首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is becoming increasingly apparent that many viruses employ multiple receptor molecules in their cell entry mechanisms. The human enterovirus coxsackievirus A21 (CAV21) has been reported to bind to the N-terminal domain of intercellular adhesion molecule 1 (ICAM-1) and undergo limited replication in ICAM-1-expressing murine L cells. In this study, we show that in addition to binding to ICAM-1, CAV21 binds to the first short consensus repeat (SCR) of decay-accelerating factor (DAF). Dual antibody blockade using both anti-ICAM-1 (domain 1) and anti-DAF (SCR1) monoclonal antibodies (MAbs) is required to completely abolish binding and replication of high-titered CAV21. However, the binding of CAV21 to DAF, unlike that to ICAM-1, does not initiate a productive cell infection. The capacity of an anti-DAF (SCR3) MAb to block CAV21 infection but not binding, coupled with immunoprecipitation data from chemical cross-linking studies, indicates that DAF and ICAM-1 are closely associated on the cell surface. It is therefore suggested that DAF may function as a low-affinity attachment receptor either enhancing viral presentation or providing a viral sequestration site for subsequent high-affinity binding to ICAM-1.  相似文献   

2.
K-type major-group human rhinoviruses (HRVs) (including HRV54) share a prominent lysine residue in the HI surface loop of VP1 with all minor-group HRVs. Despite the presence of this residue, they cannot use members of the low-density lipoprotein receptor family for productive infection. Reexamining all K-type viruses for receptor usage, we noticed that HRV54 is able to replicate in RD cells that lack the major-group receptor intercellular adhesion molecule 1 (ICAM-1). By using receptor blocking assays, inhibition of sulfation, enzymatic digestion, and proteoglycan-deficient cell lines, we show here that wild-type HRV54, without any adaptation, uses heparan sulfate (HS) proteoglycan as an alternate receptor. However, infection via HS is less efficient than infection via ICAM-1. Moreover, HRV54 has an acid lability profile similar to that of the minor-group virus HRV2. In ICAM-1-deficient cells its replication is completely blocked by the H(+)-ATPase inhibitor bafilomycin A1, whereas in ICAM-1-expressing cells it replicates in the presence of the drug. Thus, use of a "noncatalytic" receptor requires the virus to be highly unstable at low pH.  相似文献   

3.
Viral Cell Entry Induced by Cross-Linked Decay-Accelerating Factor   总被引:7,自引:5,他引:2       下载免费PDF全文
Decay-accelerating factor (DAF) mediates cellular attachment for many human picornaviruses. In most cases, viral binding to DAF is itself insufficient to permit cell infectivity, with a second, functional internalization receptor being required to facilitate this process. Previously, we postulated that the role of DAF in enterovirus cell infection is as a sequestration receptor, maintaining a reservoir of bound virus in an infectious state, awaiting interaction with functional internalization receptors. Many of these functional receptors possess the capacity to induce relatively rapid changes in capsid conformations, resulting in the formation of altered particles (A-type particles). In this report, we show that antibody-cross-linked DAF, in contrast to endogenous surface-expressed forms, can act as a functional virus receptor to mediate coxsackie A21 virus (CAV21) lytic cell infection. In contrast to the situation with ICAM-1-mediated CAV21 infection, in which high levels of A-type particles are formed, cross-linked DAF-induced CAV21 replication occurs in the absence of detectable A-particle formation.  相似文献   

4.
Coxsackievirus A21 (CAV21), like human rhinoviruses (HRVs), is a causative agent of the common cold. It uses the same cellular receptor, intercellular adhesion molecule 1 (ICAM-1), as does the major group of HRVs; unlike HRVs, however, it is stable at acid pH. The cryoelectron microscopy (cryoEM) image reconstruction of CAV21 is consistent with the highly homologous crystal structure of poliovirus 1; like other enteroviruses and HRVs, CAV21 has a canyon-like depression around each of the 12 fivefold vertices. A cryoEM reconstruction of CAV21 complexed with ICAM-1 shows all five domains of the extracellular component of ICAM-1. The known atomic structure of the ICAM-1 amino-terminal domains D1 and D2 has been fitted into the cryoEM density of the complex. The site of ICAM-1 binding within the canyon of CAV21 overlaps the site of receptor recognition utilized by rhinoviruses and polioviruses. Interactions within this common region may be essential for triggering viral destabilization after attachment to susceptible cells.  相似文献   

5.
Intercellular adhesion molecule 1 (ICAM-1) is the cellular receptor for the major group of human rhinovirus serotypes, including human rhinovirus 14 (HRV14) and HRV16. A naturally occurring variant of ICAM-1, ICAM-1Kilifi, has altered binding characteristics with respect to different HRV serotypes. HRV14 binds to ICAM-1 only transiently at physiological temperatures but forms a stable complex with ICAM-1Kilifi. Conversely, HRV16 forms a stable complex with ICAM-1 but does not bind to ICAM-1Kilifi. The three-dimensional structures of HRV14 and HRV16, complexed with ICAM-1, and the structure of HRV14, complexed with ICAM-1Kilifi, have been determined by cryoelectron microscopy (cryoEM) image reconstruction to a resolution of approximately 10 angstroms. Structures determined by X-ray crystallography of both viruses and of ICAM-1 were fitted into the cryoEM density maps. The interfaces between the viruses and receptors contain extensive ionic networks. However, the interactions between the viruses and ICAM-1Kilifi contain one less salt bridge than between the viruses and ICAM-1. As HRV16 has fewer overall interactions with ICAM-1 than HRV14, the absence of this charge interaction has a greater impact on the binding of ICAM-1Kilifi to HRV16 than to HRV14.  相似文献   

6.
A model has been built of the amino-terminal domain of the intercellular adhesion molecule-1 (ICAM-1), the receptor for most human rhinovirus serotypes. The model was based on sequence and presumed structural homology to immunoglobulin constant domains. It fits well into the putative receptor attachment site, the canyon, on the human rhinovirus-14 (HRV14) surface in a manner consistent with most of the mutational data for ICAM-1 (Staunton, D. E., Dustin, M. L., Erickson, H. P., Springer, T. A. Cell, in press, 1989) and HRV14 (Colonno, R. J., Condra, J. H., Mizutani, S., Callahan, P. L., Davies, M. E., Murcko, M. A. Proc. Natl. Acad. Sci. U.S.A. 85: 5449-5453, 1988).  相似文献   

7.
Human rhinoviruses (HRV) cause the majority of common colds and acute exacerbations of asthma and chronic obstructive pulmonary disease (COPD). Effective therapies are urgently needed, but no licensed treatments or vaccines currently exist. Of the 100 identified serotypes, ∼90% bind domain 1 of human intercellular adhesion molecule-1 (ICAM-1) as their cellular receptor, making this an attractive target for development of therapies; however, ICAM-1 domain 1 is also required for host defence and regulation of cell trafficking, principally via its major ligand LFA-1. Using a mouse anti-human ICAM-1 antibody (14C11) that specifically binds domain 1 of human ICAM-1, we show that 14C11 administered topically or systemically prevented entry of two major groups of rhinoviruses, HRV16 and HRV14, and reduced cellular inflammation, pro-inflammatory cytokine induction and virus load in vivo. 14C11 also reduced cellular inflammation and Th2 cytokine/chemokine production in a model of major group HRV-induced asthma exacerbation. Interestingly, 14C11 did not prevent cell adhesion via human ICAM-1/LFA-1 interactions in vitro, suggesting the epitope targeted by 14C11 was specific for viral entry. Thus a human ICAM-1 domain-1-specific antibody can prevent major group HRV entry and induction of airway inflammation in vivo.  相似文献   

8.
Intercellular adhesion molecule-1 (ICAM-1) is found on the surface of many hemopoietic and non-hemopoietic cells and can function as an adhesive ligand for the integrin, leukocyte function associated molecule-1 (LFA-1, CD11a/CD18). ICAM-1/LFA-1 interaction is thought to be of importance in many immune mediated cell-cell adhesion reactions. Recently, the major human rhinovirus (HRV) receptor has been identified as ICAM-1. HRV has been shown to bind specifically to ICAM-1 on transfected COS cells and to purified ICAM-1, which has been adsorbed to plastic microtiter wells. We have compared the ability of ICAM-1 expressed on the surface of human fibroblasts (FB) to function as a receptor for HRV as well as a receptor for LFA-1-bearing human T lymphocytes. We show that FB stimulation by the cytokines IFN-gamma or IL-1, both known inducers of ICAM-1 synthesis and expression in FB, induced an increase in HRV binding to treated cells, which could be inhibited by antibody to ICAM-1. In contrast, only IFN-gamma and not IL-1 treatment of FB resulted in an increased adhesion of T lymphocytes. Binding of HRV to IFN-gamma-treated FB inhibited the subsequent adhesion of T cells. We also show that prior stimulation of FB with IL-1 enhanced the adhesion of HRV to IFN-gamma-stimulated cells, although IL-1 pretreatment was inhibitory for T cell adhesion. As these two cytokines both up-regulate ICAM-1 on the surface of human FB, the contrasting effects of IFN-gamma and IL-1 on human FB ICAM-1 adhesion to HRV and to LFA-1 suggest that qualitative as well as quantitative alterations of the ICAM-1 molecule may contribute to its specificity of ligand recognition.  相似文献   

9.
Viral cell recognition and entry.   总被引:8,自引:1,他引:7       下载免费PDF全文
Rhinovirus infection is initiated by the recognition of a specific cell-surface receptor. The major group of rhinovirus serotypes attach to intercellular adhesion molecule-1 (ICAM-1). The attachment process initiates a series of conformational changes resulting in the loss of genomic RNA from the virion. X-ray crystallography and sequence comparisons suggested that a deep crevice or canyon is the site on the virus recognized by the cellular receptor molecule. This has now been verified by electron microscopy of human rhinovirus 14 (HRV14) and HRV16 complexed with a soluble component of ICAM-1. A hydrophobic pocket underneath the canyon is the site of binding of various hydrophobic drug compounds that can inhibit attachment and uncoating. This pocket is also associated with an unidentified, possibly cellular in origin, "pocket factor." The pocket factor binding site overlaps the binding site of the receptor. It is suggested that competition between the pocket factor and receptor regulates the conformational changes required for the initiation of the entry of the genomic RNA into the cell.  相似文献   

10.
Viral receptors serve both to target viruses to specific cell types and to actively promote the entry of bound virus into cells. Human rhinoviruses (HRVs) can form complexes in vitro with a truncated soluble form of the HRV cell surface receptor, ICAM-1. These complexes appear to be stoichiometric, with approximately 60 ICAM molecules bound per virion or 1 ICAM-1 molecule per icosahedral face of the capsid. The complex can have two fates, either dissociating to yield free virus and free ICAM-1 or uncoating to break down to an 80S empty capsid which has released VP4, viral RNA, and ICAM-1. This uncoating in vitro mimics the uncoating of virus during infection of cells. The stability of the virus-receptor complex is dependent on temperature and the rhinovirus serotype. HRV serotype 14 (HRV14)-ICAM-1 complexes rapidly uncoat, HRV16 forms a stable virus-ICAM complex which does not uncoat detectably at 34 degrees C, and HRV3 has an intermediate phenotype. Rhinovirus can also uncoat after exposure to mildly acidic pH. The sensitivities of individual rhinovirus serotypes to ICAM-1-mediated virus uncoating do not correlate with uncoating promoted by incubation at low pH, suggesting that these two means of virus destabilization occur by different mechanisms. Soluble ICAM-1 and low pH do not act synergistically to promote uncoating. The rate of uncoating does appear to be inversely related to virus affinity for its receptor.  相似文献   

11.
The airway epithelium is the primary target of inhaled pathogens such as human rhinovirus (HRV). Airway epithelial cells express ICAM-1, the major receptor for HRV. HRV binding to ICAM-1 mediates not only viral entry and replication but also a signaling cascade that leads to enhanced inflammatory mediator production. The specific signaling molecules and pathways activated by HRV-ICAM-1 interactions are not well characterized, although studies in human airway epithelia implicate a role for the p38 MAPK in HRV-induced cytokine production. In the current study, we report that Syk, an important immunoregulatory protein tyrosine kinase, is highly expressed by primary and cultured human airway epithelial cells and is activated in response to infection with HRV16. Biochemical studies revealed that ICAM-1 engagement by HRV and cross-linking Abs enhanced the coassociation of Syk with ICAM-1 and ezrin, a cytoskeletal linker protein. In polarized airway epithelial cells, Syk is diffusely distributed in the cytosol under basal conditions but, following engagement of ICAM-1 by cross-linking Abs, is recruited to the plasma membrane. The enhanced Syk-ICAM-1 association following HRV exposure is accompanied by Syk phosphorylation. ICAM-1 engagement by HRV and cross-linking Abs also induced phosphorylation of p38 in a Syk-dependent manner, and conversely, knockdown of Syk by short interfering (si)RNA substantially diminished p38 activation and IL-8 gene expression. Taken together, these observations identify Syk as an important mediator of the airway epithelial cell inflammatory response by modulating p38 phosphorylation and IL-8 gene expression following ICAM-1 engagement by HRV.  相似文献   

12.
Hewat EA  Blaas D 《Journal of virology》2004,78(6):2935-2942
Release of the human rhinovirus (HRV) genome into the cytoplasm of the cell involves a concerted structural modification of the viral capsid. The intracellular adhesion molecule 1 (ICAM-1) cellular receptor of the major-group HRVs and the low-density lipoprotein (LDL) receptor of the minor-group HRVs have different nonoverlapping binding sites. While ICAM-1 binding catalyzes uncoating, LDL receptor binding does not. Uncoating of minor-group HRVs is initiated by the low pH of late endosomes. We have studied the conformational changes concomitant with uncoating in the major-group HRV14 and compared them with previous results for the minor-group HRV2. The structure of empty HRV14 was determined by cryoelectron microscopy, and the atomic structure of native HRV14 was used to examine the conformational changes of the capsid and its constituent viral proteins. For both HRV2 and HRV14, the transformation from full to empty capsid involves an overall 4% expansion and an iris type of movement of viral protein VP1 to open up a 10-A-diameter channel on the fivefold axis to allow exit of the RNA genome. The beta-cylinders formed by the N termini of the VP3 molecules inside the capsid on the fivefold axis all open up in HRV2, but we propose that only one opens up in HRV14. The release of VP4 is less efficient in HRV14 than in HRV2, and the N termini of VP1 may exit at different points. The N-terminal loop of VP2 is modified in both viruses, probably to detach the RNA, but it bends only inwards in HRV2.  相似文献   

13.
Human rhinoviruses (HRV) are the most common agent of upper respiratory infections and an important cause of lower respiratory tract symptoms. Our previous research with other viral pathogens has shown that virus-induced airway inflammation and hyperreactivity involve neurotrophic pathways that also affect tropism and severity of the infection. The goals of this study were to analyze systematically the expression of key neurotrophic factors and receptors during HRV-16 infection of human airway epithelial cells and to test the hypothesis that neurotrophins modulate HRV infection by controlling the expression of a major cellular receptor for this virus, the intercellular adhesion molecule 1 (ICAM-1). Neurotrophins and ICAM-1 expression were analyzed at the mRNA level by real-time PCR and at the protein level by flow cytometry and immunocytochemistry. A small inhibitory RNA (siRNA) or a specific blocking antibody was utilized to suppress nerve growth factor (NGF) expression and measure its effects on viral replication and virus-induced cell death. Nasal and bronchial epithelial cells were most susceptible to HRV-16 infection at 33°C and 37°C, respectively, and a significant positive relationship was noted between expression of NGF and tropomyosin-related kinase A (TrkA) and virus copy number. ICAM-1 expression was dose dependently upregulated by exogenous NGF and significantly downregulated by NGF inhibition with corresponding decrease in HRV-16 replication. NGF inhibition also increased apoptotic death of infected cells. Our results suggest that HRV upregulates the NGF-TrkA pathway in airway epithelial cells, which in turn amplifies viral replication by increasing HRV entry via ICAM-1 receptors and by limiting apoptosis.  相似文献   

14.
The intercellular adhesion molecule 1 (ICAM-1) is used as a cellular receptor by 90% of human rhinoviruses (HRVs). Chimeric immunoadhesin molecules containing extracellular domains of ICAM-1 and constant regions of immunoglobulins (Igs) were designed in order to determine the effect of increased valency, Ig isotype, and number of ICAM-1 domains on neutralization and disruption of rhinovirus structure. These immunoadhesins include ICAM-1 amino-terminal domains 1 and 2 fused to the hinge and constant domains of the heavy chains of IgA1, IgM, and IgG1 (IC1-2D/IgA, -/IgM, and -/IgG). In addition, all five extracellular domains were fused to IgA1 (IC1-5D/IgA). Immunoadhesins were compared with soluble forms of ICAM-1 containing five and two domains (sICAM-1 and ICI-2D, respectively) in assays of HRV binding, infectivity, and conformation. In prevention of HRV plaque formation, IC1-5D/IgA was 200 times and IC1-2D/IgM and IC1-2D/IgA were 25 and 10 times more effective, respectively, than ICAM-1. The same chimeras were highly effective in inhibiting binding of rhinovirus to cells and disrupting the conformation of the virus capsid, as demonstrated by generation of approximately 65S particles. The results show that the number of ICAM-1 domains and a flexible Ig hinge are important factors contributing to the efficacy of neutralization. The higher efficiency of chimeras that bound bivalently in disrupting HRV was attributed to higher binding avidity. The IC1-5D/IgA immunoadhesin was effective at nanomolar concentrations, making it feasible therapy for rhinovirus infection.  相似文献   

15.
Crystal structure of human rhinovirus serotype 1A (HRV1A)   总被引:21,自引:0,他引:21  
The structure of human rhinovirus 1A (HRV1A) has been determined to 3.2 A resolution using phase refinement and extension by symmetry averaging starting with phases at 5 A resolution calculated from the known human rhinovirus 14 (HRV14) structure. The polypeptide backbone structures of HRV1A and HRV14 are similar, but the exposed surfaces are rather different. Differential charge distribution of amino acid residues in the "canyon", the putative receptor binding site, provides a possible explanation for the difference in minor versus major receptor group specificities, represented by HRV1A and HRV14, respectively. The hydrophobic pocket in VP1, into which antiviral compounds bind, is in an "open" conformation similar to that observed in drug-bound HRV14. Drug binding in HRV1A does not induce extensive conformational changes, in contrast to the case of HRV14.  相似文献   

16.
Major receptor group common cold virus HRV89 was adapted to grow in HEp-2 cells, which are permissive for minor group human rhinoviruses (HRVs) but which only marginally support growth of major-group viruses. After 32 blind passages in these cells, each alternating with boosts of the recovered virus in HeLa cells, HRV89 acquired the capacity to effectively replicate in HEp-2 cells, attaining virus titers comparable to those in HeLa cells although no cytopathic effect was observed. Several clones were isolated and shown to replicate in HeLa cells whose ICAM-1 was blocked with monoclonal antibody R6.5 and in COS-7 cells, which are devoid of ICAM-1. Blocking experiments with recombinant very-low-density lipoprotein receptor fragments and enzyme-linked immunosorbent assays indicated that the mutants bound a receptor different from that used by minor-group viruses. Determination of the genomic RNA sequence encoding the capsid protein region revealed no changes in amino acid residues at positions equivalent to those involved in the interaction of HRV14 or HRV16 with ICAM-1. One mutation was within the footprint of a very-low-density lipoprotein receptor fragment bound to minor-group virus HRV2. Since ICAM-1 not only functions as a vehicle for cell entry but has also a "catalytic" function in uncoating, the use of other receptors must have important consequences for the entry pathway and demonstrates the plasticity of these viruses.  相似文献   

17.
Decay-accelerating factor (DAF) functions as cell attachment receptor for a wide range of human enteroviruses. The Kuykendall prototype strain of coxsackievirus A21 (CVA21) attaches to DAF but requires interactions with intercellular cell adhesion molecule 1 (ICAM-1) to infect cells. We show here that a bioselected variant of CVA21 (CVA21-DAFv) generated by multiple passages in DAF-expressing, ICAM-1-negative rhabdomyosarcoma (RD) cells acquired the capacity to induce rapid and complete lysis of ICAM-1-deficient cells while retaining the capacity to bind ICAM-1. CVA21-DAFv binding to DAF on RD cells mediated lytic infection and was inhibited by either antibody blockade with a specific anti-DAF SCR1 monoclonal antibody (MAb) or soluble human DAF. Despite being bioselected in RD cells, CVA21-DAFv was able to lytically infect an additional ICAM-1-negative cancer cell line via DAF interactions alone. The finding that radiolabeled CVA21-DAFv virions are less readily eluted from surface-expressed DAF than are parental CVA21 virions during a competitive epitope challenge by an anti-DAF SCR1 MAb suggests that interactions between CVA21-DAFv and DAF are of higher affinity than those of the parental strain. Nucleotide sequence analysis of the capsid-coding region of the CVA21-DAFv revealed the presence of two amino acid substitutions in capsid protein VP3 (R96H and E101A), possibly conferring the enhanced DAF-binding phenotype of CVA21-DAFv. These residues are predicted to be embedded at the interface of VP1, VP2, and VP3 and are postulated to enhance the affinity of DAF interaction occurring outside the capsid canyon. Taken together, the data clearly demonstrate an enhanced DAF-using phenotype and expanded receptor utilization of CVA21-DAFv compared to the parental strain, further highlighting that capsid interactions with DAF alone facilitate rapid multicycle lytic cell infection.  相似文献   

18.
Human rhinoviruses (HRV), responsible for approximately 60% of the common colds, are divided into two groups, according to their receptor specificity. The major group of HRVs gains access to human cells by binding to the intercellular adhesion molecule-1 (ICAM-1), whereas HRVs of the minor group use members of the low-density lipoprotein receptor (LDLR) family for cell entry. Previous studies confirmed that the HRV-binding region of ICAM-1 is located in the amino-terminal immunoglobulin-like (Ig) domain 1, which is encoded by exon 2 of the ICAM-1 gene. An A --> T transversion in codon 29 of ICAM-1 exon 2 causes a lysine to methionine substitution (K29M), and was found at a high frequency (33.2%) in Kilifi (Kenya), as well as in other African populations. In this study we examined whether polymorphisms in exon 2 of ICAM-1 could be detected in a Caucasian population, assuming that these could be of importance in HRV binding. DNA from 100 healthy, unrelated, Belgian volunteers was obtained through a noninvasive swish-and-spit method. Using a primer set in the adjacent intron sequences, the full-length ICAM-1 exon 2 was amplified by polymerase chain reaction (PCR), followed by direct sequencing of the PCR product. No polymorphisms could be demonstrated in exon 2 of the ICAM-1 gene among all 100 tested individuals. The rhinovirus-binding Ig domain 1 of ICAM-1 seems to be a highly conserved region in the Caucasian population.  相似文献   

19.
To increase insight into the structural basis of CXCR4 utilization in human immunodeficiency virus type 1 (HIV-1) infection, a new generation of three monoclonal antibodies (MAbs) was developed in WKA rats. The A80 MAb, which binds an epitope in the third extracellular loop (ECL3) of CXCR4, has unique biologic properties that provide novel insights into CXCR4 function. This agent enhanced syncytium formation in activated human peripheral blood mononuclear cells (PBMC) infected with X4 or R5 and CEM cells infected with X4 HIV-1 strains. Exposure to A80 increased the productive infection of activated CD4(+) T cells and CEM cells with R5 and X4 viruses, respectively. This antibody uniquely induced agglutination of PBMC and CEM cells but did not activate calcium mobilization. Agglutination induced by A80 was inhibited by stromal cell-derived factor 1, T22, and phorbol 12-myristate 13-acetate but was not significantly altered by pretreatment of cells with pertussis toxin, wortmannin, or MAbs to LFA-1, ICAM-1, ICAM-2, and ICAM-3. The binding of the A145 and A120 MAbs was mapped to the N-terminal extracellular domain and a conformational epitope involving ECL1 and ECL2, respectively. Both of these MAbs inhibited HIV-1 infection and lacked the novel properties of A80. These results suggest a new role for CXCR4 in homologous lymphocyte adhesion that is ligand independent and in HIV-1 infection.  相似文献   

20.
Receptor priming of low-pH-triggered virus entry has been described for an enveloped virus (15). Here we show with major group human rhinoviruses (HRV) and its intercellular adhesion molecule-1 receptor that nonenveloped viruses follow this novel cell entry principle. In vitro the receptor primed HRV for efficient uncoating at mild low pH (5.5 to 6.0). Agents preventing endosomal acidification reduced or blocked rhinovirus cell infection, while nocodazole had no effect on infection of any serotype tested. The entry inhibitory effect of lysosomotropic agents was overcome by exposing cell-internalized HRV to mild low pH (5.5 to 6.0). We therefore conclude that receptor priming of major group HRV must occur in vivo as well. Cooperation of a cellular receptor and low pH in virus uncoating will polarize the exit of the genome to the receptor-bound, membrane-proximal region of the virus particle during acidification of endosomes. This process must be required for efficient penetration of the cellular membrane by viruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号