首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Phosphatidylinositol 4-kinase, Pik1, is essential for viability. GFP-Pik1 localized to cytoplasmic puncta and the nucleus. The puncta colocalized with Sec7-DsRed, a marker of trans-Golgi cisternae. Kap95 (importin-β) was necessary for nuclear entry, but not Kap60 (importin-α), and exportin Msn5 was required for nuclear exit. Frq1 (frequenin orthologue) also is essential for viability and binds near the NH2 terminus of Pik1. Frq1-GFP localized to Golgi puncta, and Pik1 lacking its Frq1-binding site (or Pik1 overexpressed in frq1Δ cells) did not decorate the Golgi, but nuclear localization was unperturbed. Pik1(Δ10-192), which lacks its nuclear export sequence, displayed prominent nuclear accumulation and did not rescue inviability of pik1Δ cells. A Pik1-CCAAX chimera was excluded from the nucleus and also did not rescue inviability of pik1Δ cells. However, coexpression of Pik1(Δ10-192) and Pik1-CCAAX in pik1Δ cells restored viability. Catalytically inactive derivatives of these compartment-restricted Pik1 constructs indicated that PtdIns4P must be generated both in the nucleus and at the Golgi for normal cell function.  相似文献   

2.
The high mobility group box 1 (HMGB1) protein can be secreted by activated monocytes and macrophages and functions as a late mediator of sepsis. HMGB1 contains two nuclear localization signals (NLSs) for controlled nuclear transport, and acetylation of both NLSs of HMGB1 is involved in nuclear transport toward secretion. However, phosphorylation of HMGB1 and its relation to nuclear transport have not been shown. We show here that HMGB1 is phosphorylated and dynamically shuttled between cytoplasmic and nuclear compartments according to its phosphorylation state. Phosphorylation of HMGB1 was detected by metabolic labeling and Western blot analysis after treatments with TNF-alpha and okadaic acid, a phosphatase inhibitor. Hyperphosphorylated HMGB1 in RAW 264.7 and human monocytes was relocated to the cytoplasm. In a nuclear import assay, phosphorylated HMGB1 in the cytoplasm did not enter the nucleus. We mutated serine residues of either or both NLSs of HMGB1 to glutamic acid to simulate a phosphorylated state and examined the binding of HMGB1 to karyopherin-alpha1, which was identified as the nuclear import protein for HMGB1 in this study. Substitution to glutamic acid in either NLSs decreased the binding with karyopherin-alpha1 by approximately 50%; however, substitution of both NLSs showed no binding, and HMGB1 was relocated to the cytoplasm and subsequently secreted. These data support the hypothesis that HMGB1 could be phosphorylated and that the direction of transport is regulated by phosphorylation of both NLS regions.  相似文献   

3.
Phosphatidylinositol 4-phosphate (PI4P) regulates biosynthetic membrane traffic at multiple steps and differentially affects the surface delivery of apically and basolaterally destined proteins in polarized cells. Two phosphatidylinositol 4-kinases (PI4Ks) have been localized to the Golgi complex in mammalian cells, type III PI4Kbeta (PI4KIIIbeta) and type II PI4Kalpha (PI4KIIalpha). Here we report that PI4KIIIbeta and PI4KIIalpha localize to discrete subcompartments of the Golgi complex in Madin-Darby canine kidney (MDCK) cells. PI4KIIIbeta was enriched in early Golgi compartments, whereas PI4KIIalpha colocalized with markers of the trans-Golgi network (TGN). To understand the temporal and spatial control of PI4P generation across the Golgi complex, we quantitated the steady state distribution of a fluorescent PI4P-binding domain relative to cis/medial Golgi and TGN markers in transiently transfected MDCK cells. The density of the signal from this PI4P reporter was roughly 2-fold greater in the early Golgi compartments compared with that of the TGN. Furthermore, this ratio could be modulated in vivo by overexpression of catalytically inactive PI4KIIIbeta and PI4KIIalpha or in vitro by the PI4KIIIbeta inhibitor wortmannin. Our data suggest that both PI4KIIIbeta and PI4KIIalpha contribute to the compartmental regulation of PI4P synthesis within the Golgi complex. We discuss our results with respect to the kinetic effects of modulating PI4K activity on polarized biosynthetic traffic in MDCK cells.  相似文献   

4.
Frq1, a 190-residue N-myristoylated calcium-binding protein, associates tightly with the N terminus of Pik1, a 1066-residue phosphatidylinositol 4-kinase. Deletion analysis of an Frq1-binding fragment, Pik1-(10-192), showed that residues within 80-192 are necessary and sufficient for Frq1 association in vitro. A synthetic peptide (residues 151-199) competed for binding of [(35)S]Pik1-(10-192) to bead-immobilized Frq1, whereas shorter peptides (164-199 and 174-199) did not. Correspondingly, a deletion mutant, Pik1(delta152-191), did not co-immunoprecipitate efficiently with Frq1 and did not support growth at elevated temperature. Site-directed mutagenesis of Pik1-(10-192) suggested that recognition determinants lie over an extended region. Titration calorimetry demonstrated that binding of an 83-residue fragment, Pik1-(110-192), or the 151-199 peptide to Frq1 shows high affinity (K(d) approximately 100 nm) and is largely entropic, consistent with hydrophobic interaction. Stoichiometry of Pik1-(110-192) binding to Frq1 was 1:1, as judged by titration calorimetry, by changes in NMR spectrum and intrinsic tryptophan fluorescence, and by light scattering. In cell extracts, Pik1 and Frq1 exist mainly in a heterodimeric complex, as shown by size exclusion chromatography. Cys-15 in Frq1 is not S-palmitoylated, as assessed by mass spectrometry; a Frq1(C15A) mutant and even a non-myristoylated Frq1(G2A,C15A) double mutant rescued the inviability of frq1Delta cells. This study defines the segment of Pik1 required for high affinity binding of Frq1.  相似文献   

5.
Hepatocyte growth factor (HGF) elicits pleiotropic effects on various types of cells through the c-Met receptor tyrosine kinase. However, the mechanisms underlying the diverse responses of cells remain unknown. We show here that HGF promoted chemokinesis of rat primary astrocytes through the activation of phosphatidylinositol 3 (PI3)-kinase without any influence on mitogenesis of the cells. Under the same condition, phospholipase Cgamma1 (PLCgamma1), which is another signal mediator of c-Met, was not tyrosine-phosphorylated during HGF stimulation. However, treatment of the cells with orthovanadate, a tyrosine phosphatase inhibitor, restored the HGF-induced tyrosine phosphorylation of PLCgamma1. A tyrosine phosphatase, SHP-1, was associated with both PI3-kinase and PLCgamma1 before HGF stimulation, but it was dissociated only from PI3-kinase after the stimulation. Furthermore, transfectants of catalytically inactive mutant of SHP-1 showed tyrosine phosphorylation of PLCgamma1 and mitogenic responses to HGF, and the mitogenic response was blocked with, an inhibitor of phosphatidylinositol-specific PLC, and calphostin C, an inhibitor of protein kinase C downstream of the PLCgamma1. These results indicate that PLCgamma1 is selectively prevented from being a signal mediator by constitutive association of SHP-1, and that this selective inhibition of PLCgamma1 may determine the cellular response of astrocytes to HGF.  相似文献   

6.
Using a set of specific kinase inhibitors we demonstrate that Raf kinases phosphorylate BAD at serines 112, 136 and 155 in vivo and in vitro. Exploring unexpected lipid binding properties of BAD we identified two lipid-binding domains located in its C-terminal part. Furthermore, we believe to have uncovered how phosphorylation-driven interaction with 14-3-3 regulates intracellular membrane localization of BAD. Observed activity of lipid-bound BAD as a membrane receptor for Bcl-XL opens new horizons in apoptosis research.  相似文献   

7.
Frequenin, also known as neuronal calcium sensor-1 (NCS-1), is an N-myristoylated Ca2+-binding protein that has been conserved in both sequence and three-dimensional fold during evolution. We demonstrate using both genetic and biochemical approaches that the observed structural conservation between Saccharomyces cerevisiae frequenin (Frq1) and human NCS-1 is also reflected at the functional level. In yeast, the sole essential target of Frq1 is the phosphatidylinositol 4-kinase isoform, Pik1; both FRQ1 and PIK1 are indispensable for cell viability. Expression of human NCS-1 in yeast, but not a close relative (human KChIP2), rescues the inviability of frq1 cells. Furthermore, in vitro, Frq1 and NCS-1 (either N-myristoylated or unmyristoylated) compete for binding to a small 28-residue motif near the N terminus of Pik1. Site-directed mutagenesis indicates that the binding determinant in Pik1 is a hydrophobic alpha-helix and that frequenins bind to one side of this alpha-helix. We propose, therefore, that the function of NCS-1 in mammals may closely resemble that of Frq1 in S. cerevisiae and, hence, that frequenins in general may serve as regulators of certain isoforms of phosphatidylinositol 4-kinase.  相似文献   

8.
Yeast frequenin (Frq1), a small N-myristoylated EF-hand protein, activates phosphatidylinositol 4-kinase Pik1. The NMR structure of Ca2+-bound Frq1 complexed to an N-terminal Pik1 fragment (residues 121-174) was determined. The Frq1 main chain is similar to that in free Frq1 and related proteins in the same branch of the calmodulin superfamily. The myristoyl group and first eight residues of Frq1 are solvent-exposed, and Ca2+ binds the second, third, and fourth EF-hands, which associate to create a groove with two pockets. The Pik1 peptide forms two helices (125-135 and 156-169) connected by a 20-residue loop. Side chains in the Pik1 N-terminal helix (Val-127, Ala-128, Val-131, Leu-132, and Leu-135) interact with solvent-exposed residues in the Frq1 C-terminal pocket (Leu-101, Trp-103, Val-125, Leu-138, Ile-152, and Leu-155); side chains in the Pik1 C-terminal helix (Ala-157, Ala-159, Leu-160, Val-161, Met-165, and Met-167) contact solvent-exposed residues in the Frq1 N-terminal pocket (Trp-30, Phe-34, Phe-48, Ile-51, Tyr-52, Phe-55, Phe-85, and Leu-89). This defined complex confirms that residues in Pik1 pinpointed as necessary for Frq1 binding by site-directed mutagenesis are indeed sufficient for binding. Removal of the Pik1 N-terminal region (residues 8-760) from its catalytic domain (residues 792-1066) abolishes lipid kinase activity, inconsistent with Frq1 binding simply relieving an autoinhibitory constraint. Deletion of the lipid kinase unique motif (residues 35-110) also eliminates Pik1 activity. In the complex, binding of Ca2+-bound Frq1 forces the Pik1 chain into a U-turn. Frq1 may activate Pik1 by facilitating membrane targeting via the exposed N-myristoyl group and by imposing a structural transition that promotes association of the lipid kinase unique motif with the kinase domain.  相似文献   

9.
Upon binding of platelet-derived growth factor (PDGF), the PDGF beta receptor (PDGFR) undergoes autophosphorylation on distinct tyrosine residues and binds several SH2-domain-containing signal relay enzymes, including phosphatidylinositol 3-kinase (PI3K), phospholipase C gamma (PLC gamma), the GTPase-activating protein of Ras (RasGAP), and the tyrosine phosphatase SHP-2. In this study, we have investigated whether PDGF-dependent PI3K activation is affected by the other proteins that associate with the PDGFR. We constructed and characterized a series of PDGFR mutants which contain binding sites for PI3K as well as one additional protein, either RasGAP, SHP-2, or PLC gamma. While all of the receptors had wild-type levels of PDGF-stimulated tyrosine kinase activity and associated with comparable amounts of PI3K activity, their abilities to trigger accumulation of PI3K products in vivo differed dramatically. The wild-type receptor, as well as receptors that recruited PI3K or PI3K and SHP-2, were all capable of fully activating PI3K. In contrast, receptors that associated with PI3K and RasGAP or PI3K and PLC gamma displayed a greatly reduced ability to stimulate production of PI3K products. When this series of receptors was tested for their ability to activate Ras, we observed a strong positive correlation between Ras activation and PI3K activation. Further investigation of the relationship between Ras and PI3K indicated that Ras was upstream of PI3K. Thus, activation of PI3K requires not only binding of PI3K to the tyrosine-phosphorylated PDGFR but accumulation of GTP-bound Ras as well. Furthermore, PLC gamma and RasGAP negatively modulate PDGF-dependent PI3K activation. Finally, PDGF-stimulated signal relay can be regulated by altering the ratio of SH2-domain-containing enzymes that are recruited to the PDGFR.  相似文献   

10.
Recent studies have documented direct interaction between 14-3-3 proteins and key molecules in signal transduction pathways like Ras, Cbl, and protein kinases. In T cells, the 14-3-3tau isoform has been shown to associate with protein kinase C theta and to negatively regulate interleukin-2 secretion. Here we present data that 14-3-3tau interacts with protein kinase C mu (PKCmu), a subtype that differs from other PKC members in structure and activation mechanisms. Specific interaction of PKCmu and 14-3-3tau can be shown in the T cell line Jurkat by immunocoprecipitiation and by pulldown assays of either endogenous or overexpressed proteins using PKCmu-specific antibodies and GST-14-3-3 fusion proteins, respectively. Using PKCmu deletion mutants, the 14-3-3tau binding region is mapped within the regulatory C1 domain. Binding of 14-3-3tau to PKCmu is significantly enhanced upon phorbol ester stimulation of PKCmu kinase activity in Jurkat cells and occurs via a Cbl-like serine containing consensus motif. However, 14-3-3tau is not a substrate of PKCmu. In contrast 14-3-3tau strongly down-regulates PKCmu kinase activity in vitro. Moreover, overexpression of 14-3-3tau significantly reduced phorbol ester induced activation of PKCmu kinase activity in intact cells. We therefore conclude that 14-3-3tau is a negative regulator of PKCmu in T cells.  相似文献   

11.
Golgins are Golgi-localized proteins present in all molecularly characterized eukaryotes that function in Golgi transport and maintenance of Golgi structure. Some peripheral membrane Golgins, including the yeast Imh1 protein, contain the recently described GRIP domain that can independently mediate Golgi localization by an unknown mechanism. To identify candidate Golgi receptors for GRIP domain proteins, a collection of Saccharomyces cerevisiae deletion mutants was visually screened by using yeast, mouse, and human GFP-GRIP domain fusion proteins for defects in Golgi localization. GFP-GRIP reporters were localized to the cytosol in cells lacking either of two ARF-like (ARL) GTPases, Arl1p and Arl3p. In vitro binding experiments demonstrated that activated Arl1p-GTP binds specifically and directly to the Imh1p GRIP domain. Arl1p colocalized with Imh1p-GRIP at the Golgi, and Golgi localization of Arl1p was regulated by the GTPase cycle of Arl3p. These results suggest a cascade in which the GTPase cycle of Arl3p regulates Golgi localization of Arl1p, which in turn binds to the GRIP domain of Imh1p and recruits it to the Golgi. The similar requirements for localization of GRIP domains from yeast, mouse, and human when expressed in yeast, and the presence of Arl1p and Arl3p homologs in these species, suggest that this is an evolutionarily conserved mechanism.  相似文献   

12.
13.
WAVE3 is a member of the WASP/WAVE family of protein effectors of actin reorganization and cell movement. The precise role of WAVE3 in cell migration and its regulation, however, have not been elucidated. Here we show that endogenous WAVE3 was found to be concentrated in the lamellipodia at the leading edge of migrating MDA-MB-231 cells. Platelet-derived growth factor (PDGF) treatment induced lamellipodia formation as well as two-dimensional migration of cells in the wound-closure assay and chemotactic migration toward PDGF in three-dimensional migration chambers. Knockdown of WAVE3 expression by RNA interference prevented the PDGF-induced lamellipodia formation and cell migration. Treatment of cells with LY294002, an inhibitor of phosphatidylinositol 3-kinase (PI3K), also abrogated the PDGF-induced lamellipodia formation and cell migration, suggesting that PI3K may be required for WAVE3 activity. WAVE3 and the PI3K regulatory subunit, p85, were found to interact in a yeast two-hybrid screen, which was confirmed through co-immunoprecipitation. The WAVE3-p85 interaction was mediated by the N-terminal region of WAVE3 and the C-terminal SH2 domain of p85. These results imply that the WAVE3-mediated migration in MDA-MB-231 cells via lamellipodia formation is activated downstream of PI3K and induced by PDGF. The findings of the WAVE3-p85 partnership also suggest a potential regulatory role for p85 in WAVE3-dependent actin-cytoskeleton reorganization and cell migration.  相似文献   

14.
Mast cell degranulation following Fc epsilon RI aggregation is generally believed to be dependent on phosphatidylinositide 3-kinase (PI 3-kinase)-mediated phospholipase C (PLC)gamma activation. Here we report evidence that the PLC gamma 1-dependent pathway of Fc epsilon RI-mediated activation of mast cells is independent of PI 3-kinase activation. In primary cultures of human mast cells, Fc epsilon RI aggregation induced a rapid translocation and phosphorylation of PLC gamma 1, and subsequent inositol trisphosphate (IP3) production, which preceded PI 3-kinase-related signals. In addition, although PI 3-kinase-mediated responses were completely inhibited by wortmannin, even at high concentrations, this PI 3-kinase inhibitor had no effect on parameters of Fc epsilon RI-mediated PLC gamma activation, and had little effect on the initial increase in intracellular calcium levels that correlated with PLC gamma activation. Wortmannin, however, did produce a partial (approximately 50%) concentration-dependent inhibition of Fc epsilon RI-mediated degranulation in human mast cells and a partial inhibition of the later calcium response at higher concentrations. Further studies, conducted in mast cells derived from the bone marrow of mice deficient in the p85 alpha and p85 beta subunits of PI 3-kinase, also revealed no defects in Fc epsilon RI-mediated PLC gamma 1 activation. These data are consistent with the conclusion that the PLC gamma-dependent component of Fc epsilon RI-mediated calcium flux leading to degranulation of mast cells is independent of PI 3-kinase. However, PI 3-kinase may contribute to the later phase of Fc epsilon RI-mediated degranulation in human mast cells.  相似文献   

15.
Conflicting results concerning the ability of the epidermal growth factor (EGF) receptor to associate with and/or activate phosphatidylinositol (PtdIns) 3-kinase have been published. Despite the ability of EGF to stimulate the production of PtdIns 3-kinase products and to cause the appearance of PtdIns 3-kinase activity in antiphosphotyrosine immunoprecipitates in several cell lines, we did not detect EGF-stimulated PtdIns 3-kinase activity in anti-EGF receptor immunoprecipitates. This result is consistent with the lack of a phosphorylated Tyr-X-X-Met motif, the p85 Src homology 2 (SH2) domain recognition sequence, in this receptor sequence. The EGF receptor homolog, ErbB2 protein, also lacks this motif. However, the ErbB3 protein has seven repeats of the Tyr-X-X-Met motif in the carboxy-terminal unique domain. Here we show that in A431 cells, which express both the EGF receptor and ErbB3, PtdIns 3-kinase coprecipitates with the ErbB3 protein (p180erbB3) in response to EGF. p180erbB3 is also shown to be tyrosine phosphorylated in response to EGF. In contrast, a different mechanism for the activation of PtdIns 3-kinase in response to EGF occurs in certain cells (PC12 and A549 cells). Thus, we show for the first time that ErbB3 can mediate EGF responses in cells expressing both ErbB3 and the EGF receptor.  相似文献   

16.
Tec, the prototypical member of the Tec family of tyrosine kinases, is abundantly expressed in T cells and other hemopoietic cell types. Although the functions of Itk and Txk have recently been investigated, little is known about the role of Tec in T cells. Using antisense oligonucleotide treatment to deplete Tec protein from primary T cells, we demonstrate that Tec plays a role in TCR signaling leading to IL-2 gene induction. Interestingly, Tec kinases are the only known family of tyrosine kinases containing a pleckstrin homology (PH) domain. Using several PH domain mutants overexpressed in Jurkat T cells, we show that the Tec PH domain is required for Tec-mediated IL-2 gene induction and TCR-mediated Tec tyrosine phosphorylation. Furthermore, we show that Tec colocalizes with the TCR after TCR cross-linking, and that both the Tec PH and Src homology (SH) 2 domains play a role in this association. Wortmannin, a phosphatidylinositol 3-kinase inhibitor, abolishes Tec-mediated IL-2 gene induction and Tec tyrosine phosphorylation, and partially suppresses Tec colocalization with the activated TCR. Thus, our data implicate the Tec kinase PH domain and phosphatidylinositol 3-kinase in Tec signaling downstream of the TCR.  相似文献   

17.
D-type cyclins regulate G1 cell cycle progression by enhancing the activities of cyclin-dependent kinases (CDKs), and their expression is frequently altered in malignant cells. We and others have previously shown that cyclin D1 is up-regulated in melanoma cells through adhesion-independent MEK-ERK1/2 signaling initiated by mutant B-RAF. Here, we describe the regulation and role of cyclin D3 in human melanoma cells. Cyclin D3 expression was enhanced in a cell panel of human melanoma cell lines compared with melanocytes and was regulated by fibronectin-mediated phosphatidylinositol 3-kinase/Akt signaling but not MEK activity. RNA interference experiments demonstrated that cyclin D3 contributed to G1-S cell cycle progression and proliferation in melanoma cells. Overexpression of cyclin D1 did not recover the effects of cyclin D3 knockdown. Finally, immunoprecipitation studies showed that CDK6 is a major binding partner for cyclin D3, whereas CDK4 preferentially associated with cyclin D1. Together, these findings demonstrate that cyclin D3 is an important regulator of melanoma G1-S cell cycle progression and that D-type cyclins are differentially regulated in melanoma cells.  相似文献   

18.
19.
20.
We investigated the basis for the induction of monocyte antimycobacterial activity by 1alpha,25-dihydroxyvitamin D(3) (D(3)). As expected, incubation of Mycobacterium tuberculosis-infected THP-1 cells or human peripheral blood, monocyte-derived macrophages with hormone resulted in the induction of antimycobacterial activity. This effect was significantly abrogated by pretreatment of cells with either of the phosphatidylinositol 3-kinase (PI 3-K) inhibitors, wortmannin or LY294002, or with antisense oligonucleotides to the p110 subunit of PI 3-Kalpha. Cells infected with M. tuberculosis alone or incubated with D(3) alone produced little or undetectable amounts of superoxide anion (O(2)). In contrast, exposure of M. tuberculosis-infected cells to D(3) led to significant production of O(2), and this response was eliminated by either wortmannin, LY294002, or p110 antisense oligonucleotides. As was observed for PI 3-K inactivation, the reactive oxygen intermediate scavenger, 4-hydroxy-TEMPO, and degradative enzymes, polyethylene glycol coupled to either superoxide dismutase or catalase, also abrogated D(3)-induced antimycobacterial activity. Superoxide production by THP-1 cells in response to D(3) required prior infection with live M. tuberculosis, since exposure of cells to either killed M. tuberculosis or latex beads did not prime for an oxidative burst in response to subsequent hormone treatment. Consistent with these findings, redistribution of the cytosolic oxidase components p47(phox) and p67(phox) to the membrane fraction was observed in cells incubated with live M. tuberculosis and D(3) but not in response to combined treatment with heat-killed M. tuberculosis followed by D(3). Redistribution of p47(phox) and p67(phox) to the membrane fraction in response to live M. tuberculosis and D(3) was also abrogated under conditions where PI 3-K was inactivated. Taken together, these results indicate that D(3)-induced, human monocyte antimycobacterial activity is regulated by PI 3-K and mediated by the NADPH-dependent phagocyte oxidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号