首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ubiquitin carboxyl-terminal hydrolase (formerly known as ubiquitin carboxyl-terminal esterase), from rabbit reticulocytes, has been shown to hydrolyze thiol esters formed between the ubiquitin carboxyl terminus and small thiols (e.g. glutathione), as well as free ubiquitin adenylate (Rose, I. A., and Warms, J. V. B. (1983) Biochemistry 22, 4234-4237). We now show that this enzyme hydrolyzes amide derivatives of the ubiquitin carboxyl terminus, including those of lysine (epsilon-amino), glycine methyl ester, and spermidine. It also hydrolyzes ubiquitin COOH-terminal hydroxamic acid, but is inactivated under the conditions for assaying ubiquitin-hydroxylamine adduct hydrolysis. Amide adducts formed between ubiquitin and epsilon-amino groups of protein lysine residues are much poorer substrates than is the ubiquitin amide of the epsilon-amino group of free lysine. The enzyme is thus a general hydrolase that recognizes the ubiquitin moiety, but is highly selective for small ubiquitin derivatives. It probably functions to regenerate ubiquitin from adventitiously formed ubiquitin amides and thiol esters. It also has the correct specificity to function in regenerating ubiquitin from small ubiquitin peptides that are probable end products of ubiquitin-dependent proteolysis. A simple, large-scale preparation of the enzyme from human erythrocytes is described.  相似文献   

2.
A nonhydrolyzable analogue of ubiquitin adenylate has been synthesized for use as a specific inhibitor of the ubiquitination of proteins. Ubiquitin adenylate is a tightly bound intermediate formed by the ubiquitin activating enzyme. The inhibitor adenosyl-phospho-ubiquitinol (APU) is the phosphodiester of adenosine and the C-terminal alcohol derived from ubiquitin. APU is isosteric with the normal reaction intermediate, the mixed anhydride of ubiquitin and AMP, but results from the replacement of the carbonyl oxygen of Gly76 with a methylene group. This stable analogue would be expected to bind to both ubiquitin and adenosine subsites and result in a tightly bound competitive inhibitor of ubiquitin activation. APU inhibits the ATP-PPi exchange reaction catalyzed by the purified ubiquitin activating enzyme in a manner competitive with ATP (Ki = 50 nM) and noncompetitive with ubiquitin (Ki = 35 nM). AMP has no effect on the inhibition, confirming that the inhibitor binds to the free form of the enzyme and not the thiol ester form. This inhibition constant is 10-fold lower than the dissociation constants for each substrate and 30-1000-fold lower than the respective Km values for ubiquitin and ATP. APU also effectively inhibits conjugation of ubiquitin to endogenous proteins catalyzed by reticulocyte fraction II with an apparent Ki of 0.75 microM. This weaker inhibition is consistent with the fact that activation of ubiquitin is not rate limiting in the conjugation reactions catalyzed by fraction II. APU is similarly effective as an inhibitor of the ubiquitin-dependent proteolysis of beta-lactoglobulin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Ubiquitin carboxy-terminal hydrolase L5 (UCHL5) is a proteasome-associated deubiquitinating enzyme, which, along with RPN11 and USP14, is known to carry out deubiquitination on proteasome. As a member of the ubiquitin carboxy-terminal hydrolase (UCH) family, UCHL5 is unusual because, unlike UCHL1 and UCHL3, it can process polyubiquitin chain. However, it does so only when it is bound to the proteasome; in its free form, it is capable of releasing only relatively small leaving groups from the C-terminus of ubiquitin. Such a behavior might suggest at least two catalytically distinct forms of the enzyme, an apo form incapable of chain processing activity, and a proteasome-induced activated form capable of cleaving polyubiquitin chain. Through the crystal structure analysis of two truncated constructs representing the catalytic domain (UCH domain) of this enzyme, we were able to visualize a state of this enzyme that we interpret as its inactive form, because the catalytic cysteine appears to be in an unproductive orientation. While this work was in progress, the structure of a different construct representing the UCH domain was reported; however, in that work the structure reported was that of an inactive mutant [catalytic Cys to Ala; Nishio K et al. (2009) Biochem Biophys Res Commun 390, 855-860], which precluded the observation that we are reporting here. Additionally, our structures reveal conformationally dynamic parts of the enzyme that may play a role in the structural transition to the more active form.  相似文献   

4.
Functional heterogeneity of ubiquitin carrier proteins   总被引:24,自引:0,他引:24  
In the formation of covalent ubiquitin-protein conjugates that occurs during ATP- and ubiquitin-dependent proteolysis in reticulocyte extracts, ubiquitin (Ub) is activated to a thiol ester of the activating enzyme E1 (via the Ub carboxyl terminus), transferred to low-molecular weight "carrier proteins" (E2s) to form E2-Ub thiol esters, and then transferred by a third enzyme (E3) to amino groups on target proteins (Hershko, A., Heller, H., Elias, S., and Ciechanover, A. (1983) J. Biol. Chem. 258, 8206-8214). We report here the fractionation of Ub carrier proteins by molecular weight, and their characterization with respect to several activities. The Ub thiol ester forms of at least four of the five E2s catalyze Ub transfer to a number of small amines, in a reaction that does not require E3; only primary amines on primary carbons can serve as Ub acceptors. E3-independent Ub transfer to the small, basic proteins histones H2A and H2B, and cytochrome c, is also observed. The Ub thiol ester forms of two of the E2s were found to catalyze Ub transfer to cytochrome c. Only a single E2 functions in E3-dependent conjugate formation (with the substrates creatine phosphokinase, reduced/carboxymethylated serum albumin, and oxidized RNase) and in E3-dependent protein breakdown (with the substrate serum albumin). This E2 has a subunit molecular weight of 14,000 and migrates as a dimer on Sephacryl 200.  相似文献   

5.
Ubiquitin adenylate: structure and role in ubiquitin activation   总被引:2,自引:0,他引:2  
A L Haas  J V Warms  I A Rose 《Biochemistry》1983,22(19):4388-4394
The acid precipitate of the ubiquitin activating enzyme after reaction with ATP and ubiquitin contains one enzyme equivalent of ubiquitin adenylate in which the carboxyl-terminal glycine of ubiquitin and AMP are in an acyl-phosphate linkage. The recovered ubiquitin adenylate has the catalytic properties proposed for it as a reaction intermediate. Thus, upon reaction with fresh enzyme in the absence of Mg2+ or ATP, the product complex, E-ubiquitin . AMP-ubiquitin, is formed. This complex is capable of generating ubiquitin-protein isopeptide derivatives when added to a reticulocyte fraction that catalyzes protein conjugation. This reproduces the effect previously shown to require ubiquitin, ATP, and Mg2+. In the presence of activating enzyme, ubiquitin adenylate is converted to ATP and free ubiquitin in a step requiring PPi and Mg2+. On the basis of studies of [32P]PPi/nucleoside triphosphate exchange, the activating enzyme could be used to generate 2'-deoxy-AMP-, 2'-deoxy-IMP-, and 2'-deoxy-GMP-ubiquitin but not pyrimidine nucleotide-ubiquitin derivatives. The enzyme shows a modest preference for the pro-S diastereomers of adenosine 5'-O-(1-thiotriphosphate) and adenosine 5'-O-(2-thiotriphosphate). Inorganic phosphate, arsenate, methyl phosphate, and tripolyphosphate, but not nucleoside triphosphates, can serve as alternate substrates in place of PPi in the reverse of ubiquitin adenylate formation. Therefore, the enzyme catalyzes the unusual reaction ATP + Pi in equilibrium ADP + PPi in the presence of ubiquitin.  相似文献   

6.
Reaction of rat muscle AMP deaminase with low molar excess of tetranitromethane results in a rapid loss of free thiol groups and a concomitant decrease in enzyme activity at high, but not at low, AMP concentration. This modification appears to be limited to the same non-essential thiol groups reactive towards specific reagents in non-denaturing conditions. On incubation with higher molar excess of tetranitromethane, a loss of enzyme activity is observed, which correlates with nitration of tyrosine residues. By amino acid analysis, approximately there tyrosine residues per subunit are estimated to be nitrated in the completely inactivated enzyme. The kinetic properties of the partially inactivated AMP deaminase reveal a negative co-operatively behaviour at approximately half saturation. This suggests that modification of tyrosine residues is also responsible for alteration of the binding properties of the hypothesized activating site of AMP deaminase.  相似文献   

7.
8.
In the multienzyme ubiquitin-dependent proteolytic pathway, conjugation of ubiquitin to target proteins serves as a signal for protein degradation. Rabbit reticulocytes possess a family of proteins, known as E2's, that form labile ubiquitin adducts by undergoing transthiolation with the ubiquitin thiol ester form of ubiquitin activating enzyme (E1). Only one E2 appears to function in ubiquitin-dependent protein degradation. The others have been postulated to function in regulatory ubiquitin conjugation. We have purified and characterized a previously undescribed E2 from rabbit reticulocytes. E2(230K) is an apparent monomer with a molecular mass of 230 kDa. The enzyme forms a labile ubiquitin adduct in the presence of E1, ubiquitin, and MgATP and catalyzes conjugation of ubiquitin to protein substrates. Exogenous protein substrates included yeast cytochrome c(Km = 125 mu M; kcat approximately 0.37 min-1) and histone H3 (Km less than 1.3 mu M; kcat approximately 0.18 min-1) as well as lysozyme, alpha-lactalbumin, and alpha-casein. E2(230K) did not efficiently reconstitute Ub-dependent degradation of substrates that it conjugated, either in the absence or in the presence of the ubiquitin-protein ligase that is involved in degradation. E2(230K) may thus be an enzyme that functions in regulatory Ub conjugation. Relative to other E2's, which are very iodoacetamide sensitive, E2(230K) was more slowly inactivated by iodoacetamide (k(obs) = 0.037 min-1 at 1.5 mM iodoacetamide; pH 7.0, 37 degrees C). E2(230K) was also unique among E2's in being subject to inactivation by inorganic arsenite (k(i)max = 0.12 min-1; K(0.5) = 3.3 mM; pH 7.0, 37 degrees C). Arsenite is considered to be a reagent specific for vicinal sulfhydryl sites in proteins, and inhibition is usually rapidly reversed upon addition of competitive dithiol compounds. Inactivation of E2(230K) by arsenite was not reversed within 10 min after addition of dithiothreitol at a concentration that blocked inactivation if it was premixed with arsenite; inactivation is therefore irreversible or very slowly reversible. We postulate that a conformation change of E2(230K) may be rate-limiting for interaction of enzyme thiol groups with arsenite.  相似文献   

9.
Purified rat pancreas protein kinase C (PKC) is activated by unsaturated free fatty acids (oleic and arachidonic). The ethyl esters of these fatty acids are ineffective as enzyme activators. However, when the ethyl esters are added in combination with a free fatty acid, there is significant enhancement of enzyme activation. Nearly optimal PKC activation was obtained when non-activating ethyl oleate or ethyl arachidonate was added to sub-optimally activating concentrations of oleic or arachidonic acids. In addition to the ethyl esters, 1-monooleylglycerol also had a potentiating effect on PKC activation by oleic acid. However, the degree of activation observed in the presence of a free fatty acid and an acyl ester of the fatty acid quantitatively never surpassed that produced by sn-1,2-dioleylglycerol. Our findings indicate that significant PKC activation can be achieved by presenting the enzyme with an environment which we believe approximates the structural characteristics of the endogenous activator, sn-1,2-diacylglycerol.  相似文献   

10.
The post‐translational modification of proteins with ubiquitin can take on many forms, including the decoration of substrates with polymeric ubiquitin chains. These chains are linked through one of the seven lysine residues in ubiquitin, with the potential to form a panoply of linkage combinations as the chain length increases. The ensuing structural diversity of modifications serves a variety of signaling functions. Still, some linkages are present at a much higher level than others in cellulo. Although ubiquitination is an enzyme‐catalyzed process, the large disparity of abundancies led us to the hypothesis that some linkages might be intrinsically faster to form than others, perhaps directing the course of enzyme evolution. Herein, we assess the kinetics of ubiquitin dimer formation in an enzyme‐free system by measuring the rate constants for thiol–disulfide interchange between appropriate ubiquitin variants. Remarkably, we find that the kinetically expedient linkages correlate with those that are most abundant in cellulo. As the abundant linkages also appear to function more broadly in cellulo, this correlation suggests that the more accessible chains were selected for global roles.  相似文献   

11.
Ubiquitin-activating enzyme, E1, directs the ATP-dependent formation of a thiol ester linkage between itself and ubiquitin. The energy in this bond is ultimately used to attach ubiquitin to various intracellular proteins. We previously reported the isolation of multiple E1s from wheat and the characterization of a cDNA encoding this protein (UBA1). We now report the derived amino acid sequence of two additional members of this gene family (UBA2 and UBA3). Whereas the amino acid sequence of UBA2 is nearly identical to UBA1, the sequence of UBA3 is significantly different. Nevertheless, the protein encoded by UBA3 catalyzes the ATP-dependent activation of ubiquitin in vitro. Comparison of derived amino acid sequences of genes encoding E1 from plant, yeast, and animal tissues revealed 5 conserved cysteine residues, with one potentially involved in thiol ester bond formation. To identify this essential residue, codons corresponding to each of the 5 cysteines in UBA1 were individually altered using site-directed mutagenesis. The mutagenized enzymes were expressed in Escherichia coli and assayed for their ability to activate ubiquitin. Only substitution of the cysteine at position 626 abolishes E1 activity, suggesting that this residue forms the thiol ester linkage with ubiquitin.  相似文献   

12.
In vivo, ubiquitin exists both free and conjugated through its carboxyl terminus to the alpha- and epsilon-amino groups of a wide variety of cellular proteins. Ubiquitin carboxyl-terminal hydrolytic activity is likely a necessary step in the regeneration of the ubiquitin cofactor from ubiquitin-protein conjugates. In addition, this type of activity is required to generate the active, monomeric ubiquitin from the only known gene products: the polyprotein precursor and various ubiquitin fusion proteins. Thus, this activity is of vital importance to systems that utilize ubiquitin as a cofactor. A generic substrate, ubiquitin ethyl ester, was previously developed [Wilkinson, K. D., Cox, M. J., Mayer, A. N., & Frey, T. (1986) Biochemistry 25, 6644-6649] and utilized here to monitor the fractionation of these activities from calf thymus. By use of a rapid HPLC assay, four distinct, ubiquitin-specific esterases were identified and separated. A previously undescribed activity has been resolved and characterized, in addition to the bovine homologue of ubiquitin carboxyl-terminal hydrolase purified from rabbit reticulocytes. Two other activities resemble deconjugating activities previously detected in crude extracts but not previously purified. These activities appear to form a family of mechanistically related hydrolases. All four activities are inhibited by iodoacetamide, indicating the presence of an essential thiol group, and are inhibited to various extents by manganese. All have specific ubiquitin binding sites as judged by the low observed Km values (0.6-30 microM). The carboxyl-terminal aldehyde of ubiquitin is a potent inhibitor of these enzyme activities, with Ki values approximately 1000-fold lower than the respective Km values.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Core 2 beta1,6-N-acetylglucosaminyltransferase I (C2GnT-I) plays a pivotal role in the biosynthesis of mucin-type O-glycans that serve as ligands in cell adhesion. To elucidate the three-dimensional structure of the enzyme for use in computer-aided design of therapeutically relevant enzyme inhibitors, we investigated the participation of cysteine residues in disulfide linkages in a purified murine recombinant enzyme. The pattern of free and disulfide-bonded Cys residues was determined by liquid chromatography/electrospray ionization tandem mass spectrometry in the absence and presence of dithiothreitol. Of nine highly conserved Cys residues, under both conditions, one (Cys217) is a free thiol, and eight are engaged in disulfide bonds, with pairs formed between Cys59-Cys413, Cys100-Cys172, Cys151-Cys199, and Cys372-Cys381. The only non-conserved residue within the beta1,6-N-acetylglucosaminyltransferase family, Cys235, is also a free thiol in the presence of dithiothreitol; however, in the absence of reductant, Cys235 forms an intermolecular disulfide linkage. Biochemical studies performed with thiolreactive agents demonstrated that at least one free cysteine affects enzyme activity and is proximal to the UDP-GlcNAc binding site. A Cys217 --> Ser mutant enzyme was insensitive to thiol reactants and displayed kinetic properties virtually identical to those of the wild-type enzyme, thereby showing that Cys217, although not required for activity per se, represents the only thiol that causes enzyme inactivation when modified. Based on the pattern of free and disulfide-linked Cys residues, and a method of fold recognition/threading and homology modeling, we have computed a three-dimensional model for this enzyme that was refined using the T4 bacteriophage beta-glucosyltransferase fold.  相似文献   

14.
Thiols as myeloperoxidase-oxidase substrates.   总被引:2,自引:2,他引:0       下载免费PDF全文
Nine low-Mr thiols were compared with regard to their ability to function as myeloperoxidase-oxidase substrates under conditions where no auto-oxidation of the thiols could be observed. The methyl and ethyl esters of cysteine were found to be about twice as active as cysteamine at pH 7.0, in terms of increased O2 consumption. Cysteine itself was poorly active, whereas glutathione, N-acetylcysteine and penicillamine were completely inactive as myeloperoxidase-oxidase substrates under these conditions. The structure-activity relationships indicated that both a free thiol and free amino group were required for peroxidase-oxidase activity, and also that a free carboxy group abolished activity. In analogy with cysteamine, the activities of both cysteine esters were inhibited by superoxide dismutase (less than 5 micrograms/ml) and by catalase and not by the hydroxyl-radical scavenger mannitol. In contrast with cysteamine, the activities of both cysteine esters were stimulated more than 2-fold by high concentrations (greater than 5 micrograms/ml) of superoxide dismutase. The activities of both cysteine esters exhibited broad pH optima at pH 7. A mechanism for the myeloperoxidase-oxidase oxidation of the cysteine esters is proposed, which is partly different from that previously proposed for cysteamine.  相似文献   

15.
泛素激活酶(E1)、泛素耦联酶(E2)和泛素连接酶(E3)是蛋白质泛素化修饰的关键酶。在真核基因组上有大量基因编码这些泛素化相关的酶类或蛋白。检测这些泛素化修饰酶及其底物蛋白的生化特性和特异性是分析其生物学功能的重要内容。该文提供了一种简便快速检测体外泛素化反应的方法, 不仅可通过检测对DTT敏感的硫酯键的形成来判断E2的活性、检测E3的体外泛素化活性, 而且可以检测E2-E3和E3-底物的特异性。所用蛋白主要来源于拟南芥(Arabidopsis thaliana), 包括分属于绝大多数E2亚家族的成员, 可用于不同RING类型E3的活性检测。该方法不仅可以采用多种E2进行E3活性分析, 而且可以分析不同组合的E2-RING E3、RING E3-底物的泛素化活性等, 亦可应用于真核生物蛋白质尤其是植物蛋白的体外泛素化活性分析。  相似文献   

16.
泛素激活酶(E1)、泛素耦联酶(E2)和泛素连接酶(E3)是蛋白质泛素化修饰的关键酶。在真核基因组上有大量基因编码这些泛素化相关的酶类或蛋白。检测这些泛素化修饰酶及其底物蛋白的生化特性和特异性是分析其生物学功能的重要内容。该文提供了一种简便快速检测体外泛素化反应的方法, 不仅可通过检测对DTT敏感的硫酯键的形成来判断E2的活性、检测E3的体外泛素化活性, 而且可以检测E2-E3和E3-底物的特异性。所用蛋白主要来源于拟南芥(Arabidopsis thaliana), 包括分属于绝大多数E2亚家族的成员, 可用于不同RING类型E3的活性检测。该方法不仅可以采用多种E2进行E3活性分析, 而且可以分析不同组合的E2-RING E3、RING E3-底物的泛素化活性等, 亦可应用于真核生物蛋白质尤其是植物蛋白的体外泛素化活性分析。  相似文献   

17.
Ubiquitin is a small protein involved in an ATP-dependent proteolytic pathway in all eukaryotes. This pathway has been demonstrated to be required for both the bulk degradation of cellular proteins and the targeted proteolysis of specific regulatory proteins. We have investigated the presence of ubiquitin (Ub) and the ubiquitin-conjugating system in dormant and activated tubers of Helianthus tuberosus L. cv. OB 1 that represent a widely used model system for studies on the cell cycle in plants. Immunoblot experiments revealed the presence of free ubiquitin and ubiquitin conjugates. Furthermore, the presence of an active ubiquitin-conjugating system, both time- and ATP-dependent, was demonstrated by incubation with 125I-labeled ubiquitin. A few proteins able to form thiol esters with 125I-Ub and probably corresponding to ubiquitin-conjugating enzymes, E1 and E2s, were also found. During the first cell cycle, several proteins become ubiquitinated. In particular a large amount of protein conjugates was present at 6 h when the lowest content of free ubiquitin was found. Subsequently, a dramatic decrease in ubiquitin conjugates occurred. It is well known that cell cycle progression in eukaryotes depends on cyclin levels and cyclin B degradation is ubiquitin- and ATP-dependent. By immunoblot experiments we showed that cyclin B in H. tuberosus is present as at least two protein bands of 50 and 54 kDa and that their amounts undergo profound changes during the cell cycle. The 54-kDa band was also recognized by an anti-ubiquitin antibody. These data seem to indicate that in H. tuberosus activated tuber slices, the ATP-dependent ubiquitin proteolytic pathway is involved in the dedifferentiation process occurring after the artificial break of dormancy when the cells acquire the characteristics linked to the meristematic state.  相似文献   

18.
泛素C末端水解酶L1(ubiquitin carboxy-terminal hydrolases L1)属于泛素C末端水解酶家族成员,但是泛素C末端水解酶L1酶活性非常特异,不仅具有泛素C末端水解酶活性,而且具有泛素C末端聚合酶的活性.因此,泛素C末端水解酶L1,不仅在泛素化蛋白降解途径中起到关键的作用,也在其他的泛素信号途径,如在K63-多聚泛素信号途径中起重要的作用.由于泛素C末端水解酶L1特异的蛋白酶活性,也赋予了泛素C末端水解酶L1多种生物学功能,在神经发育发生、精子发生、卵子发生和受精等方面有着重要的作用.泛素C末端水解酶L1突变也与帕金森症等神经元退化疾病紧密相关.泛素C末端水解酶L1在甲状腺、肺等多种组织的超表达,也与该组织的癌症发生有着密切的联系.  相似文献   

19.
The covalent ligation of the 8.6-kDa polypeptide ubiquitin to various cellular target proteins is believed to represent a fundamental regulatory process. In this mechanism, the ATP-coupled activation and subsequent ligation of ubiquitin are catalyzed by separate enzymes (E1 and E3, respectively) functionally linked by ubiquitin carrier protein (E2). Carrier protein has been proposed to constitute a family of isozymes having molecular masses of 14, 17, 20, 24, and 32 kDa whose role is to shuttle activated polypeptide in the form of a high-energy thiol ester intermediate to the carboxyl terminus of ubiquitin. Using a combination of covalent affinity and high performance liquid chromatographic methods, the pututive E2 isozymes have been purified to apparent homogeneity. The E2(14kDa) isozyme resolved into two forms differing in net charge at pH 7.5. All of the E2 isozymes contained only one thiol ester site except for E2(17kDa) and E2(20kDa) which were capable of forming two such adducts per subunit. Thiol ester formation was rapid for the E2 isozymes and required the presence of activating enzyme. In contrast, the reverse reaction of thiol ester transfer from E2 to E1 was kinetically significant for only E2(14kDa), E2(20kDa), and E2(24kDa). The stability of E2(17kDa) and E2(32kDa) to such trapping may reflect a marked shift in binding affinity to E1 upon thiol ester formation. In addition, differential rates for thiol ester formation to each subunit of dimeric E2(14kDa) was also noted. The E2(14kDa) isoforms were approximately 10-fold more active in E3-dependent ubiquitin-protein ligation than either E2(20kDa) or E2(32kDa). Neither E2(17kDa) nor E2(24kDa) supported this reaction. In addition, the thiol ester formed to E2(14kDa) was inherently more reactive since its second order rate constant for the E3-independent transfer of ubiquitin to the small molecular weight nucleophile dithiothreitol was an order of magnitude greater than found for the other isozymes. If these proteins constitute a family of isozymes, they exhibit considerable catalytic diversity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号