首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The S100 gene family, which is composed of at least 24 members carrying the Ca2+ binding EF-hand motif, has been implicated in both intracellular and extracellular functions, including enzyme activities, immune responses, cytoskeleton dynamics, Ca2+ homeostasis, cell growth and cell differentiation. Altered S100 protein levels are associated with a broad range of diseases, including cardiomyopathy, inflammatory and immune disorders, neurodegenerative disorders and cancer. Although the precise role of S100 protein in carcinogenesis is poorly understood, it seems that formation of homo- and hetero-dimers, binding of Ca2+ and interaction with effector molecules are essential for the development and progression of many cancers. Several studies have suggested that S100 proteins promote cancer progression and metastasis through cell survival and apoptosis pathways. In animal models of bladder cancer, several S100 proteins are differentially expressed in bladder tumors relative to normal urothelium. In human bladder cancer, overexpression of S100A4, S100A8 or S100A11 are associated with stage progression, invasion, metastasis and poor survival. This review summarizes these findings and evaluates their implications for human bladder cancer management.  相似文献   

2.
S100P is a member of the S100 subfamily of calcium-binding proteins that are believed to be associated with various diseases, and in particular deregulation of S100P expression has been documented for prostate and breast cancer. Previously, we characterized the effects of metal binding on the conformational properties of S100P and proposed that S100P could function as a Ca2+ conformational switch. In this study we used fluorescence and CD spectroscopies and isothermal titration calorimetry to characterize the target-recognition properties of S100P using a model peptide, melittin. Based on these experimental data we show that S100P and melittin can interact in a Ca2+-dependent and -independent manner. Ca2+-independent binding occurs with low affinity (Kd approximately 0.2 mM), has a stoichiometry of four melittin molecules per S100P dimer and is presumably driven by favorable electrostatic interactions between the acidic protein and the basic peptide. In contrast, Ca2+-dependent binding of melittin to S100P occurs with high affinity (Kd approximately 5 microM) has a stoichiometry of two molecules of melittin per S100P dimer, appears to have positive cooperativity, and is driven by hydrophobic interactions. Furthermore, Ca2+-dependent S100P-melittin complex formation is accompanied by significant conformational changes: Melittin, otherwise unstructured in solution, adopts a helical conformation upon interaction with Ca2+-S100P. These results support a model for the Ca2+-dependent conformational switch in S100P for functional target recognition.  相似文献   

3.
Miwa N  Uebi T  Kawamura S 《The FEBS journal》2008,275(20):4945-4955
S100 proteins and annexins both constitute groups of Ca2+-binding proteins, each of which comprises more than 10 members. S100 proteins are small, dimeric, EF-hand-type Ca2+-binding proteins that exert both intracellular and extracellular functions. Within the cells, S100 proteins regulate various reactions, including phosphorylation, in response to changes in the intracellular Ca2+ concentration. Although S100 proteins are known to be associated with many diseases, exact pathological contributions have not been proven in detail. Annexins are non-EF-hand-type Ca2+-binding proteins that exhibit Ca2+-dependent binding to phospholipids and membranes in various tissues. Annexins bring different membranes into proximity and assist them to fuse, and therefore are believed to play a role in membrane trafficking and organization. Several S100 proteins and annexins are known to interact with each other in either a Ca2+-dependent or Ca2+-independent manner, and form complexes that exhibit biological activities. This review focuses on the interaction between S100 proteins and annexins, and the possible biological roles of these complexes. Recent studies have shown that S100-annexin complexes have a role in the differentiation of gonad cells and neurological disorders, such as depression. These complexes regulate the organization of membranes and vesicles, and thereby may participate in the appropriate disposition of membrane-associated proteins, including ion channels and/or receptors.  相似文献   

4.
A multigenic family of Ca2+-binding proteins of the EF-hand type known as S100 comprises 19 members that are differentially expressed in a large number of cell types. Members of this protein family have been implicated in the Ca2+-dependent (and, in some cases, Zn2+- or Cu2+-dependent) regulation of a variety of intracellular activities such as protein phosphorylation, enzyme activities, cell proliferation (including neoplastic transformation) and differentiation, the dynamics of cytoskeleton constituents, the structural organization of membranes, intracellular Ca2+ homeostasis, inflammation, and in protection from oxidative cell damage. Some S100 members are released or secreted into the extracellular space and exert trophic or toxic effects depending on their concentration, act as chemoattractants for leukocytes, modulate cell proliferation, or regulate macrophage activation. Structural data suggest that many S100 members exist within cells as dimers in which the two monomers are related by a two-fold axis of rotation and that Ca2+ binding induces in individual monomers the exposure of a binding surface with which S100 dimers are believed to interact with their target proteins. Thus, any S100 dimer is suggested to expose two binding surfaces on opposite sides, which renders homodimeric S100 proteins ideal for crossbridging two homologous or heterologous target proteins. Although in some cases different S100 proteins share their target proteins, in most cases a high degree of target specificity has been described, suggesting that individual S100 members might be implicated in the regulation of specific activities. On the other hand, the relatively large number of target proteins identified for a single S100 protein might depend on the specific role played by the individual regions that in an S100 molecule contribute to the formation of the binding surface. The pleiotropic roles played by S100 members, the identification of S100 target proteins, the analysis of functional correlates of S100-target protein interactions, and the elucidation of the three-dimensional structure of some S100 members have greatly increased the interest in S100 proteins and our knowledge of S100 protein biology in the last few years. S100 proteins probably are an example of calcium-modulated, regulatory proteins that intervene in the fine tuning of a relatively large number of specific intracellular and (in the case of some members) extracellular activities. Systems, including knock-out animal models, should be now used with the aim of defining the correspondence between the in vitro regulatory role(s) attributed to individual members of this protein family and the in vivo function(s) of each S100 protein.  相似文献   

5.
S100 proteins (16 members) show a very divergent pattern of cell- and tissue-specific expression, of subcel-lular localizations and relocations, of post-translational modifications, and of affinities for Ca 2+ , Zn 2+ , and Cu 2+ , consistent with their pleiotropic intra- and extracellular functions. Up to 40 target proteins are reported to interact with S100 proteins and for S100A1 alone 15 target proteins are presently known. Therefore it is not surprising that many functional roles have been proposed and that several human disorders such as cancer, neurodegenerative diseases, cardiomyopathies, inflammations, diabetes, and allergies are associated with an altered expression of S100 proteins. It is not unlikely that their biological activity in some cases is regulated by Zn 2+ and Cu 2+ , rather than by Ca 2+ Despite the numerous putative functions of S100 proteins, their three-dimensional structures of, e.g., S100B, S100A6, and S100A7 are surprisingly similar. They contain a compact dimerization domain whose conformation is rather insensitive to Ca 2+ binding and two lateral a-helices III and III, which project outward of each subunit when Ca 2+ is bound. Target docking depends on the two hydrophobic patches in front of the paired EF-hand generated by the binding of Ca 2+. The selec-tivity in target binding is assured by the central linker between the two EF-hands and the C-terminal tail. It appears that the S100-binding domain in some target proteins contains a basic amphiphilic a-helix and that the mode of interaction and activation bears structural similarity to that of calmodulin.© Kluwer Academic Publishers  相似文献   

6.
S100A4, also known as mts1, is a member of the S100 family of Ca2+-binding proteins that is directly involved in tumor invasion and metastasis via interactions with specific protein targets, including nonmuscle myosin-IIA (MIIA). Human S100A4 binds two Ca2+ ions with the typical EF-hand exhibiting an affinity that is nearly 1 order of magnitude tighter than that of the pseudo-EF-hand. To examine how Ca2+ modifies the overall organization and structure of the protein, we determined the 1.7 A crystal structure of the human Ca2+-S100A4. Ca2+ binding induces a large reorientation of helix 3 in the typical EF-hand. This reorganization exposes a hydrophobic cleft that is comprised of residues from the hinge region,helix 3, and helix 4, which afford specific target recognition and binding. The Ca2+-dependent conformational change is required for S100A4 to bind peptide sequences derived from the C-terminal portion of the MIIA rod with submicromolar affinity. In addition, the level of binding of Ca2+ to both EF-hands increases by 1 order of magnitude in the presence of MIIA. NMR spectroscopy studies demonstrate that following titration with a MIIA peptide, the largest chemical shift perturbations and exchange broadening effects occur for residues in the hydrophobic pocket of Ca2+-S100A4. Most of these residues are not exposed in apo-S100A4 and explain the Ca2+ dependence of formation of theS100A4-MIIA complex. These studies provide the foundation for understanding S100A4 target recognition and may support the development of reagents that interfere with S100A4 function.  相似文献   

7.
8.
Hundreds of extracellular stimuli are received by cells via the pathways consisting of three basic components: cell-surface receptors, heterotrimeric G proteins, and intracellular effector enzymes or ion channels. A number of additional molecules, including G protein-coupled receptor kinases (GRKs), phosducin and Ca(2+)-binding proteins modulate signal transduction through these cascades. Understanding how these universal pathways work requires a detailed analysis of the interactions between these proteins. The recently emerged technology of surface plasmon resonance (SPR) can study protein-protein interactions by measuring not only the equilibrium binding constants, but also the association and dissociation rates. This article reviews experimental design used by researchers to analyze different components of the G protein pathway by SPR and focuses on the insights this technique provides regarding the kinetics, structure-function aspects and regulation of specific molecular events in the cascade.  相似文献   

9.
The prion protein (PrPC) has a primary role in the pathogenesis of transmissible spongiform encephalopathies, which causes prion disorders partially due to Ca2+ dysregulation. In our previous work, we found that overexpressed PrPC in gastric cancer was involved in apoptosis, cell proliferation, and metastasis of gastric cancer. To better understand how PrPC acts in gastric cancer, a human microarray was performed to select differentially regulated genes that correlate with the biological function of PrPC. The microarray data were analyzed and revealed 3798 genes whose expression increased at least 2-fold in gastric cancer cells transfected with PrPC. These genes encode proteins involved in several aspects of cell biology, among which, we specially detected molecules related to calcium, especially the S100 calcium-binding proteins, and found that PrPC upregulates S100A1, S100A6, S100B, and S100P but downregulates CacyBP in gastric cancer cells. We also found that intracellular Ca2+ levels in cells transfected with PrPC increased, whereas these levels decreased in knockdowns of these cells. Taken together, PrPC might increase intracellular Ca2+, partially through calcium-binding proteins, or PrPC might upregulate the expression of S100 proteins, partially through stimulating the intracellular calcium level in gastric cancer. Though the underlying mechanisms need further exploration, this study provides a new insight into the role of PrPC in gastric cancer and enriches our knowledge of prion protein.  相似文献   

10.
S100A6 is a member of the S100 family of Ca(2+) binding proteins, which have come to play an important role in the diagnosis of cancer due to their overexpression in various tumor cells. We have determined the crystal structures of human S100A6 in the Ca(2+)-free and Ca(2+)-bound states to resolutions of 1.15 A and 1.44 A, respectively. Ca(2+) binding is responsible for a dramatic change in the global shape and charge distribution of the S100A6 dimer, leading to the exposure of two symmetrically positioned target binding sites. The results are consistent with S100A6, and most likely other S100 proteins, functioning as Ca(2+) sensors in a way analogous to the prototypical sensors calmodulin and troponin C. The structures have important implications for our understanding of target binding and cooperativity of Ca(2+) binding in the S100 family.  相似文献   

11.
S100A1, a 21-kDa dimeric Ca2+-binding protein, is an enhancer of cardiac Ca2+ release and contractility and a potential therapeutic agent for the treatment of cardiomyopathy. The role of S100A1 in skeletal muscle has been less well defined. Additionally, the precise molecular mechanism underlying S100A1 modulation of sarcoplasmic reticulum Ca2+ release in striated muscle has not been fully elucidated. Here, utilizing a genetic approach to knock out S100A1, we demonstrate a direct physiological role of S100A1 in excitation-contraction coupling in skeletal muscle. We show that the absence of S100A1 leads to decreased global myoplasmic Ca2+ transients following electrical excitation. Using high speed confocal microscopy, we demonstrate with high temporal resolution depressed activation of sarcoplasmic reticulum Ca2+ release in S100A1-/- muscle fibers. Through competition assays with sarcoplasmic reticulum vesicles and through tryptophan fluorescence experiments, we also identify a novel S100A1-binding site on the cytoplasmic face of the intact ryanodine receptor that is conserved throughout striated muscle and corresponds to a previously identified calmodulin-binding site. Using a 12-mer peptide of this putative binding domain, we demonstrate low micromolar binding affinity to S100A1. NMR spectroscopy reveals this peptide binds within the Ca2+-dependent hydrophobic pocket of S100A1. Taken together, these data suggest that S100A1 plays a significant role in skeletal muscle excitation-contraction coupling, primarily through specific interactions with a conserved binding domain of the ryanodine receptor. This warrants further investigation into the use of S100A1 as a therapeutic target for the treatment of both cardiac and skeletal myopathies.  相似文献   

12.
The S100 genes encode a conserved group of 21 vertebrate‐specific EF‐hand calcium‐binding proteins. Since their discovery in 1965, S100 proteins have remained enigmatic in terms of their cellular functions. In this review, we summarize the calcium‐ and zinc‐binding properties of the dimeric S100B and S100A1 proteins and highlight data that shed new light on the extracellular and intracellular regulation and functions of S100B. We point out that S100B and S100A1 homodimers are not functionally interchangeable and that in a S100A1/S100B heterodimer, S100A1 acts as a negative regulator for the ability of S100B to bind Zn2+. The Ca2+ and Zn2+‐dependent interactions of S100B with a wide array of proteins form the basis of its activities and have led to the derivation of some initial rules for S100B recognition of protein targets. However, recent findings have strongly suggested that these rules need to be revisited. Here, we describe a new consensus S100B binding motif present in intracellular and extracellular vertebrate‐specific proteins and propose a new model for stable interactions of S100B dimers with full‐length target proteins. A chaperone‐associated function for intracellular S100B in adaptive cellular stress responses is also discussed. This review may help guide future studies on the functions of S100 proteins in general.  相似文献   

13.
Calgranulin C (S100A12) is a member of the S100 family of proteins that undergoes a conformational change upon calcium binding allowing them to interact with target molecules and initiate biological responses; one such target is the receptor for advanced glycation products (RAGE). The RAGE-calgranulin C interaction mediates a pro-inflammatory response to cellular stress and can contribute to the pathogenesis of inflammatory lesions. The soluble extracellular part of RAGE (sRAGE) was shown to decrease the inflammation response possibly by scavenging RAGE-activating ligands. Here, by using high resolution NMR spectroscopy, we identified the sRAGE-calgranulin C interaction surface. Ca2+ binding creates two symmetric hydrophobic surfaces on Ca2+-calgranulin C that allow calgranulin C to bind to the C-type immunoglobulin domain of RAGE. Apo-calgranulin C also binds to sRAGE using a completely different surface and with substantially lower affinity, thus underscoring the role of Ca2+ binding to S100 proteins as a molecular switch. By using native gel electrophoresis, chromatography, and fluorescence spectroscopy, we established that sRAGE forms tetramers that bind to hexamers of Ca2+-calgranulin C. This arrangement creates a large platform for effectively transmitting RAGE-dependent signals from extracellular S100 proteins to the cytoplasmic signaling complexes.  相似文献   

14.
Many membrane proteins are implicated in the regulation of cell functions by triggering specific signaling pathways. Porins are known potential modulators of cell proliferation and differentiation. We explored the possible involvement of this protein in signal transduction pathways in mouse gut macrophages. In the present work we have shown that porins can trigger signal transduction in mouse macrophages infected with S. typhimurium. Activation of macrophages by porins results in an increase in inositol trisphosphate and intracellular Ca2+ mobilization. There is a translocation of protein kinase C to the membrane which is accompanied by nitric oxide release within the macrophages. This effect is the outcome of the expression of nitric oxide synthase, which is dependent on Protein kinase C. Further, we observed that there is an increased binding of the porins on macrophages infected with S. typhimurium which results in activation of macrophages and triggering of specific signaling pathways. These results indicate that porins induce the production of nitric oxide via a protein kinase C dependent pathway. Nitric oxide plays a fundamental role in macrophage effector function where it has both communication and defensive function.  相似文献   

15.
Caveolae are specialized membrane microdomains that are found on the plasma membrane of most cells. Recent studies indicate that a variety of signaling molecules are highly organized in caveolae, where their interactions initiate specific signaling cascades. Molecules enriched in this membrane include G protein-coupled receptors, heterotrimeric GTP binding proteins, IP3 receptor-like protein, Ca2+ ATPase, eNOS, and several PKC isoforms. Direct measurements of calcium changes in endothelial cells suggest that caveolae may be sites that regulate intracellular Ca2+ concentration and Ca2+ dependent signal transduction. This review will focus on the role of caveolae in controlling the spatial and temporal pattern of intracellular Ca2+ signaling.  相似文献   

16.
S100 proteins are EF hand type Ca2+ binding proteins thought to function in stimulus-response coupling by binding to and thereby regulating cellular targets in a Ca2+-dependent manner. To isolate such target(s) of the S100P protein we devised an affinity chromatography approach that selects for S100 protein ligands requiring the biologically active S100 dimer for interaction. Hereby we identify ezrin, a membrane/F-actin cross-linking protein, as a dimer-specific S100P ligand. S100P-ezrin complex formation is Ca2+ dependent and most likely occurs within cells because both proteins colocalize at the plasma membrane after growth factor or Ca2+ ionophore stimulation. The S100P binding site is located in the N-terminal domain of ezrin and is accessible for interaction in dormant ezrin, in which binding sites for F-actin and transmembrane proteins are masked through an association between the N- and C-terminal domains. Interestingly, S100P binding unmasks the F-actin binding site, thereby at least partially activating the ezrin molecule. This identifies S100P as a novel activator of ezrin and indicates that activation of ezrin's cross-linking function can occur directly in response to Ca2+ transients.  相似文献   

17.
19F-n.m.r. spectra were measured to investigate the effects of Ca2+ and Zn2+ on the interaction of trifluoperazine (TFP) with three S100 proteins. It was found that TFP binds to S100a and S100ao proteins irrespective of the presence of Ca2+ and Zn2+, while in the presence of Ca2+ the apparent affinity of TFP to the proteins was greater than that in its absence or in the presence of Zn2+. In contrast, the binding affinity of TRP to S100b protein in the presence and absence of metal ions was lower than to S100a and S100ao proteins. These results suggested that TFP binds to each S100 protein in two ways: one is Ca2(+)- or Zn2(+)-dependent specific manner and another is Ca2(+)- or Zn2(+)-independent non-specific manner.  相似文献   

18.
The secretory vesicle protein synaptotagmin I (syt) plays a critical role in Ca2+-triggered exocytosis. Its cytoplasmic domain is composed of tandem C2 domains, C2A and C2B; each C2 domain binds Ca2+. Upon binding Ca2+, positively charged residues within the Ca2+-binding loops are thought to interact with negatively charged phospholipids in the target membrane to mediate docking of the cytoplasmic domain of syt onto lipid bilayers. The C2 domains of syt also interact with syntaxin and SNAP-25, two components of a conserved membrane fusion complex. Here, we have neutralized single positively charged residues at the membrane-binding interface of C2A (R233Q) and C2B (K366Q). Either of these mutations shifted the Ca2+ requirements for syt-liposome interactions from approximately 20 to approximately 40 microm Ca2+. Kinetic analysis revealed that the reduction in Ca2+-sensing activity was associated with a decrease in affinity for membranes. These mutations did not affect sytsyntaxin interactions but resulted in an approximately 50% loss in SNAP-25 binding activity, suggesting that these residues lie at an interface between membranes and SNAP-25. Expression of full-length versions of syt that harbored these mutations reduced the rate of exocytosis in PC12 cells. In both biochemical and functional assays, effects of the R233Q and K366Q mutations were not additive, indicating that mutations in one domain affect the activity of the adjacent domain. These findings indicate that the tandem C2 domains of syt cooperate with one another to trigger release via loop-mediated electrostatic interactions with effector molecules.  相似文献   

19.
Ca2+ regulates numerous biological processes through spatiotemporal changes in the cytosolic Ca2+ concentration and subsequent interactions with Ca2+ binding proteins. The endoplasmic reticulum (ER) serves as an intracellular Ca2+ store and plays an essential role in cytosolic Ca2+ homeostasis. There is a strong need to develop Ca2+ sensors capable of real-time quantitative Ca2+ concentration measurements in specific subcellular environments without using natural Ca2+ binding proteins such as calmodulin, which themselves participate as signaling molecules in cells. In this report, a strategy for creating such sensors by grafting a Ca2+-binding motif into chromophore sensitive locations in green fluorescence protein is described. The engineered Ca2+ sensors exhibit large ratiometric fluorescence and absorbance changes upon Ca2+ binding with affinities corresponding to the Ca2+ concentrations found in the ER (Kd values range from 0.4 to 2 mM). In addition to characterizing the optical and metal binding properties of the newly developed Ca2+ sensors with various spectroscopic methods, we also examined the kinetic properties using stopped-flow spectrofluorimetry to ensure accurate monitoring of dynamic Ca2+ changes. The developed Ca2+ sensor was successfully targeted to the ER of mammalian cell lines to monitor Ca2+ changes occurring in this compartment in response to stimulation with agonists. We envision that this class of Ca2+ sensors can be modified further to measure the Ca2+ concentration in other cellular compartments, providing tools for studying the contribution of these compartments to cellular Ca2+ signaling.  相似文献   

20.
The troponin C superfamily consists of about 100 Ca2+-binding proteins. Sequence variations observed in these proteins have been analyzed and lead to the following conclusions. (1) There are some strict rules defining the set of calcium ligands necessary for effective Ca2+ binding. (2) If they are fulfilled, the Ca2+ binding constant depends on tertiary interactions within a protein, as well as the free energy of secondary structures of its polypeptide chain. The former provide a constant contribution to the free energy of protein folding and the Ca2+-binding process. (3) The observed variety in Ca2+-binding constants of these proteins results from the various abilities of segments of these proteins to assume the correct secondary structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号