首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There is substantial evidence that excitotoxicity and oxidative damage may contribute to Huntington's disease (HD) pathogenesis. We examined whether the novel anti-oxidant compound BN82451 exerts neuroprotective effects in the R6/2 transgenic mouse model of HD. Oral administration of BN82451 significantly improved motor performance and improved survival by 15%. Oral administration of BN82451 significantly reduced gross brain atrophy, neuronal atrophy and the number of neuronal intranuclear inclusions at 90 days of age. These findings provide evidence that novel anti-oxidants such as BN82451 may be useful for treating HD.  相似文献   

2.
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease caused by a CAG trinucleotide expansion in exon 1 of the Huntingtin (Htt) gene. We show herein that in an HD transgenic mouse model (R6/2), daily administration of CGS21680 (CGS), an A(2A) adenosine receptor (A(2A)-R)-selective agonist, delayed the progressive deterioration of motor performance and prevented a reduction in brain weight. 3D-microMRI analysis revealed that CGS reversed the enlarged ventricle-to-brain ratio of R6/2 mice, with particular improvements in the left and right ventricles. (1)H-MRS showed that CGS significantly reduced the increased choline levels in the striatum. Immunohistochemical analyses further demonstrated that CGS reduced the size of ubiquitin-positive neuronal intranuclear inclusions (NIIs) in the striatum of R6/2 mice and ameliorated mutant Htt aggregation in a striatal progenitor cell line overexpressing mutant Htt with expanded polyQ. Moreover, chronic CGS treatment normalized the elevated blood glucose levels and reduced the overactivation of a major metabolic sensor [5'AMP-activated protein kinase (AMPK)] in the striatum of R6/2 mice. Since AMPK is a master switch for energy metabolism, modulation of energy dysfunction caused by the mutant Htt might contribute to the beneficial effects of CGS. Collectively, CGS is a potential drug candidate for the treatment of HD.  相似文献   

3.
Mitochondrial dysfunction and oxidative damage may play a role in the pathogenesis of Huntington's disease (HD). We examined concentrations of 8-hydroxy-2-deoxyguanosine (OH(8)dG), a well-established marker of oxidative damage to DNA, in a transgenic mouse model of HD (R6/2). Increased concentrations of OH(8)dG were found in the urine, plasma and striatal microdialysates of the HD mice. Increased concentrations were also observed in isolated brain DNA at 12 and 14 weeks of age. Immunocytochemistry showed increased OH(8)dG staining in late stages of the illness. These results suggest that oxidative damage may play a role in the pathogenesis of neuronal degeneration in the R6/2 transgenic mouse model of HD.  相似文献   

4.
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder characterized by motor, emotional and cognitive dysfunction. There is no treatment or cure for this disease, and after the onset of symptoms, usually in the fourth decade of life, there is an inexorable decline to death. In many patients there is a complex deterioration of function before the onset of neuronal loss and, at least in mouse models, abnormalities in neurotransmission represent early events in the development of the disease. Here we describe the specific and progressive loss of complexin II from the brains of mice carrying the HD mutation (R6/2 line), and the later appearance of this protein in a subpopulation of neuronal intranuclear inclusions. Although the precise role of complexin II is still unclear, it is known to bind to the SNARE complex, and is therefore likely to be involved in the control of exocytosis. Our results suggest that changes in neurotransmitter release might contribute to the neuronal dysfunction seen in these mice.  相似文献   

5.
6.
Dysfunction of dopaminergic neurons may contribute to motor impairment in Huntington's disease. Here, we study the role of brain-derived neurotrophic factor (BDNF) in alterations of the nigrostriatal system associated with transgenics carrying mutant huntingtin. Using huntingtin-BDNF+/- double-mutant mice, we analyzed the effects of reducing the levels of BDNF expression in a model of Huntington's disease (R6/1). When compared with R6/1 mice, these mice exhibit an increased number of aggregates in the substantia nigra pars compacta. In addition, reduction of BDNF expression exacerbates the dopaminergic neuronal dysfunction seen in mutant huntingtin mice, such as the decrease in retrograde labelling of dopaminergic neurons and striatal dopamine content. However, mutant huntingtin mice with normal or lowered BDNF expression show the same decrease in the anterograde transport, number of dopaminergic neurons and nigral volume. In addition, reduced BDNF expression causes decreased dopamine receptor expression in mutant huntingtin mice. Examination of changes in locomotor activity induced by dopamine receptor agonists revealed that, in comparison with R6/1 mice, the double mutant mice exhibit lower activity in response to amphetamine, but not to apomorphine. In conclusion, these findings demonstrate that the decreased BDNF expression observed in Huntington's disease exacerbates dopaminergic neuronal dysfunction, which may participate in the motor disturbances associated with this neurodegenerative disorder.  相似文献   

7.
8.
9.
Spinocerebellar ataxia type 17 (SCA17) is an autosomal dominant inherited disorder characterized by degeneration of spinocerebellar tracts and selected brainstem neurons owing to the expansion of a CAG repeat of the human TATA-binding protein (hTBP) gene. To gain insight into the pathogenesis of this hTBP mutation, we generated transgenic mice with the mutant hTBP gene driven by the Purkinje specific protein (Pcp2/L7) gene promoter. Mice with the expanded hTBP allele developed ataxia within 2-5 months. Behavioral analysis of L7-hTBP transgenic mice showed reduced fall latency in a rotarod assay. Purkinje cell degeneration was identified by immunostaining of calbindin and IP3R1. Reactive gliosis and neuroinflammation occurred in the transgenic cerebellum, accompanied by up-regulation of GFAP and Iba1. The L7-hTBP transgenic mice were thus confirmed to recapitulate the SCA17 phenotype and were used as a disease model to explore the potential of granulocyte-colony stimulating factor in SCA17 treatment. Our results suggest that granulocyte-colony stimulating factor has a neuroprotective effect in these transgenic mice, ameliorating their neurological and behavioral deficits. These data indicate that the expression of the mutant hTBP in Purkinje cells is sufficient to produce cell degeneration and an ataxia phenotype, and constitutes a good model for better analysis of the neurodegeneration in SCA17.  相似文献   

10.
In both Huntington's disease (HD) patients and genetic mouse models of HD, there is a pre-symptomatic loss of dopamine (DA) receptors, suggesting that dysfunctional dopaminergic neurotransmission may be involved in early HD presentation. However, the role of DA in HD symptoms is not fully understood. In this study, we examined the possibility that dysfunctional dopaminergic neurotransmission contributes to the progressive decline in motor function of a transgenic mouse model of HD (R6/2 line). We found that R6/2 mice display an age-dependent abnormal behavioural response to (+)-methamphetamine (METH) and a dose-dependent increase in sensitivity to METH toxicity compared with wild-type (WT) mice. R6/2 mice also showed an attenuated response to cocaine, indicating that DA release may be compromised. Striatal DA levels were reduced in R6/2 mice by 9 weeks of age. Replacement of DA by chronic treatment with laevodopa (L-DOPA, administered as Sinemet) caused short-term improvements in activity and rearing behaviour, and abolished abnormal spontaneous hindlimb grooming. However, long-term treatment with L-DOPA had deleterious effects on survival and rotarod performance of R6/2 mice. These results suggest that dysfunctional DA neurotransmission contributes to phenotype development in R6/2 mice and thus also may be important in symptom progression in HD.  相似文献   

11.
Huntington's disease (HD) is an inherited progressive neurodegenerative disease caused by the expansion of a polyglutamine repeat sequence within a novel protein. Recent work has shown that abnormal intranuclear inclusions of aggregated mutant protein within neurons is a characteristic feature shared by HD and several other diseases involving glutamine repeat expansion. This suggests that in each of the these disorders the affected nerve cells degenerate as a result of these abnormal inclusions. A transgenic mouse model of HD has been generated by introducing exon 1 of the HD gene containing a highly expanded CAG sequence into the mouse germline. These mice develop widespread neuronal intranuclear inclusions and neurodegeneration specifically within those areas of the brain known to degenerate in HD. We have investigated the sequence of pathological changes that occur after the formation of nuclear inclusions and that precede neuronal cell death in these cells. Although the relation between inclusion formation and neurodegeneration has recently been questioned, a full characterization of the pathways linking protein aggregation and cell death will resolve some of these controversies and will additionally provide new targets for potential therapies.  相似文献   

12.
13.
Bone marrow mesenchymal stem cells (MSC) have been tested and proven effective in some neurodegenerative diseases, but their tracking after transplantation may be challenging. Our group has previously demonstrated the feasibility and biosafety of rat MSC labeling with iron oxide superparamagnetic nanoparticles (SPION). In this study, we investigated the therapeutic potential of SPION-labeled MSC in a rat model of Huntington's disease, a genetic degenerative disease with characteristic deletion of striatal GABAergic neurons. MSC labeled with SPION were injected into the striatum 1h after quinolinic acid injection. FJ-C analysis demonstrated that MSC transplantation significantly decreased the number of degenerating neurons in the damaged striatum 7 days after lesion. In this period, MSC transplantation enhanced the striatal expression of FGF-2 but did not affect subventricular zone proliferation, as demonstrated by Ki67 proliferation assay. In addition, MSC transplantation significantly reduced the ventriculomegaly in the lesioned brain. MRI and histological techniques detected the presence of the SPION-labeled cells at the lesion site. SPION-labeled MSC produced magnetic resonance imaging (MRI) signals that were visible for at least 60 days after transplantation. Our data highlight the potential of adult MSC to reduce brain damage under neurodegenerative diseases and indicate the use of nanoparticles in cell tracking, supporting their potential as valuable tools for cell therapy.  相似文献   

14.

Background

Ion channels play a crucial role in the development of ischemic brain injury. Recent studies have reported that the blockade of various types of ion channels improves outcomes in experimental stroke models. Amiodarone, one of the most effective drugs for life-threatening arrhythmia, works as a multiple channel blocker and its characteristics cover all four Vaughan-Williams classes. Although it is known that amiodarone indirectly contributes to preventing ischemic stroke by maintaining sinus rhythm in patients with atrial fibrillation, the direct neuroprotective effect of amiodarone has not been clarified. The purpose of this study was to investigate the direct effect of amiodarone on ischemic stroke in mice.

Methods

Focal cerebral ischemia was induced via distal permanent middle cerebral artery occlusion (MCAO) in adult male mice. The amiodarone pre-treatment group received 50 mg/kg of amiodarone 1 h before MCAO; the amiodarone post-treatment groups received 50 mg/kg of amiodarone immediately after MCAO; the control group received vehicle only. In addition, the sodium channel opener veratrine and selective beta-adrenergic agonist isoprotelenol were used to elucidate the targeted pathway. Heart rate and blood pressure were monitored perioperatively. Infarct volume analysis was conducted 48 h after MCAO. The body asymmetry test and the corner test were used for neurological evaluation.

Results

Amiodarone pre-treatment and post-treatment reduced the heart rate but did not affect the blood pressure. No mice showed arrhythmia. Compared with the control group, the amiodarone pre-treatment group had smaller infarct volumes (8.9?±?2.1% hemisphere [mean?±?SD] vs. 11.2?±?1.4%; P?<?0.05) and improved functional outcomes: lower asymmetric body swing rates (52?±?17% vs. 65?±?18%; P?<?0.05) and fewer left turns (7.1?±?1.2 vs. 8.3?±?1.2; P?<?0.05). In contrast, amiodarone post-treatment did not improve the outcomes after MCAO. The neuroprotective effect of amiodarone pre-treatment was abolished by co-administration of veratrine but not by isoproterenol.

Conclusions

Amiodarone pre-treatment attenuated ischemic brain injury and improved functional outcomes without affecting heart rhythm and blood pressure. The present results showed that amiodarone pre-treatment has neuroprotective effects, at least in part, via blocking the sodium channels.
  相似文献   

15.
Mitochondria are particularly vulnerable to oxidative stress, and mitochondrial swelling and vacuolization are among the earliest pathologic features found in two strains of transgenic amyotrophic lateral sclerosis (ALS) mice with SOD1 mutations. Mice with the G93A human SOD1 mutation have altered electron transport enzymes, and expression of the mutant enzyme in vitro results in a loss of mitochondrial membrane potential and elevated cytosolic calcium concentration. Mitochondrial dysfunction may lead to ATP depletion, which may contribute to cell death. If this is true, then buffering intracellular energy levels could exert neuroprotective effects. Creatine kinase and its substrates creatine and phosphocreatine constitute an intricate cellular energy buffering and transport system connecting sites of energy production (mitochondria) with sites of energy consumption, and creatine administration stabilizes the mitochondrial creatine kinase and inhibits opening of the mitochondrial transition pore. We found that oral administration of creatine produced a dose-dependent improvement in motor performance and extended survival in G93A transgenic mice, and it protected mice from loss of both motor neurons and substantia nigra neurons at 120 days of age. Creatine administration protected G93A transgenic mice from increases in biochemical indices of oxidative damage. Therefore, creatine administration may be a new therapeutic strategy for ALS.  相似文献   

16.
The metabolic consequences of Huntington's disease in the R6/2 mouse model were investigated using NMR spectroscopy and pattern recognition to characterize selected brain regions, muscle, blood, and urine. Global increases in relative brain concentrations of osmolytes, creatine, glutamine, and lactate, and decreases in acetate and N-acetylaspartate were found together with striatal-specific lower concentrations of GABA and choline. Clear differentiation of R6/2 and wild-type mice was also obtained for urine and blood metabolite profiles that may have applicability for monitoring HD in human populations.  相似文献   

17.
Huntington's disease (HD) is a fatal neurodegenerative disorder of genetic origin with no known therapeutic intervention that can slow or halt disease progression. Transgenic murine models of HD have significantly improved the ability to assess potential therapeutic strategies. The R6/2 murine model of HD, which recapitulates many aspects of human HD, has been used extensively in pre-clinical HD therapeutic treatment trials. Of several potential therapeutic candidates, both minocycline and coenzyme Q10 (CoQ10) have been demonstrated to provide significant improvement in the R6/2 mouse. Given the specific cellular targets of each compound, and the broad array of abnormalities thought to underlie HD, we sought to assess the effects of combined minocycline and CoQ10 treatment in the R6/2 mouse. Combined minocycline and CoQ10 therapy provided an enhanced beneficial effect, ameliorating behavioral and neuropathological alterations in the R6/2 mouse. Minocycline and CoQ10 treatment significantly extended survival and improved rotarod performance to a greater degree than either minocycline or CoQ10 alone. In addition, combined minocycline and CoQ10 treatment attenuated gross brain atrophy, striatal neuron atrophy, and huntingtin aggregation in the R6/2 mice relative to individual treatment. These data suggest that combined minocycline and CoQ10 treatment may offer therapeutic benefit to patients suffering from HD.  相似文献   

18.
Oxidative stress and antioxidants play an important role in neurodegenerative diseases. However, the exact participation of antioxidants in the evolution of prion diseases is still largely unknown. The aim of this study was to assess brain levels of coenzyme Q (CoQ), an endogenous lipophilic antioxidant, and the antioxidant/pro-oxidant status by determining oxidative damage to proteins and lipids after intracerebral bovine spongiform encephalopathy (BSE) infection of transgenic mice expressing bovine prion protein (PrP). Our results indicate that, whereas the ratio between the two CoQ homologues present in mice (CoQ(9) and CoQ(10)) is not altered by prion infection during the course of the disease, significant increases in total CoQ(9) and CoQ(10) were observed in BSE-infected mice 150 days after inoculation. This time point coincided with the first manifestation of PrP(Sc) deposition in nervous tissue. In addition, CoQ(9) and CoQ(10) levels, neuropathological alterations, and PrP(Sc) deposition in nervous tissues underwent further increases as the illness progressed. Lipid and protein oxidation were observed only at the final stage of the disease after clinical signs had appeared. These findings indicate upregulation of CoQ(9)- and CoQ(10)-dependent antioxidant systems in response to the increased oxidative stress induced by prion infection in nervous tissue. However, the induction of these endogenous antioxidant systems seems to be insufficient to prevent the development of the illness.  相似文献   

19.
Depression is the most common psychiatric disorder in Huntington's disease (HD) patients. In the general population, women are more prone to develop depression and such susceptibility might be related to serotonergic dysregulation. There is yet to be a study of sexual dimorphism in the development and presentation of depression in HD patients. We investigated whether 8-week-old male and female R6/1 transgenic HD mice display depressive-like endophenotypes associated with serotonergic impairments. We also studied the behavioral effects of acute treatment with sertraline. We found that only female HD mice exhibited a decreased preference for saccharin as well as impaired emotionality-related behaviors when assessed on the novelty-suppressed feeding test (NSFT) and the forced-swimming test (FST). The exaggerated immobility time displayed by female HD in the FST was reduced by acute administration of sertraline. We also report an increased response to the 5-HT(1A) receptor agonist 8-OH-DPAT in inducing hypothermia and a decreased 5-HT(2A) receptor function in HD animals. While tissue levels of serotonin were reduced in both male and female HD mice, we found that serotonin concentration and hydroxylase-2 (TPH2) mRNA levels were higher in the hippocampus of males compared to female animals. Finally, the antidepressant-like effects of sertraline in the FST were blunted in male HD animals. This study reveals sex-specific depressive-related behaviors during an early stage of HD prior to any cognitive and motor deficits. Our data suggest a crucial role for disrupted serotonin signaling in mediating the sexually dimorphic depression-like phenotype in HD mice.  相似文献   

20.
Previous work suggests N-methyl-D-aspartate receptor (NMDAR) activation may be involved in degeneration of medium-sized spiny striatal neurons in Huntington's disease (HD). Here we show that these neurons are more vulnerable to NMDAR-mediated death in a YAC transgenic FVB/N mouse model of HD expressing full-length mutant huntingtin, compared with wild-type FVB/N mice. Excitotoxic death of these neurons was increased after intrastriatal injection of quinolinate in vivo, and after NMDA but not AMPA exposure in culture. NMDA-induced cell death was abolished by an NR2B subtype-specific antagonist. In contrast, NMDAR-mediated death of cerebellar granule neurons was not enhanced, consistent with cell-type and NMDAR subtype specificity. Moreover, increased NMDA-evoked current amplitude and caspase-3 activity were observed in transgenic striatal neurons. Our data support a role for NR2B-subtype NMDAR activation as a trigger for selective neuronal degeneration in HD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号