首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent studies have identified a group of cytokines which appear to be cell-specific regulators of mobility in nonleukocytic mammalian cells. One example is scatter factor (SF), a soluble protein(s) produced by cultured fibroblasts and vascular smooth muscle cells which causes spreading and separation ("scattering") of tight, cohesive colonies of epithelial cells. Studies of SF action have been limited because the degree of scattering is difficult to quantitate and because scattering assays cannot be used to study potential target cells that do not form tight, cohesive colonies. We developed a simple, quantitative assay of SF-stimulated mobility based on migration of target cells off microcarrier beads onto plastic culture surfaces in 24-well plates. We showed that crude and partially purified SF derived from ras-transformed 3T3 cells stimulates migration of both epithelial and vascular endothelial cells but not of producer or nonproducer fibroblasts. Scatter and migration-stimulating activities copurified on cation exchange chromatography; and the degree of stimulation was closely correlated with scattering titer regardless of SF purity. Migration of endothelial cells from beads, while extremely sensitive to SF, was not affected by serum concentration (1 to 10%), various purified growth factors, or fibronectin. Both scattering and migration from beads were blocked by cycloheximide (0.1 microgram/ml) during assay incubation, suggesting that these processes require protein synthesis. The microcarrier bead assay may be a useful quantitative tool to study the biochemical mechanisms of SF-stimulated cell migration.  相似文献   

2.
The H19 gene is an imprinted gene expressed from the maternal allele. It is known to function as an RNA molecule. We previously reported that in breast adenocarcinoma, H19 is often overexpressed in stromal cells and preferentially located at the epithelium/stroma boundary, suggesting that epithelial/mesenchymal interactions can control H19 RNA expression. In some cases of breast adenocarcinoma with poor prognosis, H19 is overexpressed in epithelial cells. Therefore we examined whether mesenchymal factors can induce H19 expression in epithelial cells. Using quantitative RT-PCR and in situ hybridization, we found that when mammary epithelial cells were cultured in collagen gels, H19 expression was strongly up-regulated compared to when cells were cultured on plastic. Collagen gels allow three-dimensional growth of epithelial cells and morphogenetic responses to soluble factors. A conditioned medium from MRC-5 fibroblasts caused branching morphogenesis of HBL-100 cells and invasive growth of MDA-MB-231 cells, whereas MCF-7 cells were unresponsive. Induction of H19 expression correlated with morphological changes in HBL-100 and in MDA-MB-231 cells, whereas H19 expression was not induced in MCF-7 cells. Using a blocking antibody, HGF/SF was identified as the fibroblast-derived growth factor capable of inducing H19 expression and cell morphogenesis. We further demonstrated that H19 promoter activity was stimulated by various growth factors using transient transfection in MDCK epithelial cells. HGF/SF was more efficient than EGF or FGF-2 in transactivating the H19 promoter, whereas IGF-2, TGFbeta-1, and TNF-alpha were ineffective. This activation by HGF/SF was prevented by pharmacological inhibition of MAP kinase or of phospholipase C. We conclude that H19 is a target gene for HGF/SF, a known regulator of epithelial/mesenchymal interactions, and suggest that the up-regulation of H19 may be implicated in morphogenesis and/or migration of epithelial cells.  相似文献   

3.
Growth of normal human mammary cells in culture   总被引:27,自引:0,他引:27  
Summary Reduction mammoplasty tissue was used to obtain short-term cultures of human epithelial cell populations. Digestion of tissue with collagenase and hyaluronidase resulted in cell clusters (organoids) resembling ductal and alveolar structures; these could be separated by filtration from the stromal components. Epithelial outgrowth from these organoids was greatly enhanced by the addition of conditioned medium from other human epithelial and myoepithelial cell lines. Additionally, the mammary epithelial growth was stimulated by insulin, hydrocortisone, epidermal growth factor, and steroid hormones. With this enriched nutritional environment, active cell division could be maintained for 1 to 3 months and cells could be serially subcultured 1 to 4 times. This research was supported by Grant PDT-72 from the American Cancer Society and Grant CP-70510 from the National Institutes of Health.  相似文献   

4.
Basic fibroblast growth factor (bFGF) together with other pleiotropic factors plays an important role in many complex physiological processes such as embryonic development, angiogenesis, and wound repair. Among these factors, hepatocyte growth factor/scatter factor (HGF/SF) which is secreted by cells of mesodermal origin exerts its mito- and motogenic activities on cells of epithelial and endothelial origin. Knowledge of the regulatory mechanisms of HGF/SF may contribute to the understanding of its role in physio-pathological processes. We observed that the secretion of HGF/SF by MRC-5 cells and by other fibroblast-derived cell cultures in conditioned media was enhanced by exposure to bFGF. HGF/SF was measured by the scatter assay, a bioassay for cell motility, and was further characterized by Western blot analysis with anti-HGF/SF antibodies. Exposure of MRC-5 cultures to 10 ng/ml of bFGF resulted already 6 h posttreatment in a threefold higher amount of scatter factor secreted into the medium as compared to untreated cultures. HGF/SF secretion was sustained after bFGF treatment for the following 72 h when increased amounts of HGF/SF were detected both in conditioned media as well as associated to the extracellular matrix. The secretion of HGF/SF in cell supernatants increased dose dependently upon treatment with bFGF starting from basal levels of 6 U/ml and reaching 27 U/ml at 30 ng/ml bFGF, plateauing thereafter. Upregulation of HGF/SF by IL-1, already described by others, was confirmed in this study. Based on our findings an articulated interaction can be speculated for bFGF, HGF/SF, and IL-1, e.g., in tissue regeneration during inflammatory processes or in wound healing. © 1996 Wiley-Liss, Inc.  相似文献   

5.
Scatter factor (SF) was first identified as a fibroblast-derived protein which disperses (i.e., "scatters") cohesive colonies of epithelium. SF-like proteins were found in human smooth muscle cell conditioned medium, amniotic fluid, and placental tissue. SFs markedly stimulate migration of epithelial, carcinoma, and vascular endothelial cell types at picomolar concentrations. Hepatocyte growth factors (HGFs) were originally described as platelet- and serum-derived proteins which stimulate hepatocyte DNA synthesis. Partial amino acid sequence data for mouse and human SFs indicate significant homology with HGFs. We used biological, biochemical, and immunological assays to evaluate and compare the activities, properties, and mechanisms of action of mouse SF, human SF (fibroblast or placenta derived), and recombinant human HGF (hrHGF). We report the following findings: (a) mouse SF exhibits species-related differences in biological activities relative to the human factors; (b) human SF and hrHGF show significant overlap in biological activities (i.e., hrHGF stimulates motility of multiple normal and carcinoma cell types, whereas human SF stimulates DNA synthesis in several normal cell types); (c) the three factors contain common antigenic determinants; and (d) all three proteins stimulate rapid phosphorylation of tyrosine residues on the c-met protooncogene protein product (the putative receptor for HGF) and on another protein with Mr 110,000. A few biological and immunological differences between human SFs and hrHGF were observed. These may reflect minor variations in amino acid sequence or posttranslational modification related to the sources of the factors. Taken as a whole, our findings suggest that by structural, functional, immunological, and mechanistic criteria, human SF and human HGF are essentially identical.  相似文献   

6.
Protein factors which regulate cell motility   总被引:11,自引:0,他引:11  
Summary Cell motility (i.e., movement) is an essential component of normal development, inflammation, tissue repair, angiogenesis, and tumor invasion. Various molecules can affect the motility and positioning of mammalian cells, including peptide growth factors, (e.g., EGF, PDGF, TGF-beta), substrate-adhesion molecules (e.g., fibronectin, laminin), cell adhesion molecules (CAMs), and metalloproteinases. Recent studies have demonstrated a group of motility-stimulating proteins which do not appear to fit into any of the above categories. Examples include: 1)scatter factor (SF), a mesenchymal cell-derived protein which causes contiguous sheets of epithelium to separate into individual cells and stimulates the migration of epithelial as well as vascular endothelial cells; 2)autocrine motility factor (AMF), a tumor cell-derived protein which stimulates migration of the producer cells; and 3)migration-stimulating factor (MSF), a protein produced by fetal and cancer patient fibroblasts which stimulates penetration of three-dimensional collagen gels by non-producing adult fibroblasts. SF, AMF, and MSF are soluble and heat labile proteins with Mr of 77, 55, and 70 kd by SDS-PAGE, respectively, and may be members of a new class of cell-specific regulators of motility. Their physiologic functions have not been established, but available data suggest that they may be involved in fetal development and/or tissue repair.  相似文献   

7.
Metabolic effects of heparin on rat cervical epithelial cells   总被引:3,自引:0,他引:3  
The glycosaminoglycan heparin inhibits the growth of a number of different cell types in vitro including smooth muscle cells, mesangial cells, fibroblasts, and rat cervical epithelial cells (RCEC). Studies investigating the antiproliferative effects of heparin on smooth muscle cells have demonstrated the site of the cell cycle block and revealed several metabolic alterations that could be causally associated with growth inhibition. We have investigated these metabolic parameters in RCEC to determine whether they are also associated with the antiproliferative effects of heparin in epithelial cells. Heparin acts rapidly to inhibit RCEC growth with inhibition detectable by autoradiography 7 h after the addition of heparin. Heparin treated RCEC begin to enter S-phase 12 h after the removal of heparin. These findings suggest that heparin blocks RCEC in the early-to-mid G1 phase of the cell cycle rather than late in G1 or early in S-phase as has previously been demonstrated for smooth muscle cells. Unlike smooth muscle cells, the uptake of thymidine and uridine is not inhibited by heparin in RCEC. Treatment of medium with heparin-Sepharose does not reduce the subsequent growth of RCEC; heparin inhibits the growth of RCEC in heparin-Sepharose treated medium in a manner identical to that in nontreated medium. Therefore the growth inhibitory effects of heparin cannot be explained by the inactivation of mitogens present in serum. In contrast to its effects on smooth muscle cells, heparin treatment of RCEC does not result in a reduction in the binding of epidermal growth factor (EGF) to the cells. These results indicate that although heparin inhibits the growth of a variety of cell types, significant differences exist in the responses of the different cells to heparin.  相似文献   

8.
Summary Endothelial and smooth muscle cells were isolated from human adult large blood vessels to compare their proliferative response to hormones and growth factors. Neural extracts and the medium from differentiated hepatoma cells were used as concentrated sources of required hormones and growth factors that supported both cell types. Active hormones and growth factors were identified from the neural extracts and hepatoma medium by substitution or direct isolation and biochemical characterization. Epidermal growth factor, lipoproteins, and heparin-binding growth factors elicited growth-stimulatory effects on both endothelial and smooth muscle cells. Both types of human vascular cells displayed 7600 to 8600 specific heparin-binding growth factor receptors per cell with a similar apparent dissociation constant (Kd) of 200 to 250 pM. Heparin modified the response of both endothelial and smooth muscle cells to heparin-binding growth factors dependent on the type of heparin-binding growth factor and amount of heparinlike material present. In addition, heparin exerted a growth factor-independent inhibition of smooth muscle cell proliferation. Platelet-derived growth factor, insulinlike growth factors, and glucocorticoid specifically supported proliferation of smooth muscle cells with no apparent effect on endothelial cell proliferation. Growth-factorlike proteinase inhibitors had an impact specifically on endothelial cell proliferation. Transforming growth factor beta was a specific inhibitor of endothelial cells, but had a positive effect on smooth muscle cell proliferation. The results provide a framework for differential control of the two vascular cell types at normal and atherosclerotic blood vessel sites by the balance among positive and negative effectors of endocrine, paracrine and autocrine origin. This research was supported by NIH grants CA37589, HL33847, and AM35310 from the National Institutes of Health, Bethesda, MD; grant 1718 from the Council for Tobacco Research; and a grant from RJR/Nabisco, Inc.  相似文献   

9.
10.
Heparin-binding properties of human serum spreading factor   总被引:5,自引:0,他引:5  
Human serum spreading factor (SF) is a blood glycoprotein that promotes attachment and spreading and influences growth, migration, and differentiation of a variety of animal cells in culture. SF purified from human plasma or serum by chromatographic methods reported previously (Barnes, D. W., and Silnutzer, J. (1983) J. Biol. Chem. 258, 12548-12552) does not bind to heparin-Sepharose under conditions of physiological ionic strength and pH. In a further examination of the heparin-binding properties of human serum SF, we found that exposure of purified SF to 8 M urea altered several properties of the protein, including heparin affinity, and these alterations remained after removal of the urea from SF solutions. Urea-treated SF bound to heparin under physiological conditions, and salt concentrations of 0.4 M or higher were required for elution of urea-treated SF from heparin-Sepharose at pH 7.0. The alteration of heparin-binding properties of SF also was observed upon exposure of the protein to heat or acid. Treatment of SF with urea, heat, or acid resulted additionally in greatly decreased cell spreading-promoting activity of the molecule. The decreased biological activity was associated with a reduced ability of the treated SF to bind to the cell culture substratum, a prerequisite for the attachment-promoting activity of the molecule. Experiments examining the heparin-binding properties of native SF in unfractionated human plasma indicated that the major portion of SF in blood did not bind to heparin under conditions of physiological ionic strength and pH.  相似文献   

11.
Summary The characteristics of normal mammary epithelial and 7,12-dimethylbenz[a]anthracene (DMBA)-induced adenocarcinoma cells derived from rats and grown in monolayer culture were compared. Normal mammary epithelial cells exhibited different morphology and agglutinability by plant lectins, slower growth rate, and lower saturation density and cloning efficiency. In addition, the normal cells were sensitive to the toxic effect of DMBA, and were unable to grow in soft agar or to form tumors, when inoculated into newborn Sparague-Dawley rats. The converse was true in each case for the adenocarcinoma cells. Supported by Public Health Service Research Grant CA 01237603 from the National Cancer Institute Portions of this paper were presented at the 65th Annual Meeting of the American Association for Cancer Research at Houston, Texas, 1974.  相似文献   

12.
Scatter factor (SF) (also known as hepatocyte growth factor [HGF]) is a fibroblast-derived cytokine that stimulates motility, proliferation, and morphogenesis of epithelia. SF may play major roles in development, repair, and carcinogenesis. However, the physiologic signals that regulate its production are not well delineated. We found that various human tumor cell lines that do not produce SF secrete factors that stimulate SF production by fibroblasts, suggesting a paracrine mechanism for regulation of SF production. Conditioned medium from these cell lines contained two distinct scatter factor-inducing factor SF-IF activities: a high molecular weight (> 30 kD), heat sensitive activity and a low molecular weight (< 30 kD) heat stable activity. Further studies revealed that SF-producing fibroblasts also secrete factors that stimulate their own SF production. We characterized the < 30-kD SF-IF activity from ras-3T3 (clone D4), a mouse cell line that overproduces both SF and SF-IF. The < 30-kD filtrate from ras-3T3 conditioned medium induced four- to sixfold increases in expression of SF biologic activity, immunoreactive protein, and mRNA by multiple SF- producing fibroblast lines. Ras-3T3 SF-IF activity was stable to boiling, extremes of pH, and reductive alkylation, but was destroyed by proteases. We purified ras-3T3 SF-IF about 10,000-fold from serum-free conditioned medium by a combination of ultrafiltration, cation exchange chromatography, and reverse phase chromatography. The purified protein exhibited electrophoretic mobility of about 12 kD (reduced) and 14 kD (nonreduced) by SDS-PAGE. The identity of the protein was verified by elution of biologic activity from gel slices. Purified SF-IF stimulated SF production in a physiologic concentration range (about 20-400 pM). Its properties and activities were distinct from those of IL-1 and TNF, two known inducers of SF production. We suggest that SF-IF is a physiologic regulator of SF production.  相似文献   

13.
This study reports on the effects of heparin, basic and acidic fibroblast growth factors (bFGF and aFGF, respectively), and transforming growth factor type-e (TGFe) on the growth of a human adrenocortical carcinoma cell line, SW-13. Heparin has previously been shown to inhibit growth in several cell types, including smooth muscle cells, certain fibroblasts, and epithelial cells, and to modulate the effects of fibroblast growth factors. Whereas bFGF and aFGF bind tightly to heparin and elute from a heparin-Sepharose column with 2 M NaCl and 1.6 M NaCl, respectively, TGFe binds to heparin with lower affinity and can be eluted from heparin-Sepharose column with 0.5 M NaCl. TGFe is a polypeptide unrelated to FGF, is present in neoplastic and nonneoplastic tissues, and stimulates the growth of certain epithelial cells and fibroblasts in soft agar and monolayer. Since the growth of SW-13 cells is stimulated by TGFe and by bFGF, we hypothesized that heparin would inhibit the growth of SW-13 cells by binding to these growth factors and that the effects of heparin could be overcome with the addition of either growth factor. Our experiments confirmed that heparin inhibits the growth of SW-13 cells. A dose-dependent growth inhibition was observed in both monolayer and soft agar. The inhibition in monolayer was partially reversed upon heparin withdrawal. The effects of heparin in both monolayer and soft agar were at least partially overcome by TGFe and by basic or acidic FGF. Overall protein synthesis does not appear to be affected by heparin as measured by [35S]methionine uptake. In contrast, epidermal growth factor (EGF) and insulin-like growth factor I (IGF-I) were unable to overcome heparin-induced inhibition both in monolayer and in soft agar. Heparin also inhibited [3H]thymidine incorporation in AKR-2B and partially inhibited AKR-2B cell stimulation by TGFe; however, it further potentiated the already potent stimulation by bFGF. We propose that heparin, TGFe, bFGF, and aFGF modulate the growth of SW-13 cells and possibly of other epithelial cells in complex ways and that heparin-like substances present in the extracellular matrix play an important role in the control of epithelial growth.  相似文献   

14.
Proliferation of smooth muscle cells from the pulmonary arteries and aortas of fetal calves is inhibited by heparin in vitro. This effect is reversible and dose dependent. Comparisons with effects of other polysaccharides indicate that only extensively sulfated polysaccharides inhibit proliferation of smooth muscle cells but that specific structural features of heparin are required to achieve maximum effect. Heparin-Sepharose chromatography of medium containing fetal calf serum reduces the ability of that medium to promote growth of smooth muscle cells from fetal pulmonary arteries, suggesting that heparin may remove soluble growth factors in serum. However, inhibition of fetal pulmonary artery smooth muscle cell proliferation by heparin is identical in media supplemented either with serum prepared from fetal calf plasma, in which platelet-derived growth factor (PDGF) is not detectable, or with fetal calf serum, which contains relatively abundant PDGF (114 pg/ml). Thus, inhibition of fetal pulmonary artery smooth muscle cell proliferation by heparin is not mediated solely by decreased availability or activity of exogenous PDGF. These studies suggest that morphogenesis of the smooth muscle investment of the pulmonary arteries could be regulated by local production of heparin-like inhibitors of smooth muscle cell growth.  相似文献   

15.
Fibroblasts and smooth muscle cells release a protein activity which causes epithelial sheets to "scatter" into isolated cells. Purification of scatter factor (SF) activity from ras-transformed 3T3 cells was reported recently. We purified ras-3T3 SF by a slightly different method with essentially similar findings. Purified factor showed a single band at 77 +/- 3 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis under nonreducing conditions. Scatter activity was eluted from gel slices at this molecular size. Reduction with mercaptoethanol caused the loss of activity and the appearance of two bands (58 and 31 kDa). We report the amino acid composition of ras-3T3 SF and sequences of several tryptic peptides. These sequences were not similar to the known proteins in the Protein Database. We have shown previously that partially purified ras-3T3 scatter activity stimulates migration of epithelial and vascular endothelial cells in a new migration assay utilizing microcarrier beads. We now demonstrate that the same purified ras-3T3 protein scatters epithelial cells and stimulates epithelial and endothelial migration in microcarrier bead and Boyden chamber assays. Partially purified human smooth muscle scatter activity shares these activities, but the protein(s) responsible has not been isolated. Migration-stimulating activity was maximal at ras-3T3 protein concentrations less than 10 ng/ml (0.13 nM). ras-3T3 SF had no collagenolytic activity and did not stimulate DNA synthesis in fibroblast growth factor-responsive human melanocytes. ras-3T3 SF appears to be a new protein which regulates endothelial and epithelial mobility; and, therefore, it may be involved in vascular repair and wound healing.  相似文献   

16.
Scatter factor/hepatocyte growth factor (SF/HGF) stimulates the motility of epithelial cells, initially inducing centrifugal spreading of cell colonies followed by disruption of cell-cell junctions and subsequent cell scattering. These responses are accompanied by changes in the actin cytoskeleton, including increased membrane ruffling and lamellipodium extension, disappearance of peripheral actin bundles at the edges of colonies, and an overall decrease in stress fibers. The roles of the small GTP-binding proteins Ras, Rac, and Rho in regulating responses to SF/HGF were investigated by microinjection. Inhibition of endogenous Ras proteins prevented SF/HGF-induced actin reorganization, spreading, and scattering, whereas microinjection of activated H-Ras protein stimulated spreading and actin reorganization but not scattering. When a dominant inhibitor of Rac was injected, SF/HGF- and Ras-induced spreading and actin reorganization were prevented, although activated Rac alone did not stimulate either response. Microinjection of activated Rho inhibited spreading and scattering, while inhibition of Rho function led to the disappearance of stress fibers and peripheral bundles but did not prevent SF/HGF-induced motility. We conclude that Ras and Rac act downstream of the SF/HGF receptor p190Met to mediate cell spreading but that an additional signal is required to induce scattering.  相似文献   

17.
Hepatocyte growth factor/scatter factor (HGF/SF) induces cell scattering, migration, and branching tubule formation of MDCK cells. To examine the role of the Ras protein in the HGF/SF-induced responses, we constructed MDCK cell clones expressing either inducible dominant-negative Ras or constitutively activated Ras and analyzed their effects on responses of cells to HGF/SF. Induced expression of dominant-negative Ras prevented cell dissociation required for cell scattering, migration, and cystic formation as well as branching morphology required for branching tubule formation. Constitutively activated Ras induced cell dissociation, but not a scattered fibroblastic morphology even in the presence of HGF/SF. MDCK cells expressing constitutively activated Ras migrated at a level similar to that of wild-type MDCK cells stimulated by HGF/SF. MDCK cells expressing constitutively activated Ras showed disorganized growth in three-dimensional culture and did not form the branching tubule structures. These results indicate that activation of the Ras protein is essential for the cell scattering, migration, and branching tubule formation of MDCK cells induced by HGF/SF, and a properly regulated activation is required for some stages of the HGF/SF-induced responses of MDCK cells.  相似文献   

18.
Summary Addition of cholera toxin to human mammary epithelial cultures derived from reduction mammoplasties and primary carcinomas greatly stimulated cell growth and increased the number of times the cells could be successfully subcultured. Other agents known to increase intracellular cAMP levels were also growth stimulatory. The increased growth potential conferred by cholera toxin enhances the usefulness of this cell culture system. This work was supported by USPHS Grant CA-24844 from the National Cancer Institute and Grant CD-61B from the American Cancer Society.  相似文献   

19.
Summary Three related mouse mammary cell lines were cultured in collagen gels and assayed for growth factor responsiveness and interaction via soluble factors. The CL-S1 cell line is nontumorigenic and grows poorly in collagen gel culture. The +SA and −SA cell lines exhibit different degrees of malignant behavior in vivo and have different growth properties in vitro. In collagen gel culture, +SA growth was stimulated by serum but not by epidermal growth factor (EGF), whereas both serum and EGF were required for optimal growth of −SA cells of early passage number as well as CL-S1 cells. −SA cells of later passage repeatedly exhibited a change so as to no longer require serum while retaining EGF responsiveness. [125I]EGF binding analyses indicated that CL-S1 cells bound EGF with less affinity than did −SA cells whereas +SA cells bound almost to ligand. When cell lines were maintained in separate collagen gels but shared the same culture medium, growth of +SA or −SA cells was slightly enhanced in the presence of CL-S1 cells and −SA cell growth was enhanced by the presence of +SA cells. Using the normal rat kidney fibroblast line NRK (clone 49F) as an indicator, serum-containing conditioned media from each cell line and from each pair of cell lines cultured in collagen gels were tested for transforming growth factor (TGF) activity. Both the −SA and CL-S1 lines tested positive for TGF-α production and possibly released a TGF-β activity. These results suggest mechanisms by which cell populations in and around tumors can modify one another’s growth characteristics. The work was supported by a grant from the American Institute for Cancer Research, by American Cancer Society Institutional grant IN-119, by funds from the Poncin Trust (Seattle-First National Bank), and by grants CA-39611 and CA46885 from the National Institutes of Health, Bethesda, MD.  相似文献   

20.
A polypeptide growth factor has been partially purified from medium conditioned by the human adrenocortical carcinoma cell line SW13. This factor, designated h-TGFe, stimulates anchorage-independent growth of the SW13 cells. Similar activity was observed in human milk, and in conditioned media from seven of 14 epithelial cell lines. The SW13-derived activity is stable to low pH and 8M urea but labile to dithiothreitol and 2% sodium dodecyl sulfate. Human TGFe does not bind to heparin and fails to stimulate growth of endothelial cells in monolayer culture. The apparent molecular weight of h-TGFe is 59k by size exclusion chromatography in the presence of 8M urea and the activity binds strongly to cation exchangers. The activity elutes at 15-30% acetonitrile from a C18 reverse-phase column and has been partially purified by using a four-step chromatographic procedure. TGFe appears to be a novel growth factor produced by many epithelial cells and tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号