0.012), and "TNF-α" (p = 0.0008) cells, and a complete absence of malaria-specific multifunctional Th1 cells. Filarial infection was also associated with a marked increase in the frequency of malaria-specific adaptive regulatory T/Tr1 cells (p = 0.024), and the addition of neutralizing anti-IL-10 Ab augmented the amount of Th1-associated cytokine produced per cell. Thus, among malaria-infected individuals, concomitant filarial infection diminishes dramatically the frequencies of malaria-specific Th1 and Th17 T cells, and alters the quality and magnitude of malaria-specific T cell responses.  相似文献   

19.
The malaria parasite, Plasmodium falciparum, enhances the rate and extent of sickling of infected hemoglobin S heterozygous human erythrocytes. Upon sickling of the host cell, the parasite is killed. Parasite-free lysates of highly infected cells were analyzed to determine the mechanism by which sickling is enhanced. The intraerythrocytic pH of the infected cell was estimated to be 0.4 units below that of the uninfected cell, a difference which could result in a 20-fold increase in the extent of sickling under physiological conditions. Sickle-cell hemoglobin (HbS) heterozygous (AS) erythrocytes had decreased intracellular potassium after 24 hr of culture under conditions which cause sickling and parasite death. When infected AS cells were cultured in high-potassium medium under these conditions the parasites were protected. The medium did not prevent sickling but did maintain normal intracellular potassium levels. It is suggested that sequestration of trophozoite-infected AS cells in the venules leads to the sickling of the host cell, loss of erythrocytic potassium, and parasite death. The resulting attenuation of parasite multiplication would favor the survival of the HbS heterozygote and maintain the HbS gene at high frequencies in areas endemic for falciparum malaria.  相似文献   

20.
BackgroundSeasonal malaria chemoprevention (SMC) has shown high protective efficacy against clinical malaria and severe malaria in a series of clinical trials. We evaluated the effectiveness of SMC treatments against clinical malaria when delivered at scale through national malaria control programmes in 2015 and 2016.Methods and findingsCase–control studies were carried out in Mali and The Gambia in 2015, and in Burkina Faso, Chad, Mali, Nigeria, and The Gambia in 2016. Children aged 3–59 months presenting at selected health facilities with microscopically confirmed clinical malaria were recruited as cases. Two controls per case were recruited concurrently (on or shortly after the day the case was detected) from the neighbourhood in which the case lived. The primary exposure was the time since the most recent course of SMC treatment, determined from SMC recipient cards, caregiver recall, and administrative records. Conditional logistic regression was used to estimate the odds ratio (OR) associated with receipt of SMC within the previous 28 days, and SMC 29 to 42 days ago, compared with no SMC in the past 42 days. These ORs, which are equivalent to incidence rate ratios, were used to calculate the percentage reduction in clinical malaria incidence in the corresponding time periods. Results from individual countries were pooled in a random-effects meta-analysis. In total, 2,126 cases and 4,252 controls were included in the analysis. Across the 7 studies, the mean age ranged from 1.7 to 2.4 years and from 2.1 to 2.8 years among controls and cases, respectively; 42.2%–50.9% and 38.9%–46.9% of controls and cases, respectively, were male. In all 7 individual case–control studies, a high degree of personal protection from SMC against clinical malaria was observed, ranging from 73% in Mali in 2016 to 98% in Mali in 2015. The overall OR for SMC within 28 days was 0.12 (95% CI: 0.06, 0.21; p < 0.001), indicating a protective effectiveness of 88% (95% CI: 79%, 94%). Effectiveness against clinical malaria for SMC 29–42 days ago was 61% (95% CI: 47%, 72%). Similar results were obtained when the analysis was restricted to cases with parasite density in excess of 5,000 parasites per microlitre: Protective effectiveness 90% (95% CI: 79%, 96%; P<0.001), and 59% (95% CI: 34%, 74%; P<0.001) for SMC 0–28 days and 29–42 days ago, respectively. Potential limitations include the possibility of residual confounding due to an association between exposure to malaria and access to SMC, or differences in access to SMC between patients attending a clinic and community controls; however, neighbourhood matching of cases and controls, and covariate adjustment, attempted to control for these aspects, and the observed decline in protection over time, consistent with expected trends, argues against a major bias from these sources.ConclusionsSMC administered as part of routine national malaria control activities provided a very high level of personal protection against clinical malaria over 28 days post-treatment, similar to the efficacy observed in clinical trials. The case–control design used in this study can be used at intervals to ensure SMC treatments remain effective.

Using case-control studies, Matthew Cairns and colleagues investigate the effectiveness of seasonal malaria chemoprevention against clinical malaria in children in Burkina Faso, Chad, Mali, Nigeria and The Gambia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号