首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Zheng Xue  Huijie Lu 《Biofouling》2014,30(7):813-821
Ensuring the quality and reproducibility of results from biofilm structure and microbial community analysis is essential to membrane biofouling studies. This study evaluated the impacts of three sample preparation factors (ie number of buffer rinses, storage time at 4°C, and DNA extraction method) on the downstream analysis of nitrifying biofilms grown on ultrafiltration membranes. Both rinse and storage affected biofilm structure, as suggested by their strong correlation with total biovolume, biofilm thickness, roughness and the spatial distribution of EPS. Significant variations in DNA yields and microbial community diversity were also observed among samples treated by different rinses, storage and DNA extraction methods. For the tested biofilms, two rinses, no storage and DNA extraction with both mechanical and chemical cell lysis from attached biofilm were the optimal sample preparation procedures for obtaining accurate information about biofilm structure, EPS distribution and the microbial community.  相似文献   

3.
  总被引:2,自引:0,他引:2  
Cyanobacterial extracellular polymeric substances (EPS) are mainly composed of high-molecular-mass heteropolysaccharides, with variable composition and roles according to the microorganism and the environmental conditions. The number of constituents – both saccharidic and nonsaccharidic – and the complexity of structures give rise to speculations on how intricate their biosynthetic pathways could be, and how many genes may be involved in their production. However, little is known regarding the cyanobacterial EPS biosynthetic pathways and regulating factors. This review organizes available information on cyanobacterial EPS, including their composition, function and factors affecting their synthesis, and from the in silico analysis of available cyanobacterial genome sequences, proposes a putative mechanism for their biosynthesis.  相似文献   

4.
Scanning electron microscopy revealed that collapsed extracellular polymeric substances (EPS) surrounded bacteria present in granular sludge. Treatment of granular sludge with whole-cell antiserum and staining with polycationic ferritin demonstrated that bacteria were enveloped by extensive EPS. Antibody stabilization permitted a visualization of the EPS which more closely resembled its natural hydrated state. The EPS was seen to completely fill the intercellular spaces in the microcolonies. Both pure and mixed microcolonies were observed to be enclosed by EPS. The presence of these large amounts of EPS indicates that this extracellular layer is important in maintaining the structural integrity of granular sludge.  相似文献   

5.
Extracellular polymeric substances (EPS) produced from a strain of Rhizobium etli demonstrated an ability to bind a variety of metals. Cells and capsular EPS rapidly bound Mn2+ ions preferentially to Pb2+ and Cu2+, but also showed an affinity for Pb2+. The binding capabilities of soluble EPS were affected by its extraction and processing. The results suggest potential applications in the field of bioremediation.  相似文献   

6.
细菌生物被膜(biofilm)附着在生物或者非生物表面,由细菌及其分泌的糖、蛋白质和核酸等多种基质组成的细菌群落,是造成病原细菌持续性感染、毒力和耐药性的重要原因之一.细菌的生物被膜基质由复杂的胞外聚合物(extracellular polymeric substances,EPS)构成,影响生物被膜的结构和功能.本文...  相似文献   

7.
8.
Increased contamination of the environment with toxic pollutants has paved the way for efficient strategies which can be implemented for environmental restoration. The major problem with conventional methods used for cleaning of pollutants is inefficiency and high economic costs. Bioremediation is a growing technology having advanced potential of cleaning pollutants. Biofilm formed by various micro-organisms potentially provide a suitable microenvironment for efficient bioremediation processes. High cell density and stress resistance properties of the biofilm environment provide opportunities for efficient metabolism of number of hydrophobic and toxic compounds. Bacterial biofilm formation is often regulated by quorum sensing (QS) which is a population density-based cell–cell communication process via signaling molecules. Numerous signaling molecules such as acyl homoserine lactones, peptides, autoinducer-2, diffusion signaling factors, and α-hydroxyketones have been studied in bacteria. Genetic alteration of QS machinery can be useful to modulate vital characters valuable for environmental applications such as biofilm formation, biosurfactant production, exopolysaccharide synthesis, horizontal gene transfer, catabolic gene expression, motility, and chemotaxis. These qualities are imperative for bacteria during degradation or detoxification of any pollutant. QS signals can be used for the fabrication of engineered biofilms with enhanced degradation kinetics. This review discusses the connection between QS and biofilm formation by bacteria in relation to bioremediation technology.  相似文献   

9.
Biofilms coat the exterior of most water-exposed interfaces, from the surfaces of sediments and rocks to the interior walls of fluid transport systems and even medical and dental apparatus. Composed of a diverse assemblage of microbial species growing in a matrix of extracellular polymeric substances (EPS), biofilms are well-known for their ability to sorb metals and nucleate mineral phases. In this study, purified alginate, a major polysaccharide component of some algal and bacterial EPS, was studied to ascertain its chemical reactivity towards dissolved cadmium and protons, and thus better constrain its role in overall EPS reactivity. FTIR analysis and compositional constraints based on known molecular structure indicate that alginate’s geochemical behaviour is dominated by a single carboxyl functional group. Correspondingly, potentiometric titration data were best fit using a single functional group acidity constant (pKa) and site concentration of 3.98 ± 0.01 and 1.728 ± 0.02 mol/kg, respectively, which are in agreement with typical carboxyl acidity (pKa 3–6) and carboxyl functional group concentration based on alginate polymer composition. The logarithm of the Cd-carboxyl complexation constant (log K) was determined to be ?0.52 ± 0.22, lower than carboxyl-Cd stability constants reported from independent studies of isolated microbes. Together, these results place important constraints on organic matrix contributions to overall biofilm reactivity.  相似文献   

10.
Ze Hua Dong  Tao Liu 《Biofouling》2013,29(5):487-495
Extracellular polymeric substances (EPS) were isolated by centrifugation of thermophilic sulphate-reducing bacteria (SRB) grown in API-RP38 culture medium. The protein and polysaccharide fractions were quantified and the highest concentrations were extracted from a 14-day old culture. The effect of EPS on carbon steel corrosion was investigated by electrochemical techniques. At 30°C, a small amount of EPS in 3% NaCl solution inhibited corrosion, whilst excessive amounts of EPS facilitated corrosion. In addition, the inhibition efficiency of EPS decreased with temperature due to thermal desorption of the EPS. The results suggest that adsorbed EPS layers could be beneficial to anti-corrosion by hindering the reduction of oxygen. However, the accumulation of an EPS film could stimulate the anodic dissolution of the underlying steel by chelation of Fe2+ ions.  相似文献   

11.
The aim of this work was to investigate the production of extracellular polymeric substances (EPS) by Aeromonas hydrophila grown under anaerobic conditions. EPS composition was studied for planktonic cells, cells attached to carbon fibre supports using a soluble ferric iron source and cells grown with a solid ferric iron mineral (gossan). Conventional spectrophotometric methods, Fourier transform infrared (FTIR) and confocal laser scanning microscopy (CLSM) were used to determine the main components in the biofilm extracted from the cultures. The key EPS components were proteins, indicating their importance for electron transfer reactions. Carbohydrates were observed mostly on the mineral and contained terminal mannosyl and/or terminal glucose, fucose and N-acetylgalactosamine residues.  相似文献   

12.
SUMMARY

The preservation technique of critical point drying for use with the scanning electron microscope is described. A study of the periphyton community development on the aquatic macrophyte, Potamogeton pectinatus L. from the littoral zone of Swartvlei, southern Cape Province, is used to illustrate the high degree of resolution achieved using this method.  相似文献   

13.
Aims: Extracellular polymeric substances (EPS) are an important component of microbial biofilms, and it is becoming increasingly apparent that extracellular DNA (eDNA) has a functional role in EPS. This study characterizes the eDNA extracted from the novel activated sludge biofilm process of aerobic granules. Methods and Results: Exposing the sludge to cation exchange resin (CER) was used for the extraction of eDNA and intracellular DNA (iDNA) from aerobic granules. This was optimized for eDNA yield while causing minimal cell lysis. We then compared the DNA composition of these extractions using randomly amplified polymorphic DNA (RAPD) fingerprinting and PCR‐based denaturing gradient‐gel electrophoresis (DGGE). Upon the analysis of the genomic DNA and the 16S rRNA genes, differences were detected between the sludge biofilm eDNA and iDNA. Conclusions: Different bacteria within the biofilm disproportionally release DNA into the EPS matrix of the biofilm. Significance and Impact of the Study: The findings further the idea that eDNA has a functional role in the biofilm state, which is an important conceptual information for industrial application of biofilms.  相似文献   

14.
硝化是目前废水生物脱氮中应用最为广泛的工艺之一,其功能菌为化能自养型细菌,生长缓慢,对重金属十分敏感。砷是一种剧毒的类金属元素,主要以无机形式的亚砷酸盐[AsO2-,As(Ⅲ)]和砷酸盐[AsO43-,As(Ⅴ)]存在,尤以As(Ⅲ)毒性最强。但研究发现,在硝化体系中,高浓度As(Ⅲ)(约400mg/L)未对硝化功能微生物产生明显毒性。深入比较发现,As(Ⅲ)的生物氧化与硝化过程具有一定的关联性。化能自养型As(Ⅲ)氧化菌不仅可在有氧条件下将As(Ⅲ)氧化,还可在缺氧条件下以NO2或NO3为电子受体氧化As(Ⅲ)。而硝化细菌也是典型的化能自养菌,且硝化体系内存在氧气及硝化产物NO2、NO3等电子受体,理论上均可接受电子实现As(Ⅲ)的氧化。本文结合硝化反应特性,综述了As(Ⅲ)在硝化体系下的解毒机制,主要为胞外聚合物的...  相似文献   

15.
    
Abstract

Biofouling control in reverse osmosis membranes (ROMs) is challenging due to the high cost of treatments, and reduction in the life of ROMs. This study characterizes the biofouling in the ROMs from a desalination plant and reports its effective removal using the supernatant obtained from Alteromonas sp. strain Ni1-LEM. The characterization of the bacterial community revealed that the most abundant taxa in ROMs were the genera Fulvivirga and Pseudoalteromonas, and unclassified species of the families Flavobacteriaceae and Sphingomonadaceae. This bacterial community significantly decreased upon treatment with the supernatant from Alteromonas sp. Ni1-LEM, resulting in the prevalence of the genus Pseudoalteromonas. Furthermore, this bacterial supernatant significantly inhibited cell adhesion of seven benthic microalgae isolated from ROMs as well as promoting cell detachment of the existing microbial biofilms. The study showed that the extracellular supernatant modified the conformation of extracellular polymeric substances (EPS) in the biofouling of ROMs without any biocidal effects.  相似文献   

16.
    
In this study an enrichment culture developed from activated sludge was used to investigate the architecture of fully hydrated multispecies biofilms. The assessment of biofilm structure and volume was carried out using confocal laser scanning microscopy (CLSM). Bacterial cell distribution was determined with the nucleic acid-specific stain SYTO 60, whereas glycoconjugates of extracellular polymeric substances (EPS) were stained with the Alexa-488-labeled lectin of Aleuria aurantia. Digital image analysis was employed for visualization and quantification of three-dimensional CLSM data sets. The specific volumes of the polymeric and cellular biofilm constituents were quantified. In addition, gravimetric measurements were done to determine dry mass and thickness of the biofilms. The data recorded by the CLSM technique and the gravimetric data were then compared. It was shown that the biofilm thicknesses determined with both methods agree well for slow-growing heterotrophic and chemoautotrophic biofilms. In addition, for slow-growing biofilms, the volumes and masses calculated from CLSM and the biomass calculated from gravimetric measurements were also comparable. For fast-growing heterotrophic biofilms cultivated with high glucose concentrations the data sets fit to a lesser degree, but still showed the same common trend. Compared with traditional gravimetric measurements, CLSM allowed differential recording of multiple biofilm parameters with subsequent three-dimensional visualization and quantification. The quantitative three-dimensional results recorded by CLSM are an important basis for understanding, controlling, exploiting, and modeling of biofilms.  相似文献   

17.
    
In this study, we measured the effect of EPS on Cd and proton adsorption behaviors by measuring the extent of adsorption onto biomass with and without the EPS removed via a cation exchange resin. We conducted both Cd adsorption experiments and potentiometric titrations of biomass using three common bacterial species: one Gram-positive (Bacillus subtilis) and two Gram-negative (Shewanella oneidensis, Pseudomonas putida) species. The Cd adsorption experiments were conducted as a function of metal loading in order to probe whether environmentally-low metal loadings lead to different adsorption mechanisms and roles for EPS than the higher metal loadings of most previous adsorption studies. We suspended each biomass sample in a solution of dissolved Cd in 0.01?M NaClO4 at metal loadings of 1, 2, 5, and 74?μmol/g. Surface complexation modeling (SCM) was used to determine stability constants for the important Cd-bacteria complexes, and the effect of metal loading on the resulting calculated stability constant values was determined.

In general, the measured bulk Cd adsorption behavior is unaffected by EPS removal. However, our potentiometric titration results suggest that EPS removal does alter the distribution of site types, but not the mass-normalized total site concentration within the biomass. SCM suggests that high affinity sulfhydryl sites control Cd binding under low metal loading conditions for B. subtilis and P. putida, and that sulfhydryl sites are present both on the cells and within the EPS for these species. Conversely, the SCM results suggest that Cd-sulfhydryl binding is un-important on the EPS of S. oneidensis.  相似文献   


18.
    
Biofilm secreted by microalgae are extracellular polymeric substances (EPSs) composed mainly of polysaccharides, proteins, nucleic acids and lipids. These EPSs immobilize the cells and stabilize biofilm, mediating adhesion towards solid surfaces. The EPSs valorization through industrial exploitations and scientific works is becoming more popular, but the bottleneck of such studies is the lack of consensus among researchers on the selection of detection techniques to be used, especially for novice researchers. It is a daunting task for any inexperienced researcher when they fail to identify the right tools needed for microalgal biofilm studies. In this review, a well-refined analysis protocol about microalgal biofilm and EPSs were prepared including its extraction and characterization. Pros and cons of various detection techniques were addressed and cutting-edge methods to study biofilm EPSs were highlighted. Future perspectives were also presented at the end of this review to bridge research gaps in studying biofilm adhesion via EPSs production. Ultimately, this review aims to assist novice researchers in making the right choices in their research studies on microalgal biofilms in accordance to the available technologies and needs.  相似文献   

19.
从油井采出水中分离到一株高温产胞外聚合物的细菌MS-1,经16S rDNA基因序列分析属于芽孢杆菌属(Bacillus sp.)。该菌能在60℃生长并产生胞外聚合物,其中胞外多糖含量为48.3%~54.5%,主要由甘露糖、葡萄糖、半乳糖组成,摩尔比分别是2.04:1.00:0.89。胞外聚合物中蛋白含量为37.2%~42.4%,主要由甲硫氨酸、亮氨酸、天门冬氨酸、丙氨酸、组氨酸和丝氨酸组成。利用透射电镜和环境扫描电镜对胞外聚合物的形成进行了观察。该菌的分离和研究为高温油藏的微生物调剖和驱油奠定了生物学基础。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号