首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lerat E  Burlet N  Biémont C  Vieira C 《Gene》2011,473(2):100-109
Transposable elements (TEs) are indwelling components of genomes, and their dynamics have been a driving force in genome evolution. Although we now have more information concerning their amounts and characteristics in various organisms, we still have little data from overall comparisons of their sequences in very closely-related species. While the Drosophila melanogaster genome has been extensively studied, we have only limited knowledge regarding the precise TE sequences in the genomes of the related species Drosophila simulans, Drosophila sechellia and Drosophila yakuba. In this study we analyzed the number and structure of TE copies in the sequenced genomes of these four species. Our findings show that, unexpectedly, the number of TE insertions in D. simulans is greater than that in D. melanogaster, but that most of the copies in D. simulans are degraded and in small fragments, as in D. sechellia and D. yakuba. This suggests that all three species were invaded by numerous TEs a long time ago, but have since regulated their activity, as the present TE copies are degraded, with very few full-length elements. In contrast, in D. melanogaster, a recent activation of TEs has resulted in a large number of almost-identical TE copies. We have detected variants of some TEs in D. simulans and D. sechellia, that are almost identical to the reference TE sequences in D. melanogaster, suggesting that D. melanogaster has recently been invaded by active TE variants from the other species. Our results indicate that the three species D. simulans, D. sechellia, and D. yakuba seem to be at a different stage of their TE life cycle when compared to D. melanogaster. Moreover, we show that D. melanogaster has been invaded by active TE variants for several TE families likely to come from D. simulans or the ancestor of D. simulans and D. sechellia. The numerous horizontal transfer events implied to explain these results could indicate introgression events between these species.  相似文献   

2.
Transposable elements (TEs) make up around 10%-15% of the Drosophila melanogaster genome, but its sibling species Drosophila simulans carries only one third as many such repeat sequences. We do not, however, have an overall view of copy numbers of the various classes of TEs (long terminal repeat [LTR] retrotransposons, non-LTR retrotransposons, and transposons) in genomes of natural populations of both species. We analyzed 34 elements in individuals from various natural populations of these species. We show that D. melanogaster has higher average chromosomal insertion site numbers per genome than D. simulans for all TEs except five. The LTR retrotransposons gypsy, ZAM, and 1731 and the transposon bari-1 present similar low copy numbers in both species. The transposon hobo has a large number of insertion sites, with significantly more sites in D. simulans. High variation between populations in number of insertion sites of some elements of D. simulans suggests that these elements can invade the genome of the entire species starting from a local population. We propose that TEs in the D. simulans genome are being awakened and amplified as they had been a long time ago in D. melanogaster.  相似文献   

3.
Genome size varies considerably between species, and transposable elements (TEs) are known to play an important role in this variability. However, it is far from clear whether TEs are involved in genome size differences between populations within a given species. We show here that in Drosophila melanogaster and Drosophila simulans the size of the genome varies among populations and is correlated with the TE copy number on the chromosome arms. The TEs embedded within the heterochromatin do not seem to be involved directly in this phenomenon, although they may contribute to differences in genome size. Furthermore, genome size and TE content variations parallel the worldwide colonization of D. melanogaster species. No such relationship exists for the more recently dispersed D. simulans species, which indicates that a quantitative increase in the TEs in local populations and fly migration are sufficient to account for the increase in genome size, with no need for an adaptation hypothesis.  相似文献   

4.
Vieira C  Biémont C 《Genetica》2004,120(1-3):115-123
Transposable elements (TEs) in the two sibling species, Drosophila melanogaster and D. simulans, differ considerably in amount and dynamics, with D. simulans having a smaller amount of TEs than D. melanogaster. Several hypotheses have been proposed to explain these differences, based on the evolutionary history of the two species, and claim differences either in the effective size of the population or in genome characteristics. Recent data suggest, however, that the higher amount of TEs in D. melanogaster could be associated with the worldwide invasion of D. melanogaster a long time ago while D. simulans is still under the process of such geographical spread. Stresses due to new environmental conditions and crosses between migrating populations could explain the mobilization of TEs while the flies colonize. Colonization and TE mobilization may be strong evolutionary forces that have shaped and are still shaping the eukaryote genomes.  相似文献   

5.
Transposable elements (TEs) are the primary contributors to the genome bulk in many organisms and are major players in genome evolution. A clear and thorough understanding of the population dynamics of TEs is therefore essential for full comprehension of the eukaryotic genome evolution and function. Although TEs in Drosophila melanogaster have received much attention, population dynamics of most TE families in this species remains entirely unexplored. It is not clear whether the same population processes can account for the population behaviors of all TEs in Drosophila or whether, as has been suggested previously, different orders behave according to very different rules. In this work, we analyzed population frequencies for a large number of individual TEs (755 TEs) in five North American and one sub-Saharan African D. melanogaster populations (75 strains in total). These TEs have been annotated in the reference D. melanogaster euchromatic genome and have been sampled from all three major orders (non-LTR, LTR, and TIR) and from all families with more than 20 TE copies (55 families in total). We find strong evidence that TEs in Drosophila across all orders and families are subject to purifying selection at the level of ectopic recombination. We showed that strength of this selection varies predictably with recombination rate, length of individual TEs, and copy number and length of other TEs in the same family. Importantly, these rules do not appear to vary across orders. Finally, we built a statistical model that considered only individual TE-level (such as the TE length) and family-level properties (such as the copy number) and were able to explain more than 40% of the variation in TE frequencies in D. melanogaster.  相似文献   

6.
We present a global analysis of the distribution of 43 transposable elements (TEs) in 228 species of the Drosophila genus from our data and data from the literature. Data on chromosome localization come from in situ hybridization and presence/absence of the elements from southern analyses. This analysis shows great differences between TE distributions, even among closely related species. Some TEs are distributed according to the phylogeny of their host specie; others do not entirely follow the phylogeny, suggesting horizontal transfers. A higher number of insertion sites for most TEs in the genome of D. melanogaster is observed when compared with that in D. simulans. This suggests either intrinsic differences in genomic characteristics between the two species, or the influence of differing effective population sizes, although biases due to the use of TE probes coming mostly from D. melanogaster and to the way TEs are initially detected in species cannot be ruled out. Data on TEs more specific to the species under consideration are necessary for a better understanding of their distribution in organisms and populations. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
We have conducted molecular population genetics analyses to understand the relationships among the transposable elements (TEs) in Drosophila melanogaster, in combination with sequence comparisons of TEs from two related species, D. simulans and D. yakuba. We observed much lower than expected genetic differences among elements, clear evidence for departure from expectations for equilibrium copy numbers and little divergence between species. This suggests that a large proportion of TEs in D. melanogaster had a recent origin as a result of interspecies movement.  相似文献   

8.
A 454 sequencing snapshot was utilised to investigate the genome composition and nucleotide diversity of transposable elements (TEs) for several Triticeae taxa, including Triticum aestivum, Hordeum vulgare, Hordeum spontaneum and Secale cereale together with relatives of the A, B and D genome donors of wheat, Triticum urartu (A), Aegilops speltoides (S) and Aegilops tauschii (D). Additional taxa containing the A genome, Triticum monococcum and its wild relative Triticum boeoticum, were also included. The main focus of the analysis was on the genomic composition of TEs as these make up at least 80% of the overall genome content. Although more than 200 TE families were identified in each species, approximately 50% of the overall genome comprised 12–15 TE families. The BARE1 element was the largest contributor to all genomes, contributing more than 10% to the overall genome. We also found that several TE families differ strongly in their abundance between species, indicating that TE families can thrive extremely successfully in one species while going virtually extinct in another. Additionally, the nucleotide diversity of BARE1 populations within individual genomes was measured. Interestingly, the nucleotide diversity in the domesticated barley H. vulgare cv. Barke was found to be twice as high as in its wild progenitor H. spontaneum, suggesting that the domesticated barley gained nucleotide diversity from the addition of different genotypes during the domestication and breeding process. In the rye/wheat lineage, sequence diversity of BARE1 elements was generally higher, suggesting that factors such as geographical distribution and mating systems might play a role in intragenomic TE diversity.  相似文献   

9.
Transposable elements (TEs) are so abundant and variable that they count among the most important mutational sources in genomes. Nonetheless, little is known about the genetics of their variation in activity or silencing across closely related species. Here, we demonstrate that regulation of TE genes can differ dramatically between the two closely related Arabidopsis species A. thaliana and A. lyrata. In leaf and floral tissues of F1 interspecific hybrids, about 47% of TEs show allele-specific expression, with the A. lyrata copy being generally expressed at higher level. We confirm that TEs are generally expressed in A. lyrata but not in A. thaliana. Allele-specific differences in TE expression are associated with divergence in epigenetic modifications like DNA and histone methylation between species as well as with sequence divergence. Our data demonstrate that A. thaliana silences TEs much better than A. lyrata. For long terminal repeat retrotransposons, these differences are more pronounced for younger insertions. Interspecific differences in TE silencing may have a great impact on genome size changes.  相似文献   

10.
The Drosophila melanogaster genome contains approximately 100 distinct families of transposable elements (TEs). In the euchromatic part of the genome, each family is present in a small number of copies (5-150 copies), with individual copies of TEs often present at very low frequencies in populations. This pattern is likely to reflect a balance between the inflow of TEs by transposition and the removal of TEs by natural selection. The nature of natural selection acting against TEs remains controversial. We provide evidence that selection against chromosome abnormalities caused by ectopic recombination limits the spread of some TEs. We also demonstrate for the first time that some TE families in the Drosophila euchromatin appear to be only marginally affected by purifying selection and contain many copies at high population frequencies. We argue that TEs in these families attain high population frequencies and even reach fixation as a result of low family-wide transposition rates leading to low TE copy numbers and consequently reduced strength of selection acting on individual TE copies. Fixation of TEs in these families should provide an upward pressure on the size of intergenic sequences counterbalancing rapid DNA loss through small deletions. Copy-number-dependent selection on TE families caused by ectopic recombination may also promote diversity among TEs in the Drosophila genome.  相似文献   

11.
Abstract.— Transposable elements (TEs), which promote various kinds of mutations, constitute a large fraction of the genome. How they invade natural populations and species is therefore of fundamental importance for understanding the dynamics of genetic diversity and genome composition. On the basis of 85 samples of natural populations of Drosophila simulans , we report the distributions of the genome insertion site numbers of nine TEs that were chosen because they have a low average number of sites. Most populations were found to have 0–3 insertion sites, but some of them had a significantly higher number of sites for a given TE. The populations located in regions outside Africa had the highest number of sites for all elements except HMS Beagle and Coral , suggesting a recent increase in the activity of some TEs associated with the colonization patterns of Drosophila simulans . The element Tirant had a very distinctive pattern of distribution: it was identified mainly in populations from East Africa and some islands in the Indian Ocean, and its insertion site number was low in all these populations. The data suggest that the genome of the entire species of Drosophila simulans may be being invaded by TEs from populations in which they are present in high copy number.  相似文献   

12.
Transposable elements (TEs) are mobile genetic elements that parasitize genomes by semi-autonomously increasing their own copy number within the host genome. While TEs are important for genome evolution, appropriate methods for performing unbiased genome-wide surveys of TE variation in natural populations have been lacking. Here, we describe a novel and cost-effective approach for estimating population frequencies of TE insertions using paired-end Illumina reads from a pooled population sample. Importantly, the method treats insertions present in and absent from the reference genome identically, allowing unbiased TE population frequency estimates. We apply this method to data from a natural Drosophila melanogaster population from Portugal. Consistent with previous reports, we show that low recombining genomic regions harbor more TE insertions and maintain insertions at higher frequencies than do high recombining regions. We conservatively estimate that there are almost twice as many "novel" TE insertion sites as sites known from the reference sequence in our population sample (6,824 novel versus 3,639 reference sites, with on average a 31-fold coverage per insertion site). Different families of transposable elements show large differences in their insertion densities and population frequencies. Our analyses suggest that the history of TE activity significantly contributes to this pattern, with recently active families segregating at lower frequencies than those active in the more distant past. Finally, using our high-resolution TE abundance measurements, we identified 13 candidate positively selected TE insertions based on their high population frequencies and on low Tajima's D values in their neighborhoods.  相似文献   

13.
Transposable elements (TEs) are repetitive DNA sequences that are ubiquitous, extremely abundant and dynamic components of practically all genomes. Much effort has gone into annotation of TE copies in reference genomes. The sequencing cost reduction and the newly available next-generation sequencing (NGS) data from multiple strains within a species offer an unprecedented opportunity to study population genomics of TEs in a range of organisms. Here, we present a computational pipeline (T-lex) that uses NGS data to detect the presence/absence of annotated TE copies. T-lex can use data from a large number of strains and returns estimates of population frequencies of individual TE insertions in a reasonable time. We experimentally validated the accuracy of T-lex detecting presence or absence of 768 previously identified TE copies in two resequenced Drosophila melanogaster strains. Approximately 95% of the TE insertions were detected with 100% sensitivity and 97% specificity. We show that even at low levels of coverage T-lex produces accurate results for TE copies that it can identify reliably but that the rate of 'no data' calls increases as the coverage falls below 15×. T-lex is a broadly applicable and flexible tool that can be used in any genome provided the availability of the reference genome, individual TE copy annotation and NGS data.  相似文献   

14.
Comparative analysis of recently sequenced eukaryotic genomes has uncovered extensive variation in transposable element (TE) abundance, diversity, and distribution. The TE profile in the sequenced pufferfish genomes is more similar to that of Drosophila melanogaster than to human or mouse, in that pufferfish TEs exhibit low overall abundance, high family diversity, and localization in the heterochromatin. It has been suggested that selection against the deleterious effects of ectopic recombination between TEs has structured the TE profile in Drosophila and pufferfish but not in humans. We test this hypothesis by measuring the sample frequency of 48 euchromatic TE insertions in the genome of the green spotted pufferfish (Tetraodon nigroviridis). We estimate the strength of selection acting on recent insertions by analyzing the site frequency spectrum using a maximum-likelihood approach. We show that in contrast to Drosophila, euchromatic TE insertions in Tetraodon are selectively neutral and that the low copy number and compartmentalized distribution of TEs in the Tetraodon genome must be caused by regulation by means other than purifying selection acting on recent insertions. Inference of regulatory processes governing TE profiles should take into account factors such as effective population size, incidence of inbreeding/outcrossing, and other species-specific traits.  相似文献   

15.
Combined evidence annotation of transposable elements in genome sequences   总被引:1,自引:0,他引:1  
Transposable elements (TEs) are mobile, repetitive sequences that make up significant fractions of metazoan genomes. Despite their near ubiquity and importance in genome and chromosome biology, most efforts to annotate TEs in genome sequences rely on the results of a single computational program, RepeatMasker. In contrast, recent advances in gene annotation indicate that high-quality gene models can be produced from combining multiple independent sources of computational evidence. To elevate the quality of TE annotations to a level comparable to that of gene models, we have developed a combined evidence-model TE annotation pipeline, analogous to systems used for gene annotation, by integrating results from multiple homology-based and de novo TE identification methods. As proof of principle, we have annotated "TE models" in Drosophila melanogaster Release 4 genomic sequences using the combined computational evidence derived from RepeatMasker, BLASTER, TBLASTX, all-by-all BLASTN, RECON, TE-HMM and the previous Release 3.1 annotation. Our system is designed for use with the Apollo genome annotation tool, allowing automatic results to be curated manually to produce reliable annotations. The euchromatic TE fraction of D. melanogaster is now estimated at 5.3% (cf. 3.86% in Release 3.1), and we found a substantially higher number of TEs (n = 6,013) than previously identified (n = 1,572). Most of the new TEs derive from small fragments of a few hundred nucleotides long and highly abundant families not previously annotated (e.g., INE-1). We also estimated that 518 TE copies (8.6%) are inserted into at least one other TE, forming a nest of elements. The pipeline allows rapid and thorough annotation of even the most complex TE models, including highly deleted and/or nested elements such as those often found in heterochromatic sequences. Our pipeline can be easily adapted to other genome sequences, such as those of the D. melanogaster heterochromatin or other species in the genus Drosophila.  相似文献   

16.
There are no doubts that transposable elements (TEs) have greatly influenced genomes evolution. They have, however, evolved in different ways throughout mammals, plants, and invertebrates. In mammals they have been shown to be widely present but with low transposition activity; in plants they are responsible for large increases in genome size. In Drosophila, despite their low amount, transposition seems to be higher. Therefore, to understand how these elements have evolved in different genomes and how host genomes have proposed to go around them, are major questions on genome evolution. We analyzed sequences of the retrotransposable elements 412 in natural populations of the Drosophila simulans and D. melanogaster species that greatly differ in their amount of TEs. We identified new subfamilies of this element that were the result of mutation or insertion-deletion process, but also of interfamily recombinations. These new elements were well conserved in the D. simulans natural populations. The new regulatory regions produced by recombination could give rise to new elements able to overcome host control of transposition and, thus, become potential genome invaders.  相似文献   

17.
ABSTRACT: BACKGROUND: During the evolutionary history of transposable elements, some processes, such as ancestral polymorphisms and horizontal transfer of sequences between species, can produce incongruences in phylogenies. We investigated the evolutionary history of the transposable elements Bari and 412 in the sequenced genomes of the Drosophila melanogaster group and in the sibling species D. melanogaster and D. simulans using traditional phylogenetic and network approaches. RESULTS: The maximum likelihood (ML) phylogenetic analyses revealed incongruences and unresolved relationships for both the Bari and 412 elements. The DNA transposon Bari within the D. ananassae genome is more closely related to the element of the melanogaster complex than to the sequence in D. erecta, which is inconsistent with the species phylogeny. Divergence analysis and the comparison of the rate of synonymous substitutions per synonymous site of the Bari and host gene sequences explain the incongruence as an ancestral polymorphism inherited stochastically by the derived species. Unresolved relationships were observed in the ML phylogeny of both elements involving D. melanogaster, D. simulans and D. sechellia. A network approach was used to attempt to resolve these relationships. The resulting tree suggests recent transfers of both elements between D. melanogaster and D. simulans. The divergence values of the elements between these species support this conclusion. CONCLUSIONS: We showed that an ancestral polymorphism and recent invasion of genomes due to introgression or horizontal transfer between species occurred during the evolutionary history of the Bari and 412 elements in the melanogaster group. These invasions likely occurred in Africa during the Pleistocene, before the worldwide expansion of D. melanogaster and D. simulans.  相似文献   

18.
19.
MOTIVATION: Sequencing capacity is currently growing more rapidly than CPU speed, leading to an analysis bottleneck in many genome projects. Alignment-free sequence analysis methods tend to be more efficient than their alignment-based counterparts. They may, therefore, be important in the long run for keeping sequence analysis abreast with sequencing. RESULTS: We derive and implement an alignment-free estimator of the number of pairwise mismatches, . Our implementation of , pim, is based on an enhanced suffix array and inherits the superior time and memory efficiency of this data structure. Simulations demonstrate that is accurate if mutations are distributed randomly along the chromosome. While real data often deviates from this ideal, remains useful for identifying regions of low genetic diversity using a sliding window approach. We demonstrate this by applying it to the complete genomes of 37 strains of Drosophila melanogaster, and to the genomes of two closely related Drosophila species, D.simulans and D.sechellia. In both cases, we detect the diversity minimum and discuss its biological implications.  相似文献   

20.
Presgraves DC 《Genetics》2003,163(3):955-972
The sterility and inviability of species hybrids is thought to evolve by the accumulation of genes that cause generally recessive, incompatible epistatic interactions between species. Most analyses of the loci involved in such hybrid incompatibilities have suffered from low genetic resolution. Here I present a fine-resolution genetic screen that allows systematic counting, mapping, and characterizing of a large number of hybrid incompatibility loci in a model genetic system. Using small autosomal deletions from D. melanogaster and a hybrid rescue mutation from D. simulans, I measured the viability of hybrid males that are simultaneously hemizygous for a small region of the D. simulans autosomal genome and hemizygous for the D. melanogaster X chromosome. These hybrid males are exposed to the full effects of any recessive-recessive epistatic incompatibilities present in these regions. A screen of approximately 70% of the D. simulans autosomal genome reveals 20 hybrid-lethal and 20 hybrid-semilethal regions that are incompatible with the D. melanogaster X. In further crosses, I confirm the epistatic nature of hybrid lethality by showing that all of the incompatibilities are rescued when the D. melanogaster X is replaced with a D. simulans X. Combined with information from previous studies, these results show that the number of recessive incompatibilities is approximately eightfold larger than the number of dominant ones. Finally, I estimate that a total of approximately 191 hybrid-lethal incompatibilities separate D. melanogaster and D. simulans, indicating extensive functional divergence between these species' genomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号