首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Data are presented which indicate that the diffusion-based collisions of ubiquinone with its redox partners in the mitochondrial inner membrane are a rate-limiting step for maximum (uncoupled) rates of succinate-linked electron transport. Data were obtained from experimental analysis of a comparison of the apparent activation energies of lateral diffusion rates, collision frequencies, and electron transport rates in native and protein-diluted (phospholipid-enriched) inner membranes. Diffusion coefficients for Complex III (ubiquinol:cytochrome c oxidoreductase) and ubiquinone redox components were determined as a function of temperature using fluorescence recovery after photobleaching, and collision frequencies of appropriate redox partners were subsequently calculated. The data reveal that 1) the apparent activation energies for both diffusion and electron transport were highest in the native inner membrane and decreased with decreasing protein density, 2) the apparent activation energy for the diffusion step of ubiquinone made up the most significant portion of the activation energy for the overall kinetic activity, i.e. electron transport steps plus the diffusion steps, 3) the apparent activation energies for both diffusion and electron transport decreased in a proportionate manner as the membrane protein density was decreased, and 4) Arrhenius plots of the ratio of experimental electron transport productive collisions (turnovers) to calculated theoretically predicted, diffusion-based collisions for ubiquinone with its redox partners had little or no temperature dependence, indicating that as temperature increases, increases in electron transport rate are accounted for by the increases in diffusion-based collisions. These data support the Random Collision Model of mitochondrial electron transport in which the rates of diffusion and appropriate concentrations of redox components limit the maximum rates of electron transport in the inner membrane.  相似文献   

2.
This review focuses on our studies over the past ten years which reveal that the mitochondrial inner membrane is a fluid-state rather than a solid-state membrane and that all membrane proteins and redox components which catalyze electron transport and ATP synthesis are in constant and independent diffusional motion. The studies reviewed represent the experimental basis for therandom collision model of electron transport. We present five fundamental postulates upon which the random collision model of mitochondrial electron transport is founded: (1) All redox components areindependent lateral diffusants; (2) Cytochromec diffuses primarily inthree dimensions; (3) Electron transport is adiffusion-coupled kinetic process; (4) Electron transport is amulticollisional, obstructed, long-range diffusional process; (5) The rates of diffusion of the redox components have a direct influence on the overall kinetic process of electron transport and can berate limiting, as indiffusion control. The experimental rationales and the results obtained in testing each of the five postulates of the random collision model are presented. In addition, we offer the basic concepts, criteria and experimental strategies that we believe are essential in considering the significance of the relationship between diffusion and electron transport. Finally, we critically explore and assess other contemporary studies on the diffusion of inner membrane components related to electron transport including studies on: rotational diffusion, immobile fractions, complex formation, dynamic aggregates, and rates of diffusion. Review of all available data confirms the random collision model and no data appear to exist that contravene it. It is concluded that mitochondrial electron transport is a diffusion-based random collision process and that diffusion has an integral and controlling affect on electron transport.  相似文献   

3.
The role of cytochrome c diffusion in mitochondrial electron transport   总被引:3,自引:0,他引:3  
We have compared the modes and rates of cytochrome c diffusion to the rates of cytochrome c-mediated electron transport in isolated inner membranes and in whole intact mitochondria. For inner membranes, an increasing ionic strength results in an increasing rate of cytochrome c diffusion, a decreasing concentration (affinity) of cytochrome c near the membrane surface as well as near its redox partners, and an increasing rate of electron transport. For intact mitochondria, an increasing ionic strength results in a parallel, increasing rate of cytochrome c-mediated electron transport. In both inner membranes and intact mitochondria the rate of cytochrome c-mediated electron transport is highest at physiological ionic strength (100-150 mM), where the diffusion rate of cytochrome c is highest and its diffusion mode is three-dimensional. In intact mitochondria, succinate and duroquinol-driven reduction of endogenous cytochrome c is greater than 95% at all ionic strengths, indicating that cytochrome c functions as a common pool irrespective of its diffusion mode. Using a new treatment to obtain bimolecular diffusion-controlled collision frequencies in a heterogenous diffusion system, where cytochrome c diffuses laterally, pseudo-laterally, or three-dimensionally while its redox partners diffuse laterally, we determined a high degree of collision efficiency (turnover/collisions) for cytochrome c with its redox partners for all diffusion modes of cytochrome c. At physiological ionic strength, the rapid diffusion of cytochrome c in three dimensions and its low concentration (affinity) near the surface of the inner membrane mediate the highest rate of electron transport through maximum collision efficiencies. These data reveal that the diffusion rate and concentration of cytochrome c near the surface of the inner membrane are rate-limiting for maximal (uncoupled) electron transport activity, approaching diffusion control.  相似文献   

4.
We report the first lateral diffusion measurements of redox components in normal-sized, matrix-containing, intact mitoplasts (inner membrane-matrix particles). The diffusion measurements were obtained by submicron beam fluorescence recovery after photobleaching measurements of individual, intact, rat liver mitoplasts bathed in different osmolarity media to control the matrix density and the extent of inner membrane folding. The data reveal that neither the extent of mitochondrial matrix density nor the complexity of the inner membrane folding have a significant effect on the mobility of inner membrane redox components. Diffusion coefficients for Complex I (NADH:ubiquinone oxidoreductase), Complex III (ubiquinol: cytochrome c oxidoreductase), Complex IV (cytochrome oxidase), ubiquinone, and phospholipid were found to be effectively invariant with the matrix density and/or membrane folding and essentially the same as values we reported previously for spherical, fused, ultralarge, matrix-free, inner membranes. Diffusion of proton-transporting Complex V (ATP synthase) appeared to be 2-3-fold slower at the greatest matrix density and degree of membrane folding. Consistent with a diffusion-coupled mechanism of electron transport, comparison of electron transport frequencies (productive collisions) with the theoretical, diffusion-controlled, collision frequencies (maximum collisions possible) revealed that there were consistently more calculated than productive collisions for all redox partners. Theoretical analyses of parameters for submicron fluorescence recovery after photobleaching measurements in intact mitoplasts support the finding of highly mobile redox components diffusing at the same rates as determined in conventional fluorescence recovery after photobleaching measurements in fused, ultralarge inner membranes. These findings support the Random Collision Model of Mitochondrial Electron Transport at the level of the intact mitoplast and suggest a similar conclusion for the intact mitochondrion.  相似文献   

5.
We have determined the modes and rates of cytochrome c diffusion as well as the collision frequencies of cytochrome c with its redox partners at the surface of the isolated, mitochondrial inner membrane over a broad range (0-150 mM) of ionic strengths. Using fluorescence recovery after photobleaching, resonance energy transfer, and direct binding assay, we determined that the diffusion coefficient of cytochrome c is independent of its concentration and quantity bound to the inner membrane, that the distance of cytochrome c from the membrane surface increases with increasing ionic strength, and that there is no significant immobile fraction of cytochrome c on the membrane regardless of ionic strength. The rate of cytochrome c diffusion increases while its mode of diffusion changes progressively from lateral to three-dimensional with increasing ionic strength. At physiological ionic strength (100-150 mM), the diffusion of cytochrome c is three-dimensional with respect to the surface of the inner membrane with a coefficient of 1.0 x 10(-6) cm2/s, and little, if any cytochrome c is bound to the membrane regardless of its concentration. Furthermore, as ionic strength is raised from zero to 150 mM, the cytochrome ckd for the inner membrane increases, its mean occupancy time on the inner membrane to collide with a redox partner (tau) decreases, and its diffusion-based collision frequencies with its redox partners decrease. These data reveal the significance of both diffusion and concentration (affinity) of cytochrome c near the surface of the inner membrane in the control of the collision frequency of cytochrome c with its redox partners.  相似文献   

6.
Reduction kinetics of cytochrome f, plastocyanin (PC) and P(700) ('high-potential chain') in thylakoids from spinach were followed after pre-oxidation by a saturating light pulse. We describe a novel approach to follow PC redox kinetics from deconvolution of 810-860 nm absorption changes. The equilibration between the redox-components was analyzed by plotting the redox state of cytochrome f and PC against that of P(700). In thylakoids with (1) diminished electron transport rate (adjusted with a cytochrome bf inhibitor) or (2) de-stacked grana, cytochrome f and PC relaxed close to their thermodynamic equilibriums with P(700). In stacked thylakoids with non-inhibited electron transport, the equilibration plots were complex and non-hyperbolic, suggesting that during fast electron flux, the 'high-potential chain' does not homogeneously equilibrate throughout the membrane. Apparent equilibrium constants <5 were calculated, which are below the thermodynamic equilibrium known for the 'high potential chain'. The disequilibrium found in stacked thylakoids with high electron fluxes is explained by restricted long-range PC diffusion. We develop a model assuming that about 30% of Photosystem I mainly located in grana end-membranes and margins rapidly equilibrate with cytochrome f via short-distance transluminal PC diffusion, while long-range lateral PC migration between grana cores and distant stroma lamellae is restricted. Implications for the electron flux control are discussed.  相似文献   

7.
The different possible dispositions of the electron transfer components in electron transfer chains are discussed: (a) random distribution of complexes and ubiquinone with diffusion-controlled collisions of ubiquinone with the complexes, (b) random distribution as above, but with ubiquinone diffusion not rate-limiting, (c) diffusion and collision of protein complexes carrying bound ubiquinone, and (d) solid-state assembly. Discrimination among these possibilities requires knowledge of the mobility of the electron transfer chain components. The collisional frequency of ubiquinone-10 with the fluorescent probe 12-(9-anthroyl)stearate, investigated by fluorescence quenching, is 2.3 × 109 M–1 sec–1 corresponding to a diffusion coefficient in the range of 10–6 cm2/sec (Fato, R., Battino, M., Degli Esposti, M., Parenti Castelli, G., and Lenaz, G.,Biochemistry,25, 3378–3390, 1986); the long-range diffusion of a short-chain polar Q derivative measured by fluorescence photobleaching recovery (FRAP) (Gupte, S., Wu, E. S., Höchli, L., Höchli, M., Jacobson, K., Sowers, A. E., and Hackenbrock, C. R.,Proc. Natl. Acad. Sci. USA 81, 2606–2610, 1984) is 3×10–9 cm2/sec. The discrepancy between these results is carefully scrutinized, and is mainly ascribed to the differences in diffusion ranges measured by the two techniques; it is proposed that short-range diffusion, measured by fluorescence quenching, is more meaningful for electron transfer than long-range diffusion measured by FRAP, or microcollisions, which are not sensed by either method. Calculation of the distances traveled by random walk of ubiquinone in the membrane allows a large excess of collisions per turnover of the respiratory chain. Moreover, the second-order rate constants of NADH-ubiquinone reductase and ubiquinol-cytochromec reductase are at least three orders of magnitude lower than the second-order collisional constant calculated from the diffusion of ubiquinone. The activation energies of either the above activities or integrated electron transfer (NADH-cytochromec reductase) are well above that for diffusion (found to be ca. 1 kcal/mol). Cholesterol incorporation in liposomes, increasing bilayer viscosity, lowers the diffusion coefficients of ubiquinone but not ubiquinol-cytochromec reductase or succinate-cytochromec reductase activities. The decrease of activity by ubiquinone dilution in the membrane is explained by its concentration falling below theK m of the partner enzymes. It is calculated that ubiquinone diffusion is not rate-limiting, favoring a random model of the respiratory chain organization. It is not possible, however, to exclude solid-state assemblies if the rate of dissociation and association of ubiquinone is faster than the turnover of electron transfer.  相似文献   

8.
G Lenaz 《FEBS letters》2001,509(2):151-155
The function of the coenzyme Q (CoQ) pool in the inner mitochondrial membrane is reviewed in view of recent findings suggesting a supramolecular organization of the mitochondrial respiratory complexes. In spite of the structural evidence for preferential aggregations of the inner membrane components, most kinetic evidence is in favor of a dispersed organization based on random collisions of the small connecting redox components, in particular CoQ, with the individual complexes. The shape of the CoQ molecule in the pool, suggested to be a folded one, is in agreement with its very rapid lateral diffusion mobility in the membrane midplane. Since the structural evidence in favor of specific supercomplexes is rather strong, it cannot be excluded that electron transfer may follow either pool behavior or preferential channeling depending on the physiological conditions. Another function ascribed to the CoQ pool is the antioxidant action of the reduced CoQ molecules; although it cannot be excluded that protein-bound ubisemiquinones may be a source of oxygen radicals, particularly at the level of complex III, the available evidence suggests that the mitochondrial pool only behaves as an antioxidant under physiological conditions.  相似文献   

9.
A new model for lateral diffusion, the milling crowd model (MC), is proposed and is used to derive the dependence of the monomeric and excimeric fluorescence yields of excimeric membrane probes on their concentration. According to the MC model, probes migrate by performing spatial exchanges with a randomly chosen nearest neighbor (lipid or probe). Only nearest neighbor probes, one of which is in the excited state, may form an excimer. The exchange frequency, and hence the local lateral diffusion coefficient, may then be determined from experiment with the aid of computer simulation of the excimer formation kinetics. The same model is also used to study the long-range lateral diffusion coefficient of probes in the presence of obstacles (e.g., membrane proteins). The dependence of the monomeric and excimeric fluorescence yields of 1-pyrene-dodecanoic acid probes on their concentration in the membranes of intact erythrocytes was measured and compared with the prediction of the MC model. The analysis yields an excimer formation rate for nearest neighbor molecules of approximately 1 X 10(7) s-1 and an exchange frequency of approximately greater than 2 X 10(7) s-1, corresponding to a local diffusion coefficient of greater than 3 X 10(-8) cm2 s-1. This value is several times larger than the long-range diffusion coefficient for a similar system measured in fluorescence photobleaching recovery experiments. The difference is explained by the fact that long-range diffusion is obstructed by dispersed membrane proteins and is therefore greatly reduced when compared to free diffusion. The dependence of the diffusion coefficient on the fractional area covered by obstacles and on their size is derived from MC simulations and is compared to those of other theories lateral diffusibility.  相似文献   

10.
Reduction kinetics of cytochrome f, plastocyanin (PC) and P700 (‘high-potential chain’) in thylakoids from spinach were followed after pre-oxidation by a saturating light pulse. We describe a novel approach to follow PC redox kinetics from deconvolution of 810-860 nm absorption changes. The equilibration between the redox-components was analyzed by plotting the redox state of cytochrome f and PC against that of P700. In thylakoids with (1) diminished electron transport rate (adjusted with a cytochrome bf inhibitor) or (2) de-stacked grana, cytochrome f and PC relaxed close to their thermodynamic equilibriums with P700. In stacked thylakoids with non-inhibited electron transport, the equilibration plots were complex and non-hyperbolic, suggesting that during fast electron flux, the ‘high-potential chain’ does not homogeneously equilibrate throughout the membrane. Apparent equilibrium constants <5 were calculated, which are below the thermodynamic equilibrium known for the ‘high potential chain’. The disequilibrium found in stacked thylakoids with high electron fluxes is explained by restricted long-range PC diffusion. We develop a model assuming that about 30% of Photosystem I mainly located in grana end-membranes and margins rapidly equilibrate with cytochrome f via short-distance transluminal PC diffusion, while long-range lateral PC migration between grana cores and distant stroma lamellae is restricted. Implications for the electron flux control are discussed.  相似文献   

11.
Evidence for coenzyme Q function in transplasma membrane electron transport   总被引:2,自引:0,他引:2  
Transplasma membrane electron transport activity has been associated with stimulation of cell growth. Coenzyme Q is present in plasma membranes and because of its lipid solubility would be a logical carrier to transport electrons across the plasma membrane. Extraction of coenzyme Q from isolated rat liver plasma membranes decreases the NADH ferricyanide reductase and added coenzyme Q10 restores the activity. Piericidin and other analogs of coenzyme Q inhibit transplasma membrane electron transport as measured by ferricyanide reduction by intact cells and NADH ferricyanide reduction by isolated plasma membranes. The inhibition by the analogs is reversed by added coenzyme Q10. Thus, coenzyme Q in plasma membrane may act as a transmembrane electron carrier for the redox system which has been shown to control cell growth.  相似文献   

12.
Complex I (NADH-ubiquinone oxidoreductase) can form superoxide during forward electron flow (NADH-oxidizing) or, at sufficiently high protonmotive force, during reverse electron transport from the ubiquinone (Q) pool (NAD(+)-reducing). We designed an assay system to allow titration of the redox state of the superoxide-generating site during reverse electron transport in rat skeletal muscle mitochondria: a protonmotive force generated by ATP hydrolysis, succinate:malonate to alter electron supply and modulate the redox state of the Q pool, and inhibition of complex III to prevent QH(2) oxidation via the Q cycle. Stepwise oxidation of the QH(2)/Q pool by increasing malonate concentration slowed the rates of both reverse electron transport and rotenone-sensitive superoxide production by complex I. However, the superoxide production rate was not uniquely related to the resultant potential of the NADH/NAD(+) redox couple. Thus, there is a superoxide producer during reverse electron transport at complex I that responds to Q pool redox state and is not in equilibrium with the NAD reduction state. In contrast, superoxide production during forward electron transport in the presence of rotenone was uniquely related to NAD redox state. These results support a two-site model of complex I superoxide production; one site in equilibrium with the NAD pool, presumably the flavin of the FMN moiety (site I(F)) and the other dependent not only on NAD redox state, but also on protonmotive force and the reduction state of the Q pool, presumably a semiquinone in the Q-binding site (site I(Q)).  相似文献   

13.
Summary Coenzyme Q is distributed among cellular membranes and it has a significant concentration at the plasma membrane. The plasma membrane contains a trans-membrane electron transport system, which is centered on coenzyme Q. This molecule is maintained reduced by NAD(P)H-dependent enzymes and can reduce other antioxidants such as tocopheroxyl quinone and ascorbate free radical. Its antioxidant property and its ability to maintain in the reduced state the other antioxidants offers a system to protect membrane components against oxidations and prevents oxidative-stress-dependent cellular damage. Growth factor withdrawal induces cell growth arrest and apoptosis through an oxidative-stress-induced pathway. Coenzyme Q can stimulate growth of different cell lines under serum deficiency, mainly by preventing apoptosis. The protection caused by coenzyme Q is independent of the Bcl-2 protein. Plasma membrane coenzyme Q appears to be essential in the regulation of the redox equilibrium of the cell and redox-dependent pathways.  相似文献   

14.
In a preceding paper (Junge, W. and Ausländer, W. (1974) Biochim. Biophys. Acta 333, 59–70), we attributed the four protolytic reactions at the outer and the inner side of the functional membrane of photosynthesis to the protolytic properties of the redox components, water, plastoquinone and the terminal acceptor. The experimental evidence presented was conclusive except for one argument. The rate of the protolytic reactions as detected by the dye cresol red after a short flash of light was considerably slower than the rate of the corresponding redox reactions.In this communication it is demonstrated that the rate of proton uptake from the outer phase of the functional membrane is slowed down by a diffusion barrier for protons which shields the redox reaction sites at the outer side of the membrane against the outer aqueous phase. This barrier can be lowered by sand grinding the chloroplasts, by digitonin treatment and by uncoupling agents. At the extreme the barrier can be practically eliminated to yield rates of proton uptake matching the rates of the corresponding redox reactions. This gives conclusive evidence that the electrochemical potential difference which light induces across the functional membrane of photosynthesis is generated by a vectorial electron-hydrogen transport system as postulated by Mitchell (e.g. (1966) Biol. Rev. 41, 445–502).  相似文献   

15.
A stochastic random walk model of protein molecule diffusion on a cell membrane was used to investigate the fundamental causes of anomalous diffusion in two-dimensional biological media. Three different interactions were considered: collisions with fixed obstacles, picket fence posts, and capture by, or exclusion from, lipid rafts. If motion is impeded by randomly placed, fixed obstacles, we find that diffusion can be highly anomalous, in agreement with previous studies. In contrast, collision with picket fence posts has a negligible effect on the anomalous exponent at realistic picket fence parameters. The effects of lipid rafts are more complex. If proteins partition into lipid rafts there is a small to moderate effect on the anomalous exponent, whereas if proteins are excluded from rafts there is a large effect on the anomalous exponent. In combination, these mechanisms can explain the level of anomaly in experimentally observed membrane diffusion, suggesting that anomalous diffusion is caused by multiple mechanisms whose effects are approximately additive. Finally, we show that the long-range diffusion rate, D(macro), estimated from fluorescence recovery after photobleaching studies, can be much smaller than D(micro), the small-scale diffusion rate, and is highly sensitive to obstacle densities and other impeding structures.  相似文献   

16.
We develop a simple but rigorous model of protein-protein association kinetics based on diffusional association on free energy landscapes obtained by sampling configurations within and surrounding the native complex binding funnels. Guided by results obtained on exactly solvable model problems, we transform the problem of diffusion in a potential into free diffusion in the presence of an absorbing zone spanning the entrance to the binding funnel. The free diffusion problem is solved using a recently derived analytic expression for the rate of association of asymmetrically oriented molecules. Despite the required high steric specificity and the absence of long-range attractive interactions, the computed rates are typically on the order of 10(4)-10(6) M(-1) sec(-1), several orders of magnitude higher than rates obtained using a purely probabilistic model in which the association rate for free diffusion of uniformly reactive molecules is multiplied by the probability of a correct alignment of the two partners in a random collision. As the association rates of many protein-protein complexes are also in the 10(5)-10(6) M(-1) sec(-1) range, our results suggest that free energy barriers arising from desolvation and/or side-chain freezing during complex formation or increased ruggedness within the binding funnel, which are completely neglected in our simple diffusional model, do not contribute significantly to the dynamics of protein-protein association. The transparent physical interpretation of our approach that computes association rates directly from the size and geometry of protein-protein binding funnels makes it a useful complement to Brownian dynamics simulations.  相似文献   

17.
Atomic force microscopy (AFM) of the native architecture of the intracytoplasmic membrane (ICM) of a variety of species of purple photosynthetic bacteria, obtained at submolecular resolution, shows a tightly packed arrangement of light harvesting (LH) and reaction center (RC) complexes. Since there are no unattributed structures or gaps with space sufficient for the cytochrome bc(1) or ATPase complexes, they are localized in membrane domains distinct from the flat regions imaged by AFM. This has generated a renewed interest in possible long-range pathways for lateral diffusion of UQ redox species that functionally link the RC and the bc(1) complexes. Recent proposals to account for UQ flow in the membrane bilayer are reviewed, along with new experimental evidence provided from an analysis of intrinsic near-IR fluorescence emission that has served to test these hypotheses. The results suggest that different mechanism of UQ flow exist between species such as Rhodobacter sphaeroides, with a highly organized arrangement of LH and RC complexes and fast RC electron transfer turnover, and Phaeospirillum molischianum with a more random organization and slower RC turnover. It is concluded that packing density of the peripheral LH2 antenna in the Rba. sphaeroides ICM imposes constraints that significantly slow the diffusion of UQ redox species between the RC and cytochrome bc(1) complex, while in Phs. molischianum, the crowding of the ICM with LH3 has little effect upon UQ diffusion. This supports the proposal that in this type of ICM, a network of RC-LH1 core complexes observed in AFM provides a pathway for long-range quinone diffusion that is unaffected by differences in LH complex composition or organization.  相似文献   

18.
Mitchell's key insight that all bioenergetic membranes run on the conversion of redox energy into transmembrane electrical and proton gradients took the form 30 years ago of a working model of the Q cycle of cytochrome bc1, which operates reversibly on coupled electron and proton transfers of quinone at two binding sites on opposite membrane faces. His remarkable model still stands today, but he had no structural information to provide understanding into how dangerous short-circuit redox reactions were avoided. Now, it is clear that the Q cycle must be fixed with a special mechanism that avoids semiquinone-mediated short circuits. Either the redox states of the quinone electron-transfer partners double-gate the semiquinone-intermediate stability, or semiquinone is avoided altogether in concerted double-electron transfer.  相似文献   

19.
The dynamic lateral segregation of signaling proteins into microdomains is proposed to facilitate signal transduction, but the constraints on microdomain size, mobility, and diffusion that might realize this function are undefined. Here we interrogate a stochastic spatial model of the plasma membrane to determine how microdomains affect protein dynamics. Taking lipid rafts as representative microdomains, we show that reduced protein mobility in rafts segregates dynamically partitioning proteins, but the equilibrium concentration is largely independent of raft size and mobility. Rafts weakly impede small-scale protein diffusion but more strongly impede long-range protein mobility. The long-range mobility of raft-partitioning and raft-excluded proteins, however, is reduced to a similar extent. Dynamic partitioning into rafts increases specific interprotein collision rates, but to maximize this critical, biologically relevant function, rafts must be small (diameter, 6 to 14 nm) and mobile. Intermolecular collisions can also be favored by the selective capture and exclusion of proteins by rafts, although this mechanism is generally less efficient than simple dynamic partitioning. Generalizing these results, we conclude that microdomains can readily operate as protein concentrators or isolators but there appear to be significant constraints on size and mobility if microdomains are also required to function as reaction chambers that facilitate nanoscale protein-protein interactions. These results may have significant implications for the many signaling cascades that are scaffolded or assembled in plasma membrane microdomains.  相似文献   

20.
Recent work on the domain organization of the thylakoid is reviewed and a model for the thylakoid of higher plants is presented. According to this model the thylakoid membrane is divided into three main domains: the stroma lamellae, the grana margins and the grana core (partitions). These have different biochemical compositions and have specialized functions. Linear electron transport occurs in the grana while cyclic electron transport is restricted to the stroma lamellae. This model is based on the following results and considerations. (1) There is no good candidate for a long-range mobile redox carrier between PS II in the grana and PS I in the stroma lamellae. The lateral diffusion of plastoquinone and plastocyanin is severely restricted by macromolecular crowding in the membrane and the lumen respectively. (2) There is an excess of 14±18% chlorophyll associated with PS I over that of PS II. This excess is assumed to be localized in the stroma lamellae where PS I drives cyclic electron transport. (3) For several plant species, the stroma lamellae account for 20±3% of the thylakoid membrane and the grana (including the appressed regions, margins and end membranes) for the remaining 80%. The amount of stroma lamellae (20%) corresponds to the excess (14–18%) of chlorophyll associated with PS I. (4) The model predicts a quantum requirement of about 10 quanta per oxygen molecule evolved, which is in good agreement with experimentally observed values. (5) There are at least two pools of each of the following components: PS I, PS II, cytochrome bf complex, plastocyanin, ATP synthase and plastoquinone. One pool is in the grana and the other in the stroma compartments. So far, it has been demonstrated that the PS I, PS II and cytochrome bf complexes each differ in their respective pools.Abbreviations PS I and PS II Photosystem I and II - P 700 reaction center of PS I - LHC II light-harvesting complex II  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号