首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary Steatohepatitis has recently been increasing as a cofactor influencing the progression of fibrosis, cirrhosis, adenoma and carcinoma in liver; however, the mechanisms by which it contributes to liver injury remain uncertain. We induced steatohepatitis in zebrafish embryos using thioacetamide (TAA). TUNEL assay revealed significant increasing of apoptosis in liver after 5 days post fertilization and the increasing of apoptosis was observed to be associated with the up-regulation of apoptotic genes such as, bad, bax, P-38a, caspase-3 and 8, and JNK-1. Histological sections by oil red O stain showed the accumulation of fatty droplets which causes the pushing of the nucleus towards one side. Up-regulation of steatosis markers such as, ACC, adiponectin, PTL, CEBP- and , SREBP-1 was also observed. Furthermore, the elevation of glutathione peroxidase in TAA treated embryos indicated that TAA induces lipid peroxidation which leads to causes liver damage. Zebrafish has already been considered as a good human disease model and in this context; TAA-treated zebrafish may serve as a good animal model to study the molecular pathogenesis of steatohepatitis. Moreover, non-availability of specific drugs to prevent steatohepatitis, this animal model may serve as a powerful preclinical platform to study the therapeutic strategies and for evaluating chemoprevention strategies for this disease.  相似文献   

2.
3.
4.
The vascular organization of the teleost gill suggests that blood flow distribution from the filamental artery to the respiratory lamellae is governed by relationships analogous to the cable conduction properties of a nerve axon. The space constant (λ) by definition is the distance along the gill filament at which the in-series resistance of the afferent filament artery equals the in-parallel resistance of the afferent lamellar arteriolar, lamellar, efferent lamellar arteriolar (ALA-L-ELA) segments. Constriction of the afferent filamental artery or uniform dilation of the ALA-L-ELA will decrease λ. As λ decreases, flow through the proximal (basal) lamellae greatly increases at the expense of distal lamellar perfusion. When λ increases in a system of finite length the flow profile must account for reflected pressures within the main vessel. The λ calculated from corrosion casts of gill vasculature is 14 to 12 the filament length. This favors blood flow through the proximal lamellae and when cardiac output increases, the proportion of cardiac output perfusing the proximal areas increases at the expense of distal lamellar blood flow. To offset these changes it is proposed that increased distal lamellar perfusion is achieved by simultaneous vasodilatation of distal and constriction of proximal ALA-L-ELA segments and dilation of the afferent filamental artery.  相似文献   

5.
6.
7.
This article deals with the introduction of the modified Casson's fluid model as the true representation for the blood for the steady laminar flow through a small diameter artery with axi-symmetric identical double stenoses in series. The governing equations are solved by using the finite element method. The results for the velocity profiles, the pressure and the wall shear stress distributions in addition to the location and length of the flow reversal zones have been brought out and discussed in reference to the severity of the disease. It has been observed that the non-Newtonian nature of the blood helps in reducing the magnitude of the peak wall shear stress at the throat and the length of the reversed flow regions in the post stenotic dilatation.  相似文献   

8.
Summary Barley (Hordeum vulgare L. Himalaya) seeds were artificially aged under two storage conditions (32 °C/12% moisture content (m.c.) and 38 °C/18% m.c.) to study the behavior of induced chromosomal aberrations during plant growth. The frequencies of aberrant anaphases at first mitosis in root tips were correlated with loss of germinability. However, after 3 and 5 weeks' growth, aberration frequency declined. In plants grown from artificially aged seeds, the frequency of aberrant anaphases appeared to be stabilized at about 1% after 5 weeks' growth, in spite of the large differences in the frequencies at first mitosis. This suggests that because of their genetic imbalance, cells with chromosomal aberrations induced by seed aging were being excluded during plant growth. Meiotic chromosome configurations at MI were normal (7 II) in all plants studied, although a few precocious separations were found. Meiotic aberrations were found at AI-TI, AII-TII and the tetrad stages in the pollen mother cells of plants grown from the control and artificially aged seeds. However, there were no clear differences among the control and the two aging treatments. It was obvious that some cells with meiotic chromosomal aberrations were lost between the AI-TI and AII-TII stages, and still more between the AII-TII and tetrad stages. The frequency of tetrads with micronuclei in plants produced from artificially aged seeds was the same as in the control. The plants grown from artificially aged seeds showed high pollen fertility (95.2 to 97.0%) and seed fertility (90.1 to 97.2%) which was comparable to the control values (97.4 and 97.9%) respectively, indicating no special effects of seed aging. Anaphase cells of the first mitosis in the next (A2) generation were analyzed to study the transmission of chromosomal aberrations through mitotic and meiotic cell divisions in the A1 generation. Aberrant anaphases in the progeny from the artificially aged seeds were not higher than those of the control progeny. This indicates that the chromosomal aberrations induced by seed aging are not transmitted to the next generation.Published with the approval of the Director of the Colorado state Experiment Station as Scientific Series No. 2776  相似文献   

9.
A numerical dye method for the visualization of unsteady three-dimensional flow calculations is introduced by coupling the unsteady convection-diffusion equation to the Navier-Stokes equation for mass and momentum. This system of equations is descretized using a finite volume projection-like algorithm with generalized coordinates and overset grids. A powerful pressure prediction method is used to accelerate the convergence of the Pressure Poisson equation. To demonstrate the visualization technique, blood flow through the aortic arch region and the three main arterial branches is computed using various Womersley numbers. In this technique, parcels of fluid are followed in time as a function of the cardiac cycle without having to track individual particles, which in turn aids us to better understand some important aspects of the three-dimensionality of the developing unsteady flow. Using this numerical dye method we analyze the strength of the cross flow during the cardiac cycle, the relationship between the penetration of blood into the aortic branches from its relative position in the ascending aortic region and the effects of the Womersley parameter. This technique can be very useful in the design and development of stents where the topology of the device would require understanding where the blood emanating from the heart ends up at the end of the cardiac cycle. Moreover, this method could be useful in investigating the influence of flow and geometry on the local introduction of medication.  相似文献   

10.
The effects of polar nature of blood and pulsatility on flow through a stenosed tube have been analysed by assuming blood as a micropolar fluid. Linearized solutions of basic equations are obtained through consecutive applications of finite Hankel and Laplace transforms. The analytical expressions for axial and particle angular velocities, wall shear stress, resistance to flow and apparent viscosity have been obtained. The axial velocity profiles for Newtonian and micropolar fluids have been compared. The interesting observation of this analysis is velocity, in certain parts of cycle, for micropolar fluid is higher than Newtonain fluid. Variation of apparent viscosity eta a with tube radius shows both inverse Fahraeus-Lindqvist and Fahraeus-Lindqvist effects. Finally, the resistance to flow and wall shear stress for normal and diseased blood have been computed and compared.  相似文献   

11.
12.
A computational model is presented for unsteady flow through a collapsible tube with variable wall stiffness. The one-dimensional flow equations are solved for inlet, outlet and external conditions that vary with time and for a tube with time-dependent, spatially-distributed local properties. In particular, the effects of nonuniformities and local perturbations in stiffness distribution in the tube are studied. By allowing the flow to evolve in time, asymptotically steady flows are calculated. When simulating a quasi-steady reduction in downstream pressure, the model demonstrates critical transitions, the phenomena of wave-speed limitation and the sites of flow limitation. It also exhibits conditions for which viscous flow limitation occurs. Computations of rapid, unsteady changes of the exit pressure illustrate the phenomena occurring at the onset of a cough, and the generation and propagation of elastic jumps.  相似文献   

13.
Copper-PTSM has been shown in previous studies to act as a fluid microsphere and to be useful in quantitating blood flow in brain, myocardium, and kidneys. In this study we have evaluated this agent as a PET tumor blood flow agent. 64Cu- or 67Cu-labeled Cu-PTSM was administered (i.v.) to Golden Syrian hamsters with colorectal carcinoma cell implants (GW39). One minute prior to sacrifice (10–60 min after Cu-PTSM was administered) 125I-iodoantipyrine (125I-IAP), an agent known to measure tumor blood flow, was administered intravenously by a 3-stage, 1 min ramp infusion. Following sacrifice, samples of tumor and brain were removed (within 40 s) and the tumor and brain levels of Cu-PTSM and iodoantipyrine determined. Since the brain uptake of both Cu-PTSM and IAP is perfusion rate limited, the brain was used as a reference organ to normalize tumor levels of the two tracers. The plot of Cu-PTSM versus 125I-IAP tumor/brain ratios showed a good linear correlation (r value of 0.97), suggesting that Cu-PTSM could be used to quantify tumor blood flow. Since the mechanism of Cu-PTSM trapping is likely to be due to glutathione levels in the tissue, and because tumor tissue glutathione levels might vary, the temporal uptake of Cu-PTSM was investigated by PET imaging both the tumor-bearing hamsters and ~300 g Copenhagen rats bearing R3227 prostate tumors. The tumors were clearly visualized and the retained copper radioactivity in the tumor was constant over the 30 min imaging period.  相似文献   

14.
Mechanical properties of a polyacrylamide gel with reversible DNA crosslinks are presented. In this system, three DNA strands replace traditional chemical crosslinkers. In contrast to thermoset chemically crosslinked polyacrylamide, the new hydrogel is thermoreversible; crosslink dissociation without the addition of heat is also feasible by introducing a specific removal DNA strand. This hydrogel is characterized by a critical crosslink concentration at which gelation occurs. Below the critical point, a characteristic temperature exists at which a transition in viscosity is observed. Both temperature-dependent viscosity and elastic modulus of the material are functions of crosslink density.  相似文献   

15.
16.
Human exposure to microcystins, which are produced by freshwater cyanobacterial species, is of growing concern due to increasing appearance of cyanobacterial blooms as a consequence of global warming and increasing water eutrophication. Although microcystins are considered to be liver-specific, there is evidence that they may also affect other tissues. These substances have been shown to induce DNA damage in vitro and in vivo, but the mechanisms of their genotoxic activity remain unclear. In human peripheral blood lymphocytes (HPBLs) exposure to non-cytotoxic concentrations (0, 0.1, 1 and 10μg/ml) of microcystin-LR (MCLR) induced a dose- and time-dependent increase in DNA damage, as measured with the comet assay. Digestion of DNA from MCLR-treated HPBLs with purified formamidopyrimidine-DNA glycosylase (Fpg) displayed a greater number of DNA strand-breaks than non-digested DNA, confirming the evidence that MCLR induces oxidative DNA damage. With the cytokinesis-block micronucleus assay no statistically significant induction of micronuclei, nucleoplasmic bridges and nuclear buds was observed after a 24-h exposure to MCLR. At the molecular level, no changes in the expression of selected genes involved in the cellular response to DNA damage and oxidative stress were observed after a 4-h exposure to MCLR (1μg/ml). After 24h, DNA damage-responsive genes (p53, mdm2, gadd45a, cdkn1a), a gene involved in apoptosis (bax) and oxidative stress-responsive genes (cat, gpx1, sod1, gsr, gclc) were up-regulated. These results provide strong support that MCLR is an indirectly genotoxic agent, acting via induction of oxidative stress, and that lymphocytes are also the target of microcystin-induced toxicity.  相似文献   

17.
18.
Abstract Freeze-thaw damage to thylakoids in spinach leaves has been simulated in vitro, using a complex, defined artificial stroma medium. The resulting mechanical damage was quantified by measuring the loss of the marker protein plastocyanin from the thylakoid lumen, which is released as a result of membrane rupture. Loss of plastocyanin was already apparent at 0°C and became more severe at subzero temperatures. The time course of plastocyanin loss during freezing was biphasic: after an initial rapid loss, plastocyanin release was linearly dependent on incubation time. In short-term experiments a linear dependence on freezing temperature was observed. Solute diffusion into the thylakoids, leading to influx of water and eventually membrane rupture, has been observed in vitro as well as after freezing of leaves.  相似文献   

19.
20.
Summary The influence of local temperature changes within the posterior portion of the body on dorsal aorta blood flow ( ), femoral arterial pressure (P a ), peripheral resistance (R), skin blood flow ( ) and skeletal muscle blood flow ( ) was examined in unanesthetized lizards (Iguana iguana andTubinambis nigropunctatus). In response to local heating of the hind legs and tail and increased,P a was generally unchanged,R decreased and decreased or was unchanged (Fig. 2). It is suggested that the acquisition of heat may be favored by diverting the increase in away from the muscle to the warmer skin. In response to cooling and decreased,P a was generally unchanged, R increased and increased or was unchanged. Hence, during cooling the retention of heat may be favored by diverting blood away from the skin to the deeper muscle. The muscle-skin shunt is under sympathetic control since following blockade with phenoxybenzamine HCL (Dibenzyline) muscle blood flow changes in response to temperature were qualitatively similar to those of skin (Fig. 4). These changes in peripheral circulatory patterns are independent of changes in heart rate or deep body temperature.Baker and Weathers were predoctoral and postdoctoral trainees, respectively, under USPHS Grant HE-05696. This study was also supported by NSF Grant GB-8523 and Los Angeles County Heart Association Grant 437IG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号