共查询到20条相似文献,搜索用时 15 毫秒
1.
Hideaki Ogata Yasuhito Shomura Aruna Goenka Agrawal Amrit Pal Kaur Wolfgang Grtner Yoshiki Higuchi Wolfgang Lubitz 《Acta Crystallographica. Section F, Structural Biology Communications》2010,66(11):1470-1472
Dissimilatory sulfite reductase (Dsr) plays an important role in sulfate respiration in many sulfate‐reducing bacteria. Dsr from Desulfovibrio vulgaris Miyazaki F has been purified and crystallized at 277 K using the sitting‐drop vapour‐diffusion method with PEG 3350 and potassium thiocyanate as precipitants. A data set was collected to 3.7 Å resolution from a single crystal at 100 K using synchrotron radiation. The Dsr crystal belonged to space group P41212, with unit‐cell parameters a = b = 163.26, c = 435.32 Å. The crystal structure of Dsr was determined by the molecular‐replacement method based on the three‐dimensional structure of Dsr from D. vulgaris Hildenborough. The crystal contained three α2β2γ2 units per asymmetric unit, with a Matthews coefficient (VM) of 2.35 Å3 Da−1; the solvent content was estimated to be 47.7%. 相似文献
2.
In spite of the nonsulfidic conditions and abundant reactive iron(III) commonly found in mobile tropical deltaic muds, genes encoding dissimilatory sulfite reductase (dsr) were successfully amplified from the upper approximately 1 m of coastal deposits sampled along French Guiana and in the Gulf of Papua. The dsr sequences retrieved were highly diverse, were generally represented in both study regions and fell into six large phylogenetic groupings: Deltaproteobacteria, Thermodesulfovibrio groups, Firmicutes and three groups without known cultured representatives. The spatial and temporal distribution of dsr sequences strongly supports the contention that the sulfate-reducing prokaryote communities in mobile mud environments are cosmopolitan and stable over a period of years. The decrease in the (35)SO(4) (2-) tracer demonstrates that, despite abundant reactive sedimentary iron(III) ( approximately 350-400 mumol g(-1)), the sulfate-reducing prokaryotes present are active, with the highest levels of sulfide being generated in the upper zones of the cores (0-30 cm). Both the time course of the (35)S-sulfide tracer activity and the lack of reduced sulfur in sediments demonstrate virtually complete anaerobic loss of solid phase sulfides. We propose a pathway of organic matter oxidation involving at least 5-25% of the remineralized carbon, wherein sulfide produced by sulfate-reducing prokaryotes is cyclically oxidized biotically or abiotically by metal oxides. 相似文献
3.
The potential for upgrading the microbiological reduction of sulfates and for decreasing the organic pollution levels in industrial waste-water by the adjustment of the COD/SO4 ratio was investigated. The experiments involved waste-water samples coming from industrial pig farming, baker's yeast production and organic dye manufacture. The results show that in the presence of Desulfovibrio desulfuricans both the objectives can be achieved by abating the disproportion between the content of sulfates and that of organic substances. 相似文献
4.
Viorica F. Bondici George D. W. Swerhone James J. Dynes John R. Lawrence Gideon M. Wolfaardt Jeff Warner 《Geomicrobiology journal》2016,33(9):807-821
The long-term stability of immobilized elements of concern in uranium tailings deposited in the Deilmann Tailings Management Facility (DTMF), northern Saskatchewan, is dependent upon maintenance of highly oxic conditions within the tailings mass. The main objective of this study was to investigate the effect of stimulating microbial activity on the redox potential and state of ferrihydrite, which are considered to be the primary controlling condition and mineral phase, respectively, within the tailings. To determine the potential for biologically mediated decreases in redox potential and ferrihydrite reduction, a series of microcosm assays were performed. Non-sterile material from the tailings–water interface of the DTMF site was inoculated with indigenous flora previously isolated from the tailings material and enriched with a carbon source (50 ppm trypticase soy broth) and incubated under continuous-flow or intermittent-flow conditions, and compared with an uninoculated, no-carbon control that received continuous flow. Highly reducing conditions with redox potentials of less than ?300 mV were detected after 2 days of incubation within the carbon-enriched tailings of microcosms receiving continuous flow, and less than ?280 mV after 11 days of incubation within carbon-enriched tailings in microcosms receiving intermittent flow. The lowest recorded Eh value (?545 mV) was recorded after 14 days in a carbon-enriched microcosm receiving intermittent flow. In contrast, the redox conditions in the control microcosm never dropped below ?93 mV; thus, it was clear that microbial activity and available carbon drove the Eh conditions to become highly reducing. The occurrence of low redox conditions was concomitant with the bulk chemical detection of Fe (II) in the effluent of treated microcosms. Sites of microbial ferrihydrite reduction were also detected using scanning transmission X-ray microscopy where Fe (II) species were observed in close proximity with bacterial cells. Analysis of the microbial diversity present within the microcosms confirmed that microbes indigenous to the DTMF system have the potential to generate conditions suitable for the proliferation of sulfate and iron reducing bacteria, such as Desulfosporosinus, which was detected by high-throughput 16S rRNA gene sequencing. 相似文献
5.
Sergey N. Gavrilov Jonathan R. Lloyd Nadezhda A. Kostrikina Alexander I. Slobodkin 《Geomicrobiology journal》2013,30(9):804-819
Physiological strategies driving the reduction of poorly crystalline Fe(III) oxide by the thermophilic Gram-positive dissimilatory Fe(III)-reducing bacterium C. ferrireducens were evaluated. Direct cell-to-mineral contact appears to be the major physiological strategy for ferrihydrite reduction. This strategy is promoted by cell surface-associated c-type cytochromes, and the extracellular electron transfer to ferrihydrite is linked to energy generation via a membrane-bound electron transport chain. The involvement of pili-like appendages in ferrihydrite reduction has been detected for the first time in a thermophilic microorganism. A supplementary strategy for the utilization of a siderophore (DFO) in dissimilatory ferrihydrite reduction has also been characterized. 相似文献
6.
Scott Montross Mark Skidmore Brent Christner Denis Samyn Jean-Louis Tison Reginald Lorrain 《Geomicrobiology journal》2014,31(1):76-81
Two ~4 m vertical sequences of basal ice were collected from tunnels dug into the northern lateral margin of Taylor Glacier, McMurdo Dry Valleys, Antarctica. In both cases the basal sequences exhibit two contrasting ice facies groups; clean (debris-free) and banded dispersed (debris-rich). Debris-rich ices exhibit elevated CO2 and depleted O2 concentrations compared to the clean facies. Bacterial cell numbers, respiration rates, and nutrient concentrations are highest in debris-rich layers. Together, our geochemical and biological data indicate that microbial heterotrophic respiration is likely occurring in situ within the basal ice matrix at ambient temperatures near ?15°C. This implies that the basal ice zone of polar glaciers and larger ice sheets is a viable subglacial microbial habitat and active biome of significant volume that has not previously been considered. 相似文献
7.
8.
Subseafloor sulfate concentrations typically decrease with depth as this electron acceptor is consumed by respiring microorganisms. However, studies show that seawater can flow through hydraulically conductive basalt to deliver sulfate upwards into deeply buried overlying sediments. Our previous work on IODP Site C0012A (Nankai Trough, Japan) revealed that recirculation of sulfate through the subducting Philippine Sea Plate stimulated microbial activity near the sediment–basement interface (SBI). Here, we describe the microbial ecology, phylogeny, and energetic requirements of population of aero‐tolerant sulfate‐reducing bacteria in the deep subseafloor. We identified dissimilatory sulfite reductase gene (dsr) sequences 93% related to oxygen‐tolerant Desulfovibrionales species across all reaction zones while no SRB were detected in drilling fluid control samples. Pore fluid chemistry revealed low concentrations of methane (<0.25 mM), while hydrogen levels were consistent with active bacterial sulfate reduction (0.51–1.52 nM). Solid phase total organic carbon (TOC) was also considerably low in these subseafloor sediments. Our results reveal the phylogenetic diversity, potential function, and physiological tolerance of a community of sulfate‐reducing bacteria living at ~480 m below subducting seafloor. 相似文献
9.
Electron donors for biological sulfate reduction 总被引:8,自引:0,他引:8
Biological sulfate reduction is widely used for treating sulfate-containing wastewaters from industries such as mining, tannery, pulp and paper, and textiles. In biological reduction, sulfate is converted to hydrogen sulfide as the end product. The process is, therefore, ideally suited for treating metal-containing wastewater from which heavy metals are simultaneously removed through the formation of metal sulfides. Metal sulfide precipitates are more stable than metal hydroxides that are sensitive to pH change. Theoretically, conversion of 1 mol of sulfate requires 0.67 mol of chemical oxygen demand or electron donors. Sulfate rich wastewaters are usually deficient in electron donors and require external addition of electron donors in order to achieve complete sulfate reduction. This paper reviews various electron donors employed in biological sulfate reduction. Widely used electron donors include hydrogen, methanol, ethanol, acetate, lactate, propionate, butyrate, sugar, and molasses. The selection criteria for suitable electron donors are discussed. 相似文献
10.
S. J. Tomanicek A. Johs M. S. Sawhney L. Shi L. Liang 《Acta Crystallographica. Section F, Structural Biology Communications》2012,68(1):53-55
The outer membrane cytochrome OmcA functions as a terminal metal reductase in the dissimilatory metal‐reducing bacterium Shewanella oneidensis MR‐1. The ten‐heme centers shuttle electrons from the transmembrane donor complex to extracellular electron acceptors. Here, the crystallization and preliminary crystallographic analysis of OmcA are reported. Crystals of OmcA were grown by the sitting‐drop vapor‐diffusion method using PEG 20 000 as a precipitant. The OmcA crystals belonged to space group P21, with unit‐cell parameters a = 93.0, b = 246.0, c = 136.6 Å, α = 90, β = 97.8, γ = 90°. X‐ray diffraction data were collected to a maximum resolution of 3.25 Å. 相似文献
11.
环境中的一些微生物通过还原金属氧化物进行无氧呼吸,而石墨电极与金属氧化物相似,也可以作为这类微生物呼吸作用的最终电子受体,利用这类微生物构建微生物燃料电池,以糖类物质为燃料,对电池产电情况、产电原理进行研究。实验结果表明,以Rhodoferaxferrireducens为产电微生物,在外接电阻510Ω条件下,以葡萄糖为燃料,常温下产生的电流密度达158mAm2(平台电压为0.46V,电极有效接触表面积为57cm2),且循环性能良好。更换燃料为其它糖,发现微生物可以利用多种糖进行产电;通过SEM观察发现大量微生物吸附在石墨电极上,用Bradford法对运行20d后电池的细胞量进行定量,测得悬浮细胞蛋白浓度为140mgL,吸附在电极上的生物量为1180mgm2。通过数据采集分析和细菌还原实验,发现吸附在电极上的微生物对电压的产生贡献最大,具有电化学和生物学活性;悬浮细胞对产电贡献很小,不具有电化学和生物学活性。 相似文献
12.
Hideaki Ogata Aruna Goenka Agrawal Amrit Pal Kaur Richard Goddard Wolfgang Grtner Wolfgang Lubitz 《Acta Crystallographica. Section F, Structural Biology Communications》2008,64(11):1010-1012
Sulfur in its various oxidation states is used for energy conservation in many microorganisms. Adenylylsulfate reductase is a key enzyme in the sulfur‐reduction pathway of sulfate‐reducing bacteria. The adenylylsulfate reductase from Desulfovibrio vulgaris Miyazaki F has been purified and crystallized at 277 K using the vapour‐diffusion method with ammonium sulfate as the precipitating agent. A data set was collected to 1.7 Å resolution from a single crystal at 100 K using synchrotron radiation. The crystal belonged to space group P31, with unit‐cell parameters a = b = 125.93, c = 164.24 Å. The crystal contained two molecules per asymmetric unit, with a Matthews coefficient (VM) of 4.02 Å3 Da−1; the solvent content was estimated to be 69.4%. 相似文献
13.
Stéphanie Loyaux-Lawniczak Stéphane Vuilleumier Valérie A. Geoffroy 《Geomicrobiology journal》2019,36(5):423-432
The genus Paenibacillus was hardly described as a Fe(III)-reducing agent, only limited to reduce soluble forms or Fe inserted in poorly crystallized structures. In this study, three Paenibacillus strains capable of reducing manganese oxides in addition to iron oxides were isolated from Cameroonian and Brazilian soils. These strains reduced iron minerals from poorly crystallized 2-line ferrihydrite to well-crystallized Al-substituted and pure goethite with a significant production of soluble ferrous iron. These Paenibacillus strains, inhabitants from ferralitic temporarily waterlogged soils, could play an important role in the bioweathering of minerals and metal mobility in soils. 相似文献
14.
Jesse Colangelo‐Lillis Claus Pelikan Craig W. Herbold Ianina Altshuler Alexander Loy Lyle G. Whyte Boswell A. Wing 《Geobiology》2019,17(6):660-675
The extent of fractionation of sulfur isotopes by sulfate‐reducing microbes is dictated by genomic and environmental factors. A greater understanding of species‐specific fractionations may better inform interpretation of sulfur isotopes preserved in the rock record. To examine whether gene diversity influences net isotopic fractionation in situ, we assessed environmental chemistry, sulfate reduction rates, diversity of putative sulfur‐metabolizing organisms by 16S rRNA and dissimilatory sulfite reductase (dsrB) gene amplicon sequencing, and net fractionation of sulfur isotopes along a sediment transect of a hypersaline Arctic spring. In situ sulfate reduction rates yielded minimum cell‐specific sulfate reduction rates < 0.3 × 10?15 moles cell?1 day?1. Neither 16S rRNA nor dsrB diversity indices correlated with relatively constant (38‰–45‰) net isotope fractionation (ε34Ssulfide‐sulfate). Measured ε34S values could be reproduced in a mechanistic fractionation model if 1%–2% of the microbial community (10%–60% of Deltaproteobacteria) were engaged in sulfate respiration, indicating heterogeneous respiratory activity within sulfate‐reducing populations. This model indicated enzymatic kinetic diversity of Apr was more likely to correlate with sulfur fractionation than DsrB. We propose that, above a threshold Shannon diversity value of 0.8 for dsrB, the influence of the specific composition of the microbial community responsible for generating an isotope signal is overprinted by the control exerted by environmental variables on microbial physiology. 相似文献
15.
Laura J. Liermann Istvan Albert Heather L. Buss Morgan Minyard Susan L. Brantley 《Geomicrobiology journal》2013,30(6):494-510
Fe oxidation is often the first chemical reaction that initiates weathering and disaggregation of intact bedrock into regolith. Here we explore the use of pyrosequencing tools to test for evidence that bacteria participate in these reactions in deep regolith. We analyze regolith developed on volcaniclastic rocks of the Fajardo formation in a ridgetop within the rainforest of the Luquillo Mountains of Puerto Rico. In the 9-m-deep regolith profile, the primary minerals chlorite, feldspar, and pyroxene are detected near 8.3 m but weather to kaolinite and Fe oxides found at shallower depths. Over the regolith profile, both total and heterotrophic bacterial cell counts generally increase from the bedrock to the surface. Like other soil microbial studies, the dominant phyla detected are Proteobacteria, Acidobacteria, Planctomycetes, and Actinobacteria. Proteobacteria (α, β, γ and δ) were the most abundant at depth (6.8–9 m, 41–44%), while Acidobacteria were the most abundant at the surface (1.4–4.4 m, 37–43%). Despite the fact that Acidobacteria dominated surficial communities while Proteobacteria dominated near bedrock, the near-surface and near-bedrock communities were not statistically different in structure but were statistically different from mid-depth communities. Approximately 21% of all sequences analyzed did not match known sequences: the highest fraction of unmatched sequences was greatest at mid-depth (45% at 4.4 m). At the regolith-bedrock interface where weathering begins, several lines of evidence are consistent with biotic Fe oxidation. At that interface, iron-related bacterial activity tests and culturing indicate the presence of iron-related bacteria, and phylogenetic analyses identified sub-phyla containing known iron-oxidizing microorganisms. Cell densities of iron-oxidizers in the deep saprolite were estimated to be on the order of 105 cells g?1. Overall Fe loss was also observed at the regolith-bedrock interface, consistent with bacterial production of organic acids and leaching of Fe-organic complexes. Fe-organic species were also detected to be enriched near the bedrock-regolith interface. In this and other deep weathering profiles, chemolithoautotrophic bacteria that use Fe for energy and nitrate or oxygen as an electron acceptor may play an important role in initiating disaggregation of bedrock. 相似文献
16.
Tanja Eggerichs Tobias Otte Oliver Opel Wolfgang K. L. Ruck 《Geomicrobiology journal》2013,30(10):934-943
Direct biotic and homogeneous abiotic Fe(II) oxidation rates as well as oxidation rates of Fe(II) with MnOX were determined in laboratory experiments and compared with biotic Mn(II) oxidation rates. In groundwaters and thermal installation waters, parameters for both Fe(II) oxidation steps were studied and products of biotic and abiotic Fe(II) and Mn(II) oxidation were analyzed. Direct Fe(II) oxidation of active Leptothrix cholodnii cultures can reach first-order rates of up to 1.17 ± 0.90 h?1. Second-order rates of Fe(II) oxidation with biogenic, Leptothrix-cholodnii- and Leptothrix-discophora-SS-1-originating MnOX lead to rates comparable with those as obtained with abiotic H+-birnessite. 相似文献
17.
Sediment samples from two locationsin the Gulf of Trieste (northern Adriatic Sea) werecollected during periods of maximum and minimumtemperatures for two years. Both sites were rich incarbonate material and inhabited by a diverse benthicinfaunal community. However, Site F exhibited adeeper dwelling faunal community, higher content ofcarbonate minerals, and larger grained sediments thanat site MA, which was closer to shore. Depth profilesof sulfate reduction and potential rates of iron andmanganese reduction were determined together withmeasurements of pore water and solid phase chemistry. Bottom waters at all sites were nearly saturated withoxygen for all of the dates sampled except forSeptember 1993 when bottom waters at site F were lessthan 50% saturated. Sulfate reduction rates were ashigh as 400 nmol ml-1 day-1 during latesummer and fall when temperatures were >20 °C,while rates during March (8 °C) were <30 nmolml-1 day-1. Potential rates of ironreduction, as determined by the accumulation of bothdissolved and acid-soluble reduced iron, were high insurficial sediments at each site except at site F whenbottom waters were partially depleted in oxygen. In the latter instance, sulfate reduction overwhelmedmetal reduction. Although the portion of metalreduction due directly to enzymatic use by bacteriawas not determined, the potential rate data suggestedthat Fe and perhaps Mn reduction were significantcomponents of anaerobic carbon degradation in thesesediments during much of the year. Both sitesappeared to support active metal-reducing bacterialcommunities. However, occasional depletion of oxygenin bottom waters appeared to cause a decrease inirrigation/reworking activity by infauna whichdepressed redox cycling of elements enhancing theimportance of sulfate reduction. A shift from metalreduction to sulfate reduction potentially exacerbatestoxic effects of oxygen depletion on fauna byincreasing the accumulation of toxic sulfide. 相似文献
18.
Chen Qian Hongmei Chen Alexander Johs Xia Lu Jing An Eric M. Pierce Jerry M. Parks Dwayne A. Elias Robert L. Hettich Baohua Gu 《Proteomics》2018,18(17)
Recent studies of microbial mercury (Hg) methylation revealed a key gene pair, hgcAB, which is essential for methylmercury (MeHg) production in the environment. However, many aspects of the mechanism and biological processes underlying Hg methylation, as well as any additional physiological functions of the hgcAB genes, remain unknown. Here, quantitative proteomics are used to identify changes in potential functional processes related to hgcAB gene deletion in the Hg‐methylating bacterium Desulfovibrio desulfuricans ND132. Global proteomics analyses indicate that the wild type and ΔhgcAB strains are similar with respect to the whole proteome and the identified number of proteins, but differ significantly in the abundance of specific proteins. The authors observe changes in the abundance of proteins related to the glycolysis pathway and one‐carbon metabolism, suggesting that the hgcAB gene pair is linked to carbon metabolism. Unexpectedly, the authors find that the deletion of hgcAB significantly impacts a range of metal transport proteins, specifically membrane efflux pumps such as those associated with heavy metal copper (Cu) export, leading to decreased Cu uptake in the ΔhgcAB mutant. This observation indicates possible linkages between this set of proteins and metal homeostasis in the cell. However, hgcAB gene expression is not induced by Hg, as evidenced by similarly low abundance of HgcA and HgcB proteins in the absence or presence of Hg (500 nm ). Taken together, these results suggest an apparent link between HgcAB, one‐carbon metabolism, and metal homeostasis, thereby providing insights for further exploration of biochemical mechanisms and biological functions of microbial Hg methylation. 相似文献
19.
Jean Guezennec 《Biofouling》2013,29(4):339-348
In order to protect metallic structures from marine corrosion, cathodic protection using sacrificial anodes or impressed current is widely used. In aerated seawater steel is considered to be protected when a cathodic potential of — 800 mV/SCE (Saturated Calomel Electrode) is applied. However, in many cases, this potential must be lowered due to the presence and activity of microorganisms such as acid‐producing bacteria or sulphate‐reducing bacteria (SRB). SRB are obligate anaerobes using sulphate as an electron acceptor with resultant production of sulfides. Some SRB are able to use hydrogen as an electron donor causing thereby depolarization of steel surfaces. An experiment was performed in marine sediments to determine the relationship between cathodically produced hydrogen and growth of SRB in marine sediments both at ambiant temperature (Therene, 1988) and at 35°C. Results concerning the latter experiments are reported here. Analytical techniques included microbiological analyses, lipid biomarker studies and electrochemical measurements including AC impedance spectroscopy. Results indicated a change in the bacterial community structure both on the steel and sediment as a function of time and potential. The results also showed that cathodically‐produced hydrogen promoted the growth of SRB with the Desulfovibrio genus predominating. 相似文献
20.
Sulfate Reducing Bacteria (SRB) were used to reduce the SO4–2 concentration in waste water. The growth pattern of SRB was found by varying the concentration of nutrients and the biomass. The specific reaction constant was evaluated in each case. 相似文献