首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 99 毫秒
1.
Oculocutaneous albinism type 1: the last 100 years   总被引:11,自引:0,他引:11  
Research on human albinism has been central to many of the major discoveries in human genetics. These include the first evidence that Mendel's rules of genetic segregation apply to humans, first published in 1903. Contrary to initial thought that albinism is caused by mutations in a single gene, we now know that the genetics of albinism are complex. The complexity of albinism was hinted at, in early publications, but has only recently been fully appreciated with the advent of molecular techniques. Currently, 12 different genes have been identified, that when mutated, result in a different type of albinism. Oculocutaneous albinism type 1 (OCA1), resulting from mutations of the tyrosinase gene, is genetically and biochemically the best understood type of albinism. Though much of the research in albinism has involved OCA1, there are many unanswered questions about OCA1 and albinism, in general. The next 100 yr should still provide many surprises as did the first 100 yr.  相似文献   

2.
Mutations of the tyrosinase gene associated with a partial or complete loss of enzymatic activity are responsible for tyrosinase related oculocutaneous albinism (OCA1). A large number of mutations have been identified and their analysis has provided in-sight into the biology of tyrosinase and the pathogenesis of these different mutations. Missense mutations produce their effect on the activity of an enzyme by altering an amino acid at a specific site. The location of these mutations in the peptide can be used to indicate potential domains important for enzymatic activity. Missense mutations of the tyrosinase polypeptide cluster in four regions, suggesting that these are important functional domains. Two of the potential domains involve the copper binding sites while the others are likely involved in substrate binding. More critical analysis of the copper binding domain of tyrosinase can be gained by analyzing the structure of hemocyanin, a copper-binding protein with a high degree of homology to tyrosinase in the copper binding region. This analysis indicates a single catalytic site in tyrosinase for all enzymatic activities.  相似文献   

3.
Research on human albinism has been central to many of the major discoveries in human genetics. These include the first evidence that Mendel's rules of genetic segregation apply to humans, first published in 1903. Contrary to initial thought that albinism is caused by mutations in a single gene, we now know that the genetics of albinism are complex. The complexity of albinism was hinted at, in early publications, but has only recently been fully appreciated with the advent of molecular techniques. Currently, 12 different genes have been identified, that when mutated, result in a different type of albinism. Oculocutaneous albinism type 1 (OCA1), resulting from mutations of the tyrosinase gene, is genetically and biochemically the best understood type of albinism. Though much of the research in albinism has involved OCA1, there are many unanswered questions about OCA1 and albinism, in general. The next 100 yr should still provide many surprises as did the first 100 yr.  相似文献   

4.
Oculocutaneous albinism type 1 (OCA1) is an autosomal recessive disorder caused by mutations in the tyrosinase gene. Two subtypes of OCA1 have been described: severe OCA1A with complete absence of tyrosinase activity and less severe OCA1B with residual tyrosinase activity. Here, we characterize the recombinant human tyrosinase intramelanosomal domain and mutant variants, which mimic genetic changes in both subtypes of OCA1 patients. Proteins were prepared using site‐directed mutagenesis, expressed in insect larvae, purified by chromatography, and characterized by enzymatic activities, tryptophan fluorescence, and Gibbs free energy changes. The OCA1A mutants showed very low protein expression and protein yield and are enzymatically inactive. Mutants mimicking OCA1B were biochemically similar to the wild type, but exhibited lower specific activities and protein stabilities. The results are consistent with clinical data, which indicates that OCA1A mutations inactivate tyrosinase and result in severe phenotype, while OCA1B mutations partially inactivate tyrosinase and result in OCA1B albinism.  相似文献   

5.
Tyrosinase-negative oculocutaneous albinism (OCA1A) is characterized by lifelong white hair and skin, a phenotype that has been described in most mammalian species worldwide. Tyrosinase is the key enzyme in melanin biosynthesis, and mutations in the tyrosinase gene result in OCA1A. We examined sequence variation at exon 1 of the tyrosinase gene in 66 humpback whale samples collected from the east coast of Australia, including an anomalously white humpback whale known as "Migaloo." We identified 3 novel variants, including a cytosine deletion that results in a premature stop codon in exon 1. The deletion truncates the tyrosinase protein including the putative catalytic domains that are essential for tyrosinase enzymatic activity. Migaloo was homozygous for this deletion, suggesting that the albino phenotype is a consequence of inactive tyrosinase caused by the frameshift in the tyrosinase gene.  相似文献   

6.
Oculocutaneous albinism type 1A (OCA1A) is the most severe form of albinism characterized by a complete lack of melanin production throughout life and is caused by mutations in the TYR gene. TYR gene codes tyrosinase protein to its relation with melanin formation by knowing the function of these SNPs. Based on the computational approaches, we have analyzed the genetic variations that could change the functional behaviour by altering the structural arrangement in TYR protein which is responsible for OCA1A. Consequences of mutation on TYR structure were observed by analyzing the flexibility behaviour of native and mutant tyrosinase protein. Mutations T373K, N371Y, M370T and P313R were suggested as high deleterious effect on TYR protein and it is responsible for OCA1A which were also endorsed with previous in vivo experimental studies. Based on the quantitative assessment and flexibility analysis of OCA1A variants, T373K showed the most deleterious effect. Our analysis determines that certain mutations can affect the dynamic properties of protein and can lead to disease conditions. This study provides a significant insight into the underlying molecular mechanism involved in albinism associated with OCA1A.  相似文献   

7.
Tyrosinase serves as a key enzyme in the synthesis of melanin. In humans mutations in the TYR gene are associated with type 1 oculocutaneous albinism (OCA1) that leads to reduced or absent pigmentation of skin, hair and eye. Various mutations causing OCA in man, mouse, rabbit and cattle have been identified throughout the Tyrosinase gene including nonsense, missense, frameshift and splice site alterations. Here we report a missense substitution at codon R299H in exon 2 of the Tyr gene in the albino Wistar rat. As this very exchange has already been described in OCA patients, our findings reinforce the significance of this region for normal catalytic activity of tyrosinase protein.  相似文献   

8.
Type I oculocutaneous albinism (OCA) is caused by the reduction in or absence of activity of tyrosinase in melanocytes in skin, hair, and the eyes, the result of mutations of the tyrosinase gene. To date, a total of 22 unique mutations in the coding region of tyrosinase have been described in the literature. In this report we present 5 additional mutations of the tyrosinase gene associated with type I-A OCA in four individuals, including 2 missense, 1 frameshift and 2 nonsense mutations, and review the relevant literature on all published mutations. Analysis of the distribution of all identified missense mutations (n = 17) shows that most cluster in three areas of the gene and involve amino acids conserved between humans and the mouse. Two clusters involve the copper A and copper B binding sites and may disrupt the metal ion-protein interaction necessary for enzyme function. The third cluster in exon I could represent a functional domain important in enzyme function such as the tyrosine or the dihydroxyphenylalanine (DOPA) binding site of the enzyme. Small deletions or insertions resulting in frameshift mutations and nonsense mutations are distributed throughout the coding region and do not appear to cluster.  相似文献   

9.
Albinism is a heterogeneous group of genetic disorders resulting from deficiencies in pigmentation. Clinically, it is divided into ocular (OA) and oculocutaneous albinism (OCA). OCA involves lack of pigment in the skin, hair, and eyes and results from mutations in the tyrosinase gene or in the P gene. OA mainly affects pigmentation in the visual system and may be a mild form of OCA or may be caused by other genetic defects. Clinical diagnosis of albinism type is difficult, because of the observed range of phenotypic variation. Thus, genetic analysis may be helpful with respect to a more accurate diagnosis. Here, we report the mutational profile, determined by genetic analysis of the tyrosinase and P genes, of a large German albino population. We have revealed a total of 42 distinct mutations, 19 of which are novel. Of the 74 unrelated patients screened, 32 (43%) had mutations in the tyrosinase gene, 16 (22%) had P gene mutations, and 26 (35%) patients had no detectable genetic abnormalities. This defines a population of albino patients who are tyrosinase-gene- and P-gene-negative and who thus may represent a good study group for searching for additional genes associated with albinism.  相似文献   

10.
Oculocutaneous albinism with TYRP1 gene mutations in a Caucasian patient   总被引:3,自引:0,他引:3  
Non-syndromic oculocutaneous albinism (OCA) is a clinically and genetically heterogeneous autosomal recessive disorder with mutations identified in several genes: OCA1 (tyrosinase, TYR), OCA2 (OCA2), OCA3 (tyrosinase-related protein 1, TYRP1), and OCA4 (membrane-associated transporter protein, MATP). OCA3 was thought to be restricted to black populations, where it was clinically described as rufous or brown albinism, until the recent report of a homozygous TYRP1 mutation in Caucasian patients from a consanguineous Pakistani family. Here, we describe a German patient of Caucasian origin, with a light-yellow skin, yellow-gold hair with orange highlights, fair eyelashes, several pigmented naevi, and no tendency to tan, only to burn. Eye-colour is blue-green with substance defects of the iris. Molecular analysis did not reveal any mutation in the TYR and OCA2 genes. Two mutations were found in the TYRP1 gene: a missense mutation (c.1066G>A/p.Arg356Glu) that was inherited from the mother, and a de novo single-base deletion (c.106delT/p.Leu36X). This finding suggests that mutation screening should be extended to the TYRP1 gene in patients from all ethnic origins, at least in cases where no mutations have been identified in the other OCA genes.  相似文献   

11.
Oculocutaneous albinism (OCA) is a heterogeneous group of autosomal recessive disorders resulting from mutations of the tyrosinase (TYR) gene and presents with either complete or partial absence of pigment in the skin, hair and eyes due to a defect in an enzyme involved in the production of melanin. In this study, mutations in the TYR gene of 30 unrelated Iranian OCA1 patients and 100 healthy individuals were examined using PCR-sequencing. Additionally, in order to predict the possible effects of new mutations on the structure and function of tyrosinase, these mutations were analyzed by SIFT, PolyPhen and I-Mutant 2 software. Here, two new pathogenic p.C89S and p.H180R mutations were detected in two OCA1 patients. Moreover, the R402Q and S192Y variants, which are common non-pathogenic polymorphisms, were detected in 17.5% and 35% of the patients, respectively. The outcome of this study has extended the genotypic spectrum of OCA1 patients, which paves the way for more efficient carrier detection and genetic counseling.  相似文献   

12.
Oculocutaneous albinism (OCA) is a group of autosomal recessive disorders characterized by deficient synthesis of melanin pigment. Type I (tyrosinase-deficient) OCA results from mutations of the tyrosinase gene (TYR gene) encoding tyrosinase, the enzyme that catalyzes the first two steps of melanin biosynthesis. Mutations of the TYR gene have been identified in a large number of patients, most of Caucasian ethnic origin, with various forms of type I OCA. Here, we present an analysis of the TYR gene in eight Indo-Pakistani patients with type I OCA. We describe four novel TYR gene mutations and a fifth mutation previously observed in a Caucasian patient.  相似文献   

13.
The sequence of the tyrosinase (Tyr) gene coding tracts has been obtained for the gorilla (Gorilla gorilla gorilla). The five exons of the gene were sequenced in three gorillas and in a normally pigmented human. The tyrosinase gene has been found to be a very conserved locus with a very low substitution rate. Some nucleotide and amino acid differences were found between the gorilla and human tyrosinase coding sequences. One of the gorillas included in the study is the only known case of albinism in a gorilla ('Snowflake'). Mutations of the TYR gene lead to Oculocutaneous Albinism type 1 (OCA1), the most common type of albinism in humans (OMIM accession number 203100). The TYR gene encodes the tyrosinase enzyme (E.C. 1.14.18.1), whose activity was found to be completely lacking in 'Snowflake', indicating that a mutation in the Tyr gene is the likely cause of his albinism. Nonetheless, no nucleotide changes were detected that could account for the lack of Tyr product or tyrosinase activity in Snowflake, and explanations of these findings are discussed.  相似文献   

14.
15.
This report describes three sisters, including monozygotic (MZ) twins, with clinical, ultrastructural, and histochemical features typical of yellow mutant albinism; This form of albinism is clinically similar to the tyrosinase-positive type, but hair bulbs showed (1) organelles similar to red hair pheomelanosomes and (2) absence of tyrosinase activity. Classical tyrosinase-negative albinism was found in a maternal cousin of the probands. Pedigree analysis of this family suggests multiple alleles occupying a single locus.  相似文献   

16.
目的了解我国眼皮肤白化病(oculocutaneous albinism,OCA)的分型和相关基因突变类型,探讨新突变可能的分子致病机制。方法应用PCR方法扩增TYR基因,经DNA序列测定检出突变,采用错配引物PCR进行新突变的群体筛查,结合生物信息学方法探讨一种新突变的致病性和可能的分子致病机制。结果10名患者中有5人存在2个突变TYR等位基因,共计8种突变类型,其中c.71G〉A(C24Y)和c.841G〉T(E281X)是OCA1A致病性新突变;C24极可能参与二硫键形成,C24Y将导致酪氨酸酶肽链内此二硫键消失,进而引起蛋白空间构象变化和功能异常而致病。结论从基因水平初步了解了我国OCA1所占的比例,探讨了TYR基因C24Y的致病性并初步阐明了其致病的分子机制。本结果丰富了人类TYR基因突变类型,为我国OCA分型诊断、产前基因诊断和遗传咨询等积累了有价值的数据资料。  相似文献   

17.
18.
Roma C  Ferrante P  Guardiola O  Ballabio A  Zollo M 《Gene》2007,402(1-2):20-27
As the most common form of ocular albinism, ocular albinism type I (OA1) is an X-linked disorder that has an estimated prevalence of about 1:50,000. We searched for mutations through the human genome sequence draft by direct sequencing on eighteen patients with OA1, both within the coding region and in a thousand base pairs upstream of its start site. Here, we have identified eight new mutations located in the coding region of the gene. Two independent mutations, both located in the most carboxyterminal protein regions, were further characterized by immunofluorescence confocal microscopy, thus showing an impairment in their subcellular distribution into the lysosomal compartment of Cos-7A cells. The mutations found can result in protein misfolding, thus underlining the importance of the structure-function relationships of the protein as a major pathogenic mechanism in ocular albinism. Seven individuals out of eighteen (38.9%) with a clinical diagnosis of ocular albinism showed mutations, thus underlining the discrepancies between the clinical phenotype features and their genotype correlations. We postulate that mutations that have not yet been identified are potentially located in non-coding conserved regions or regulatory sequences of the OA1 gene.  相似文献   

19.
Tyrosinase related protein-1 (TRP-1) is a melanocyte-specific gene product involved in eumelanin synthesis. Mutation in the Tyrp1 gene is associated with brown pelage in mouse and oculocutaneous albinism Type 3 in humans (OCA3). It has been demonstrated that TRP-1 expresses DHICA oxidase activity in the murine system. However, its actual function in the human system is still unclear. The study was designed to determine the effects of mutation at two Typr1 alleles, namely the Tyrp1b (brown) and Tyrp1b-cj (cordovan) compared with wild type Tyrp1B (black) on melanocyte function and melanin biosynthesis. The most significant finding was that both of the Tyrp1 mutations (i.e. brown expressing a point mutation and cordovan expressing decreased amount of TRP-1 protein) resulted in attenuation of cell proliferation rates. Neither necrosis nor apoptosis was responsible for the observed decrease in cell proliferation rates of the brown and cordovan melanocytes. Ultrastructural evaluation by electron microscopic analysis revealed that both mutations in Tyrp1 affected melanosome maturation without affecting its structure. These observations demonstrate that mutation in Tyrp1 compromised tyrosinase activity within the organelle. DOPA histochemistry revealed differences in melanosomal stages between black and brown melanocytes but not between black and cordovan melanocytes. There were no significant differences in tyrosine hydroxylase activities of tyrosinase and TRP-1 in wild type black, brown and cordovan melanocyte cell lysates. We conclude that mutations in Tyrp1 compromise cell proliferation and melanosomal maturation in mouse melanocyte cultures.  相似文献   

20.
Oculocutaneous albinism (OCA) is a common human genetic condition resulting from mutations in at least twelve different genes. OCA1 results from mutations of the tyrosinase gene and presents with the life-long absence of melanin pigment after birth (OCA1A) or with the development of minimal-to-moderate amounts of cutaneous and ocular pigment (OCA1B). Other types of OCA have variable amounts of cutaneous and ocular pigment. We hypothesized that white hair at birth indicates OCA1 and tested this in a sample of 120 probands with OCA and white hair at birth. We found that 102 (85%) of the probands had OCA1 with one or two identifiable tyrosinase gene mutations, with 169 (83%) of the 204 OCA1 tyrosinase gene alleles having identifiable mutations and 35 (17%) having no identifiable change in the coding, splice junction, or proximal promoter regions of the gene. The inability to identify the mutation was more common with OCA1B (24/35, 69%) than with OCA1A (11/35, 31%) alleles. Seven probands with no tyrosinase gene mutations were found to have OCA2 with one or two P gene mutations, and in eleven, no mutations were detected in either gene. We conclude that (1) the presence of white hair at birth is a useful clinical tool suggesting OCA1 in a child or adult with OCA, although OCA2 may also have this presentation; (2) the molecular analysis of the tyrosinase and P genes are necessary for precise diagnosis; and (3) the presence of alleles without identifiable mutations of the tyrosinase gene, particularly in OCA1B, suggests that more complex mutation mechanisms of this gene are common in OCA.Electronic database Information: accession numbers and URLs for data presented in this article are as follows:Albinism Database, , for a list of published mutations of the tyrosinase geneOnline Mendelian Inheritance in Man (OMIM), , for OCA1 (MIM 203100), OCA2 (MIM 203200)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号