首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Kottas A  Branco MD  Gelfand AE 《Biometrics》2002,58(3):593-600
In cytogenetic dosimetry, samples of cell cultures are exposed to a range of doses of a given agent. In each sample at each dose level, some measure of cell disability is recorded. The objective is to develop models that explain cell response to dose. Such models can be used to predict response at unobserved doses. More important, such models can provide inference for unknown exposure doses given the observed responses. Typically, cell disability is viewed as a Poisson count, but in the present work, a more appropriate response is a categorical classification. In the literature, modeling in this case is very limited. What exists is purely parametric. We propose a fully Bayesian nonparametric approach to this problem. We offer comparison with a parametric model through a simulation study and the analysis of a real dataset modeling blood cultures exposed to radiation where classification is with regard to number of micronuclei per cell.  相似文献   

2.
    
We present a Bayesian approach to analyze matched \"case-control\" data with multiple disease states. The probability of disease development is described by a multinomial logistic regression model. The exposure distribution depends on the disease state and could vary across strata. In such a model, the number of stratum effect parameters grows in direct proportion to the sample size leading to inconsistent MLEs for the parameters of interest even when one uses a retrospective conditional likelihood. We adopt a semiparametric Bayesian framework instead, assuming a Dirichlet process prior with a mixing normal distribution on the distribution of the stratum effects. We also account for possible missingness in the exposure variable in our model. The actual estimation is carried out through a Markov chain Monte Carlo numerical integration scheme. The proposed methodology is illustrated through simulation and an example of a matched study on low birth weight of newborns (Hosmer, D. A. and Lemeshow, S., 2000, Applied Logistic Regression) with two possible disease groups matched with a control group.  相似文献   

3.
    
Summary In National Toxicology Program (NTP) studies, investigators want to assess whether a test agent is carcinogenic overall and specific to certain tumor types, while estimating the dose‐response profiles. Because there are potentially correlations among the tumors, a joint inference is preferred to separate univariate analyses for each tumor type. In this regard, we propose a random effect logistic model with a matrix of coefficients representing log‐odds ratios for the adjacent dose groups for tumors at different sites. We propose appropriate nonparametric priors for these coefficients to characterize the correlations and to allow borrowing of information across different dose groups and tumor types. Global and local hypotheses can be easily evaluated by summarizing the output of a single Monte Carlo Markov chain (MCMC). Two multiple testing procedures are applied for testing local hypotheses based on the posterior probabilities of local alternatives. Simulation studies are conducted and an NTP tumor data set is analyzed illustrating the proposed approach.  相似文献   

4.
5.
Nonparametric Bayesian bioassay including ordered polytomous response   总被引:4,自引:0,他引:4  
GELFAND  ALAN E.; KUO  LYNN 《Biometrika》1991,78(3):657-666
  相似文献   

6.
7.
    
This article presents two‐component hierarchical Bayesian models which incorporate both overdispersion and excess zeros. The components may be resultants of some intervention (treatment) that changes the rare event generating process. The models are also expanded to take into account any heterogeneity that may exist in the data. Details of the model fitting, checking and selecting alternative models from a Bayesian perspective are also presented. The proposed methods are applied to count data on the assessment of an efficacy of pesticides in controlling the reproduction of whitefly. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
9.
10.
Bias reduction of maximum likelihood estimates   总被引:9,自引:0,他引:9  
FIRTH  DAVID 《Biometrika》1993,80(1):27-38
  相似文献   

11.
Models of amino acid substitution present challenges beyond those often faced with the analysis of DNA sequences. The alignments of amino acid sequences are often small, whereas the number of parameters to be estimated is potentially large when compared with the number of free parameters for nucleotide substitution models. Most approaches to the analysis of amino acid alignments have focused on the use of fixed amino acid models in which all of the potentially free parameters are fixed to values estimated from a large number of sequences. Often, these fixed amino acid models are specific to a gene or taxonomic group (e.g. the Mtmam model, which has parameters that are specific to mammalian mitochondrial gene sequences). Although the fixed amino acid models succeed in reducing the number of free parameters to be estimated--indeed, they reduce the number of free parameters from approximately 200 to 0--it is possible that none of the currently available fixed amino acid models is appropriate for a specific alignment. Here, we present four approaches to the analysis of amino acid sequences. First, we explore the use of a general time reversible model of amino acid substitution using a Dirichlet prior probability distribution on the 190 exchangeability parameters. Second, we then explore the behaviour of prior probability distributions that are'centred' on the rates specified by the fixed amino acid model. Third, we consider a mixture of fixed amino acid models. Finally, we consider constraints on the exchangeability parameters as partitions,similar to how nucleotide substitution models are specified, and place a Dirichlet process prior model on all the possible partitioning schemes.  相似文献   

12.
Noninformative priors for inferences in exponential regression models   总被引:1,自引:0,他引:1  
YE  KEYING; BERGER  JAMES O. 《Biometrika》1991,78(3):645-656
  相似文献   

13.
目的通过对浙江大学医学院附属第一医院呼吸科和监护室(ICU)院内获得性肺炎(HAP)患者资料进行回顾性分析,以寻找不同科室患者HAP发生的危险因素的异同,从而针对不同人群建立特异的预防HAP的决策。方法采取回顾性研究,收集2011年6月1日至2013年9月30日浙江大学附属第一医院呼吸科和ICU出院诊断为肺炎(年龄≥18岁)的病历资料,比较两科室患者基本资料、基础疾病等方面的差别,然后对HAP患者危险因素进行分析,对筛选出来的P〈0.05的因素再进行Logistic多因素回归分析。结果逐步Logistic回归(Backward:Wald)分析提示,呼吸科危险因素为血液及实体肿瘤病史而ICU危险因素为感染性休克与近期重大手术史。结论两科室存在不同的影响预后的危险因素,ICU院内获得性肺炎的发病率、死亡率明显高于呼吸科,这与患者基础疾病有密切关系。  相似文献   

14.
Logistic regression of family data from case-control studies   总被引:3,自引:0,他引:3  
WHITTEMORE  ALICE S. 《Biometrika》1995,82(1):57-67
  相似文献   

15.
  总被引:1,自引:0,他引:1  
Summary .  We consider Bayesian inference in semiparametric mixed models (SPMMs) for longitudinal data. SPMMs are a class of models that use a nonparametric function to model a time effect, a parametric function to model other covariate effects, and parametric or nonparametric random effects to account for the within-subject correlation. We model the nonparametric function using a Bayesian formulation of a cubic smoothing spline, and the random effect distribution using a normal distribution and alternatively a nonparametric Dirichlet process (DP) prior. When the random effect distribution is assumed to be normal, we propose a uniform shrinkage prior (USP) for the variance components and the smoothing parameter. When the random effect distribution is modeled nonparametrically, we use a DP prior with a normal base measure and propose a USP for the hyperparameters of the DP base measure. We argue that the commonly assumed DP prior implies a nonzero mean of the random effect distribution, even when a base measure with mean zero is specified. This implies weak identifiability for the fixed effects, and can therefore lead to biased estimators and poor inference for the regression coefficients and the spline estimator of the nonparametric function. We propose an adjustment using a postprocessing technique. We show that under mild conditions the posterior is proper under the proposed USP, a flat prior for the fixed effect parameters, and an improper prior for the residual variance. We illustrate the proposed approach using a longitudinal hormone dataset, and carry out extensive simulation studies to compare its finite sample performance with existing methods.  相似文献   

16.
In randomized studies with missing outcomes, non-identifiable assumptions are required to hold for valid data analysis. As a result, statisticians have been advocating the use of sensitivity analysis to evaluate the effect of varying assumptions on study conclusions. While this approach may be useful in assessing the sensitivity of treatment comparisons to missing data assumptions, it may be dissatisfying to some researchers/decision makers because a single summary is not provided. In this paper, we present a fully Bayesian methodology that allows the investigator to draw a 'single' conclusion by formally incorporating prior beliefs about non-identifiable, yet interpretable, selection bias parameters. Our Bayesian model provides robustness to prior specification of the distributional form of the continuous outcomes.  相似文献   

17.
A major drawback of epidemiological ecological studies, in which the association between area-level summaries of risk and exposure is used to make inference about individual risk, is the difficulty in characterizing within-area variability in exposure and confounder variables. To avoid ecological bias, samples of individual exposure/confounder data within each area are required. Unfortunately, these may be difficult or expensive to obtain, particularly if large samples are required. In this paper, we propose a new approach suitable for use with small samples. We combine a Bayesian nonparametric Dirichlet process prior with an estimating functions' approach and show that this model gives a compromise between 2 previously described methods. The method is investigated using simulated data, and a practical illustration is provided through an analysis of lung cancer mortality and residential radon exposure in counties of Minnesota. We conclude that we require good quality prior information about the exposure/confounder distributions and a large between- to within-area variability ratio for an ecological study to be feasible using only small samples of individual data.  相似文献   

18.
    
In the development of structural equation models (SEMs), observed variables are usually assumed to be normally distributed. However, this assumption is likely to be violated in many practical researches. As the non‐normality of observed variables in an SEM can be obtained from either non‐normal latent variables or non‐normal residuals or both, semiparametric modeling with unknown distribution of latent variables or unknown distribution of residuals is needed. In this article, we find that an SEM becomes nonidentifiable when both the latent variable distribution and the residual distribution are unknown. Hence, it is impossible to estimate reliably both the latent variable distribution and the residual distribution without parametric assumptions on one or the other. We also find that the residuals in the measurement equation are more sensitive to the normality assumption than the latent variables, and the negative impact on the estimation of parameters and distributions due to the non‐normality of residuals is more serious. Therefore, when there is no prior knowledge about parametric distributions for either the latent variables or the residuals, we recommend making parametric assumption on latent variables, and modeling residuals nonparametrically. We propose a semiparametric Bayesian approach using the truncated Dirichlet process with a stick breaking prior to tackle the non‐normality of residuals in the measurement equation. Simulation studies and a real data analysis demonstrate our findings, and reveal the empirical performance of the proposed methodology. A free WinBUGS code to perform the analysis is available in Supporting Information.  相似文献   

19.
The discovery of regulation relationship of protein interactions is crucial for the mechanism research in signaling network. Bioinformatics methods can be used to accelerate the discovery of regulation relationship between protein interactions, to distinguish the activation relations from inhibition relations. In this paper, we describe a novel method to predict the regulation relations of protein interactions in the signaling network. We detected 4,417 domain pairs that were significantly enriched in the activation or inhibition dataset. Three machine learning methods, logistic regression, support vector machines(SVMs), and naïve bayes, were explored in the classifier models. The prediction power of three different models was evaluated by 5-fold cross-validation and the independent test dataset. The area under the receiver operating characteristic curve for logistic regression, SVM, and naïve bayes models was 0.946, 0.905 and 0.809, respectively. Finally, the logistic regression classifier was applied to the human proteome-wide interaction dataset, and 2,591 interactions were predicted with their regulation relations, with 2,048 in activation and 543 in inhibition. This model based on domains can be used to identify the regulation relations between protein interactions and furthermore reconstruct signaling pathways.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号