首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Casein kinase I has been shown to phosphorylate Ser123 and possibly Thr124, in simian virus 40 (SV40) large T antigen; the same sites are also modified in cultured cells incubated with 32Pi [Friedrich A. Gr?sser, Karl H. Scheidtmann, Polygena T. Tuazon, Jolinda A. Traugh & Gernot Walter (1988) Virology 165, 13-22]. The peptide, A-D-S-Q-H-S-T-P-P, which corresponds to the amino acid sequence 118-125 of SV40 large T antigen, was synthesized together with peptides containing changes in specific amino acid residues on either side of Ser123. These peptides were used as model substrates to determine the amino acids in the SV40 large T antigen important for recognition by casein kinase I. The native peptide identified above, with aspartate at the -4 position, was a poor substrate for casein kinase I in vitro. Peptides with acidic residues added at the -2 and -3 positions, preceding Ser123, were phosphorylated by casein kinase I with apparent Km values around 2 mM and Vmax values up to 500 pmol.min-1.ml-1. When acidic residues were added at both sides of the phosphorylatable serine, the peptide had a first-order rate constant over 20-fold higher than peptides with acidic amino acid residues at the N-terminus only; the apparent Km value was 0.65 mM with a Vmax of 2900 pmol.min-1.ml-1. The effects of modifying Ser120 to phosphoserine were examined by addition of a recognition sequence for the cAMP-dependent protein kinase prior to Ser120. Prior phosphorylation of the peptide at Ser120 lowered the apparent Km to 0.061 mM and increased the Vmax to 360 pmol.min-1.ml-1, a 50-fold decrease in Km for casein kinase I and a 6-fold increase in Vmax as compared to the non-phosphorylated peptide. This indicates that Ser120, which has been shown to be phosphorylated in vivo, provides an appropriate recognition determinant for casein kinase I.  相似文献   

2.
Caseins are highly phosphorylated milk proteins assembled in large colloidal structures termed micelles. In the milk of ruminants, alphas1-casein has been shown to be extensively phosphorylated. In this report we have determined the phosphorylation pattern of human alphas1-casein by a combination of matrix-assisted laser desorption mass spectrometry and amino acid sequence analysis. Three phosphorylation variants were identified. A nonphosphorylated form, a variant phosphorylated at Ser18 and a variant phosphorylated at Ser18 and Ser26. Both phosphorylation sites are located in the amino acid recognition sequence of the mammary gland casein kinase. Notably, no phosphorylations were observed in the conserved region covering residues Ser70-Glu78, which is extensively phosphorylated in the ruminant alphas1-caseins.  相似文献   

3.
Prothymosin alpha (ProT alpha) is a 12.5 kDa acidic polypeptide that is considered to have a nuclear function related to cell proliferation. Inspection of its amino acid sequence revealed the presence of sequences that may serve as targets for phosphorylation by casein kinase-2 (CK-2). ProT alpha isolated from calf thymocytes was phosphorylated in vitro by CK-2. The phosphorylation sites are Ser and Thr residues located among the first 14 amino acid residues in the ProT alpha sequence. Another site that is theoretically suitable for phosphorylation by CK-2, at the C-terminus of the polypeptide, is not, in fact, phosphorylated. Thymosin alpha 1 (T alpha 1), a peptide whose sequence corresponds to the first 28 amino acids of ProT alpha, is also phosphorylated by CK-2 at the same phosphorylation sites as ProT alpha. In cultured splenic lymphocytes ProT alpha was phosphorylated at Thr residues located at positions 7, 12 and/or 13. Based on these observations we conclude that CK-2, or another cellular kinase with similar sequence specificity, is responsible for phosphorylation of ProT alpha in vivo.  相似文献   

4.
The central region of the N-myc protein has a characteristic amino acid sequence EDTLSDSDDEDD, which is very similar to those of particular domains of adenovirus E1A, human papilloma virus E7, Simian virus 40 large T, c-myc and L-myc proteins. Domains of these three viral oncoproteins have recently been shown to be specific binding sites for the tumor-suppressor gene retinoblastoma protein. We have noted that the sequence of serine followed by a cluster of acidic amino acids is exactly the same as that of a typical substrate of casein kinase II (CKII). Therefore, we investigated whether these nuclear oncoproteins are phosphorylated by CKII. For this purpose, we fused the beta-galactosidase and N-myc genes including this domain and expressed it in Escherichia coli cells. Several mutant N-myc genes, containing single amino acid substitutions in this domain, were also used to produce fused proteins. Strong phosphorylation by CKII was detected with the fused protein of wild-type N-myc. However, no phosphorylation of beta-galactosidase itself was observed and the phosphorylations of fused mutant proteins were low. Another fused N-myc protein containing most of the C-terminal region downstream of this acidic region was not phosphorylated by CKII. Analysis of phosphorylation sites in synthetic peptides of this acidic region identified the major sites phosphorylated by CKII as Ser261 and Ser263. On two-dimensional tryptic mapping of phosphorylated N-myc proteins, major spots of in vitro-labeled and in-vivo-labeled N-myc proteins were detected in the same positions. These results suggest that two serine residues of the acidic central region of the N-myc protein are phosphorylated by CKII in vivo as well as in vitro. The functional significance of this acidic domain is discussed.  相似文献   

5.
Database analysis of O-glycosylation sites in proteins   总被引:3,自引:0,他引:3       下载免费PDF全文
Statistical analysis was carried out to study the sequential aspects of amino acids around the O-glycosylated Ser/Thr. 992 sequences containing O-glycosylated Ser/Thr were selected from the O-GLYCBASE database of O-glycosylated proteins. The frequency of occurrence of amino acid residues around the glycosylated Ser/Thr revealed that there is an increased number of proline residues around the O-glycosylation sites in comparison with the nonglycosylated serine and threonine residues. The deviation parameter calculated as a measure of preferential and nonpreferential occurrence of amino acid residues around the glycosylation site shows that Pro has the maximum preference around the O-glycosylation site. Pro at +3 and/or -1 positions strongly favors glycosylation irrespective of single and multiple glycosylation sites. In addition, serine and threonine are preferred around the multiple glycosylation sites due to the effect of clusters of closely spaced glycosylated Ser/Thr. The preference of amino acids around the sites of mucin-type glycosylation is found likely to be similar to that of the O-glycosylation sites when taken together, but the acidic amino acids are more preferred around Ser/Thr in mucin-type glycosylation when compared totally. Aromatic amino acids hinder O-glycosylation in contrast to N-glycosylation. Cysteine and amino acids with bulky side chains inhibit O-glycosylation. The preference of certain potential sequence motifs of glycosylation has been discussed.  相似文献   

6.
7.
Utilizing overlapping fragment peptide libraries covering the whole sequence of an HIV-1 capsid (CA) protein with the addition of an octa-arginyl moiety, we had previously found several peptides with anti-HIV-1 activity. Herein, among these potent CA fragment peptides, CA-15L was examined because this peptide sequence overlaps with Helix 7, a helix region of the CA protein, which may be important for oligomerization of the CA proteins. A CA-15L surrogate with hydrophilic residues, and its derivatives, in which amino acid sequences are shifted toward the C-terminus by one or more residues, were synthesized and their anti-HIV activity was evaluated. In addition, its derivatives with substitution for the Ser149 residue were synthesized and their anti-HIV activity was evaluated because Ser149 might be phosphorylated in the step of degradation of CA protein oligomers. Several active compounds were found and might become new anti-HIV agents and new tools for elucidation of CA functions.  相似文献   

8.
Phosphorylation of connexin 32, the major liver gap-junction protein, was studied in purified liver gap junctions and in hepatocytes. In isolated gap junctions, connexin 32 was phosphorylated by cAMP-dependent protein kinase (cAMP-PK), by protein kinase C (PKC) and by Ca2+/calmodulin-dependent protein kinase II (Ca2+/CaM-PK II). Connexin 26 was not phosphorylated by these three protein kinases. Phosphopeptide mapping of connexin 32 demonstrated that cAMP-PK and PKC primarily phosphorylated a seryl residue in a peptide termed peptide 1. PKC also phosphorylated seryl residues in additional peptides. CA2+/CaM-PK II phosphorylated serine and to a lesser extent, threonine, at sites different from those phosphorylated by the other two protein kinases. A synthetic peptide PSRKGSGFGHRL-amine (residues 228-239 based on the deduced amino acid sequence of rat connexin 32) was phosphorylated by cAMP-PK and by PKC, with kinetic properties being similar to those for other physiological substrates phosphorylated by these enzymes. Ca2+/CaM-PK II did not phosphorylate the peptide. Phosphopeptide mapping and amino acid sequencing of the phosphorylated synthetic peptide indicated that Ser233 of connexin 32 was present in peptide 1 and was phosphorylated by cAMP-PK or by PKC. In hepatocytes labeled with [32P]orthophosphoric acid, treatment with forskolin or 20-deoxy-20-oxophorbol 12,13-dibutyrate (PDBt) resulted in increased 32P-incorporation into connexin 32. Phosphopeptide mapping and phosphoamino acid analysis showed that a seryl residue in peptide 1 was most prominently phosphorylated under basal conditions. Treatment with forskolin or PDBt stimulated the phosphorylation of peptide 1. PDBt treatment also increased the phosphorylation of seryl residues in several other peptides. PDBt did not affect the cAMP-PK activity in hepatocytes. It has previously been shown that phorbol ester reduces dye coupling in several cell types, however in rat hepatocytes, dye coupling was not reduced by treatment with PDBt. Thus, activation of PKC may have differential effects on junctional permeability in different cell types; one source of this variability may be differences in the sites of phosphorylation in different gap-junction proteins.  相似文献   

9.
We propose here a new strategy for the exhaustive mapping of phosphorylation sites in the Xenopus laevis Cdc25 phosphatase, which regulates cell cycle progression in eukaryotic cells. Two different MS analyses in a linear IT were used to identify the phosphorylated residues. First, a data-dependent neutral loss (DDNL) analysis triggered the fragmentation of peptides that show enhanced neutral loss of phosphoric acid. Second, a targeted product ion scanning (TPIS) mass analysis was carried out in which MS2 events are triggered for specific m/z values. Full coverage of the protein sequence was obtained by combining the two analyses with two enzymatic digestions, trypsin and chymotrypsin, yielding a comprehensive map of the phosphorylation sites. Previous reports have shown Cdc25C to be phosphorylated by Cdc2-cyclin B at four residues (Thr48, Thr67, Thr138 and Ser205). By using this combination of scan modes, we have identified four additional phosphorylation sites (Thr86, Ser99, Thr112 and Ser163) in a recombinant Cdc25C protein containing 198 residues of the NH2-terminal noncatalytic domain. The sensitivity of this combined approach makes it extremely useful for the comprehensive characterization of phosphorylation sites, virtually permitting complete coverage of the protein sequence with peptides within the mass detection range of the linear IT.  相似文献   

10.
Caseinomacropeptide (CMP) is a 64 amino acid polypeptide corresponding to kappa-casein 106-169. CMP naturally exists in several forms due to extensive posttranslational modifications including glycosylation and phosphorylation. The aglycosylated, phosphorylated form of CMP has been shown to exhibit antibacterial activity. The aim of this study was to use matrix assisted laser desorption/ionization post source decay mass spectrometry (MALDI-PSD-MS) to identify the phosphorylation sites in the CMP sequence. CMP was isolated from a chymosin digest of casein by HPLC and then digested with endoproteinase Glu-C to generate peptides suitable for MALDI-PSD-MS analysis. This analysis showed that CMP is fully phosphorylated at Ser(149) and only partially phosphorylated at Ser(127.) Dehydroalanyl residues corresponding to the phosphoserines of CMP were detected upon MALDI-PSD-MS analysis suggesting that the phosphoryl bond in phosphoserine is very labile during PSD analysis such that the phosphoryl group may be lost before backbone fragmentation.  相似文献   

11.
The human pim-1 proto-oncogene was expressed in Escherichia coli as a glutathione-S-transferase (GST)-fusion protein and the enzymatic properties of its kinase activity were characterized. Likewise, a Pim-1 mutant lacking intrinsic kinase activity was constructed by site-directed mutagenesis (Lys67 to Met) and expressed in E. coli. In vitro assays with the mutant Pim-1 kinase showed no contaminating kinase activity. The wild-type Pim-1 kinase-GST fusion protein showed a pH optimum of 7 to 7.5 and optimal activity was observed at either 10 mM MgCl2 or 5 mM MnCl2. Higher cation concentrations were inhibitory, as was the addition of NaCl to the assays. Previous work by this laboratory assaying several proteins and peptides showed histone H1 and the peptide Kemptide to be efficiently phosphorylated by recombinant Pim-1 kinase. Here we examine the substrate sequence specificity of Pim-1 kinase in detail. Comparison of different synthetic peptide substrates showed Pim-1 to have a strong substrate preference for the peptide Lys-Arg-Arg-Ala-Ser*-Gly-Pro with an almost sixfold higher specificity constant kcat/Km over that of the substrate Kemptide (Leu-Arg-Arg-Ala-Ser*-Leu-Gly). The presence of basic amino acid residues on the amino terminal side of the target Ser/Thr was shown to be essential for peptide substrate recognition. Furthermore, phosphopeptide analysis of calf thymus histone H1 phosphorylated in vitro by Pim-1 kinase resulted in fragments containing sequences similar to that of the preferred synthetic substrate peptide shown above. Therefore, under optimized in vitro conditions, the substrate recognition sequence for Pim-1 kinase is (Arg/Lys)3-X-Ser/Thr*-X', where X' is likely neither a basic nor a large hydrophobic residue.  相似文献   

12.
Phospholamban is a regulatory protein in cardiac sarcoplasmic reticulum that is phosphorylated by cAMP- and Ca2+/calmodulin-dependent protein kinase activities. In this report, we present the partial amino acid sequence of canine cardiac phospholamban and the identification of the sites phosphorylated by these two protein kinases. Gas-phase protein sequencing was used to identify 20 NH2-terminal residues. Overlap peptides produced by trypsin or papain digestion extended the sequence 16 residues to give the following primary structure: Ser-Ala-Ile-Arg-Arg-Ala-Ser-Thr-Ile-Glu-Met-Pro-Gln-Gln-Ala- Arg-Gln-Asn-Leu-Gln-Asn-Leu-Phe-Ile-Asn-Phe-(Cys)-Leu-Ile-Leu-Ile-(Cys)- Leu-Leu-Leu-Ile-. Phospholamban phosphorylated by either cAMP-dependent or Ca2+/calmodulin-dependent protein kinase was cleaved with trypsin, and the major phosphorylated peptide (comprising greater than 70% of the incorporated 32P label) was purified by reverse-phase high performance liquid chromatography. The identical sequence was revealed for the radioactive peptide obtained from phospholamban phosphorylated by either kinase: Arg-Ala-Ser-Thr-Ile-Glu-Met-Pro-Gln-Gln-. The adjacent residues Ser7 and Thr8 of phospholamban were identified as the unique sites phosphorylated by cAMP- and Ca2+/calmodulin-dependent protein kinases, respectively. These results establish that phospholamban is an oligomer of small, identical polypeptide chains. A hydrophilic, cytoplasmically oriented NH2-terminal domain on each monomer contains the unique, adjacent residues phosphorylated by cAMP- and Ca2+/calmodulin-dependent protein kinase activities. Analysis by hydropathic profiling and secondary structure prediction suggests that phospholamban monomers also contain a hydrophobic domain, which could form amphipathic helices sufficiently long to traverse the sarcoplasmic reticulum membrane. A model of phospholamban as a pentamer is presented in which the amphipathic alpha-helix of each monomer is a subunit of the pentameric membrane-anchored domain, which is comprised of an exterior hydrophobic surface and an interior hydrophilic region containing polar side chains.  相似文献   

13.
The E7 protein of human papillomavirus type 16 (HPV16) transforms cultured cells and cooperates with the ras or fos oncogenes in the transformation of primary cells. In this study we have investigated the phosphorylation of E7. When we immunoprecipitated E7 from CaSki cells with a rabbit polyclonal antiserum to a bacterial fusion protein (trpE-E7), we found that E7 was phosphorylated at serine residues contained in five characteristic thermolysin peptides. Immunoprecipitated E7, and fusion proteins harboring the E7 protein from various HPV types, could all be specifically phosphorylated in vitro by the ubiquitous, growth factor-activated casein kinase II (CKII). Comparative peptide mapping showed that the sites of in vivo and in vitro phosphorylation are the same. CKII was shown previously to specifically phosphorylate serine or threonine residues within a cluster of acidic amino acids. The E7 protein contains such a sequence between amino acids 30 and 37. When a synthetic peptide corresponding to this region of E7 was phosphorylated by CKII in vitro, its thermolysin digestion products were the same as those in the phosphorylated E7 protein. We conclude that E7 is phosphorylated in vivo only at serines within the predicted CKII site and that CKII, or a CKII-like enzyme, participates in the reaction. Both the E1A and SV40 large T proteins contain similar CKII consensus sites proximal to the regions required for their associations with the retinoblastoma gene product (p105Rb). Thus it is conceivable that CKII phosphorylation can modulate the interaction between the transforming proteins and the retinoblastoma gene product.  相似文献   

14.
Sequence similarity between the reovirus type 3 hemagglutinin (HA3) and a anti-idiotypic monoclonal antibody (87.92.6) has been shown to define the site of interaction with a neutralizing (idiotypic) monoclonal antibody (9B.G5) and the cellular receptor for the virus. A synthetic peptide (VL peptide) derived from the anti-idiotypic sequence inhibits viral binding to the receptor. In this study, variants of the VL peptide were utilized to probe specific amino acid residues involved in binding the neutralizing antibody and the receptor. These studies indicate that the--OH groups of several residues are involved in contacting the reovirus type 3 receptor, including Tyr49, Ser50, Ser52, and Thr53 in the anti-idiotypic sequence, corresponding to Tyr326, Ser327, Ser329, and Ser325 in HA3, respectively. In contrast, only Ser50 of the anti-idiotypic sequence, corresponding to Ser327 of HA3, significantly altered neutralizing antibody binding. Additional studies implicate sialic acid as a potential reovirus type 3 receptor on some cells. This includes inhibition of binding of reovirus type 3 and 87.92.6 to L cells by heavily sialylated glycoproteins. Sialic acid was therefore utilized as a candidate receptor to analyze potential interaction schemes with HA3/87.92.6. Sequence similarity to other immunoglobulin structures with similar sequences allowed modeling of the three-dimensional structure of these epitopes. These structures, in combination with peptide studies, allow the development of a model of the interaction of these epitopes with sialic acid, which serves as a reovirus type 3 receptor. These models reveal that similar amino acid residues and side-chain geometries may be utilized by the reovirus type 3 and influenza hemagglutinins in their interactions with cell-surface receptors.  相似文献   

15.
Anthopleurin-B, the most potent peptide heart stimulant from the sea anemone Anthopleura xanthogrammica, was shown to exist as a single polypeptide chain consisting of 49 amino acid residues. The sequence of the peptide was shown to be: Gly-Val-Pro-Cys-Leu-Cys-Asp-Ser-Asp-Gly- Pro-Arg-Pro-Arg-Gly-Asn-Thr-Leu-Ser-Gly-Ile-Leu-Trp-Phe-Tyr-Pro-Ser- Gly-Cys-Pro-Ser-Gly-Trp-His-Asn-Cys-Lys-Ala-His-Gly-Pro-Asn-Ile-Gly- Trp-Cys-Cys-Lys-Lys. The carboxymethylcysteine derivative, tryptic and chymotryptic peptides (obtained from the derivative and separated by high performance liquid chromatography) were sequenced by manual Edman degradation. Although six carboxymethylcysteine residues were formed by reduction and alkylation of the polypeptide, no cysteine residues were detectable in the native protein, indicating that there are three cystine residues in anthopleurin-B. The amino acid sequence differs in 7 places from anthopleurin-A: at residues 3 (Pro for Ser), 12 (Arg for Ser), 13 (Pro for Val), 21 (Ile for Thr), 24 (Phe for Leu), 42 (Asn for Thr), and 49 (Lys for Gln). These differences are important since anthopleurin-B is about a 12.5-fold better heart stimulant than anthopleurin-A from A. xanthogrammica, anthopleurin-C from Anthopleura elegantissima, and toxin II from Anemonia sulcata.  相似文献   

16.
Ca(2+)/calmodulin-dependent protein kinase phosphatase (CaMKPase) dephosphorylates and regulates multifunctional Ca(2+)/calmodulin-dependent protein kinases. In order to elucidate the mechanism of substrate recognition by CaMKPase, we chemically synthesized a variety of phosphopeptide analogs and carried out kinetic analysis using them as CaMKPase substrates. This is the first report using systematically synthesized phosphopeptides as substrates for kinetic studies on substrate specificities of protein Ser/Thr phosphatases. CaMKPase was shown to be a protein Ser/Thr phosphatase having a strong preference for a phospho-Thr residue. A Pro residue adjacent to the dephosphorylation site on the C-terminal side and acidic clusters around the dephosphorylation site had detrimental effects on dephosphorylation by CaMKPase. Deletion analysis of a model substrate peptide revealed that the minimal length of the substrate peptide was only 2 to 3 amino acid residues including the dephosphorylation site. The residues on the C-terminal side of the dephosphorylation site were not essential for dephosphorylation, whereas the residue adjacent to the dephosphorylation site on the N-terminal side was essential. Ala-scanning analysis suggested that CaMKPase did not recognize a specific motif around the dephosphorylation site. Myosin light chain phosphorylated by protein kinase C and Erk2 phosphorylated by MEK1 were poor substrates for CaMKPase, while a synthetic phosphopeptide corresponding to the sequence around the phosphorylation site of the former was not dephosphorylated by CaMKPase but that of the latter was fairly good substrate. These data suggest that substrate specificity of CaMKPase is determined by higher-order structure of the substrate protein rather than by the primary structure around its dephosphorylation site. Use of phosphopeptide substrates also revealed that poly-L-lysine, an activator for CaMKPase, activated the enzyme mainly through increase in the V(max) values.  相似文献   

17.
18.
Glial fibrillary acidic protein (GFAP) is a component of glial filaments specific to astroglia. We now report the spatial and temporal distributions of four phosphorylated sites in the GFAP molecule during mitosis of astroglial cells, determined by antibodies which can distinguish phosphorylated epitopes from non-phosphorylated-epitopes. Immunofluorescence microscopy showed that the Ser8 residues in the entire cytoplasmic glial filament system are initially phosphorylated when the cells enter mitosis. In cytokinesis, the phosphoSer8 residues become dephosphorylated, whereas Thr7, Ser13 and Ser34 in glial filaments at the cleavage furrow become the preferred sites of phosphorylation. The cdc2 kinase purified from mitotic cells can phosphorylate GFAP at Ser8 but not at Thr7, Ser13 or Ser34, in vitro. These results suggest that cdc2 kinase acts as a glial filament kinase only at the G2-M phase transition while other glial filament kinases are probably activated at the cleavage furrow before final separation of the daughter cells.  相似文献   

19.
The amino acid sequence of the bovine mitochondrial nicotinamide nucleotide transhydrogenase was recently deduced from isolated cDNAs and reported [Yamaguchi, M., Hatefi, Y., Trach, K., and Hoch, J.A. (1988) J. Biol. Chem. 263, 2761-2767]. The cDNAs lacked the N-terminal coding region, however, and the 8 N-terminal residues were determined by protein sequencing. In the present study, the nucleotide sequence of the 5' upstream region was determined by dideoxynucleotide sequencing of the transhydrogenase messenger RNA, and amino acid sequences of the N-terminal region and the signal peptide of the enzyme were deduced from the nucleotide sequence. The N-terminal sequence of the enzyme as deduced from the mRNA sequence is the same as that determined by protein sequencing, with one difference. Protein sequencing showed Ser as the N-terminal residue. The mRNA sequence indicated that Ser is the second N-terminal residue, and the first is Cys. That preparations of the enzyme are mixtures of two polypeptides, one polypeptide being one residue shorter at the N terminus than the other, has been pointed out in the above reference. The signal peptide consists of 43 residues, is rich in basic (4 Lys, 2 Arg) and hydroxylated (4 Thr, 3 Ser) amino acids, and lacks acidic residues.  相似文献   

20.
Synthetic peptide substrates for a tyrosine protein kinase   总被引:10,自引:0,他引:10  
Immunoprecipitates containing the transforming protein of the avian sarcoma virus, Y73, together with its associated tyrosine-specific protein kinase, have an activity which will phosphorylate the synthetic peptide Lys-Leu-Ile-Glu-Asp-Asn-Glu-Tyr-Thr-Ala-Arg at the tyrosine residue. This peptide corresponds to 10 out of 11 amino acids surrounding the phosphorylated tyrosine in both pp60src and P90, the transforming proteins of Rous sarcoma virus and Y73 virus, respectively. The apparent Km for phosphorylation of the peptide was about 5 mM. A second peptide with the sequence Lys-Leu-Ile-Asp-Asn-Glu-Tyr-Thr-ala-Arg differing from the first peptide only by the absence of the glutamic acid 4 residues from the tyrosine was also phosphorylated, but the apparent Km for the reaction was 40 mM. Several sites of tyrosine phosphorylation in viral transforming proteins have been found to have one or more glutamic acids close to the phosphorylated tyrosine on the NH2-terminal side. Taken together with our in vitro phosphorylation studies, this suggests that the primary sequence surrounding target tyrosines may play a role in recognition of substrates by tyrosine protein kinases, and in particular, that glutamic acid residues on the NH2-terminal side may be important.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号