首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, the effect of Li+ substitution in Li3V2(PO4)3 with a large divalent ion (Ca2+) toward lithium insertion is studied. A series of materials, with formula Li3?2xCaxV2(PO4)3/C (x = 0, 0.5, 1, and 1.5) is synthesized and studied in the potential region 3–0.01 V versus Li+/Li. Synchrotron diffraction demonstrates that Li3V2(PO4)3/C has a monoclinic structure (space group P21/n), while Ca1.5V2(PO4)3/C possesses a rhombohedral structure (space group R‐3c). The intermediate compounds, Li2Ca0.5V2(PO4)3/C and LiCaV2(PO4)3/C, are composed of two main phases, including monoclinic Li3V2(PO4)3/C and rhombohedral Ca1.5V2(PO4)3/C. Cyclic voltammetry reveals five reduction and oxidation peaks on Li3V2(PO4)3/C and Li2Ca0.5V2(PO4)3/C electrodes. In contrast, LiCaV2(PO4)3/C and Ca1.5V2(PO4)3/C have no obvious oxidation and reduction peaks but a box‐type voltammogram. This feature is the signature for capacitive‐like mechanism, which involves fast electron transfer on the surface of the electrode. Li3V2(PO4)3/C undergoes two solid‐solution and a short two‐phase reaction during lithiation and delithiation processes, whereas Ca1.5V2(PO4)3/C only goes through capacitive‐like mechanism. In operando X‐ray absorption spectroscopy confirms that, in both Li3V2(PO4)3/C and Ca1.5V2(PO4)3/C, V ions are reduced during the insertion of the first three Li ions. This study demonstrates that the electrochemical characteristic of polyanionic phosphates can be easily tuned by replacing Li+ with larger divalent cations.  相似文献   

2.
Ce3+/Eu2+ co‐doped Na3Ca6(PO4)5 phosphors were prepared using a combustion‐assisted synthesis method. X‐Ray powder diffraction (XRD) analysis confirmed the formation of a Na3Ca6(PO4)5 crystal phase. Na3Ca6(PO4)5:Eu2+ phosphors have an efficient bluish‐green emission band that peaks at 489 nm, whereas Ce3+‐doped Na3Ca6(PO4)5 showed a bright emission band at 391 nm. Analysis of the experimental results suggests that enhancement of the Eu2+ emission intensity in co‐doped Na3Ca6(PO4)5:Eu2+,Ce3+ phosphors is due to a resonance‐type energy transfer from Ce3+ to Eu2+ ions, which is predominantly governed by an exchange interaction mechanism. These results indicate that Ce3+/Eu2+ co‐doped Na3Ca6(PO4)5 is potentially useful as a highly efficient, bluish‐green emitting, UV‐convertible phosphor for white‐light‐emitting diodes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Alleviation of cadmium toxicity on maize seedlings by calcium   总被引:2,自引:0,他引:2  
The rate of germination, radicle and plumule length, fresh and dry mass of maize seedlings were increased as Ca2+ was added to the nutrient solution, which contained different levels of Cd2+, especially at low concentration of Ca2+ (5 mM) and high concentrations of Cd2+ (1.4 and 1.8 mM). The biosynthesis of pigments, respiration rate and content of soluble saccharides in endosperm were reduced sharply as the concentration of Cd2+ in the medium increased. This effects was alleviated by Ca2+ addition. Cd2+ content in seedlings was increased as the Cd2+ concentration in medium was increased and decreased sharply as Ca2+ was present in the culture medium. The study suggests liming of soil with CaCO3 to improve the yield of many crops.  相似文献   

4.
Triple whitlockite‐type structure‐based red phosphors Ca8MgBi1?x(PO4)7:xEu3+ (x = 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80 and 1.00) were synthesized by a conventional solid‐state reaction route and characterized by their X‐ray crystal structures. The X‐ray diffraction (XRD) patterns, Fourier transform infrared spectra, morphologies, photoluminescence spectra, UV/Vis reflectance spectra, decay times and the International Commission on Illumination (CIE) chromaticity coordinates of Ca8MgBi1?x(PO4)7:xEu3+ were analyzed. Eu‐doped Ca8MgBi(PO4)7 phosphors exhibited strong red luminescence with peaks at 616 nm due to the 5D07 F2 electric dipole transition of Eu3+ ions after excitation at 396 nm. The UV/Vis spectra indicated that the band gap of Ca8MgBi0.30(PO4)7:0.70Eu3+ is larger than that of Ca8MgBi(PO4)7. The phosphor developed in this study has great potential as a red‐light‐emitting phosphor for UV light‐emitting diodes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
The present study investigates the impact of the ligand environment on the luminescence and thermometric behavior of Sm3+ doped A3(PO4)2 (A = Sr, Ca) phosphors prepared by combustion synthesis. The structural and luminescent properties of Sm3+ ions in the phosphate lattices were investigated using powder X-ray diffraction (PXRD) and photoluminescence (PL) techniques. PXRD results of the synthesized phosphors exhibit the expected phases that are in agreement with their respective standards. Fourier-transform infrared (FTIR) spectroscopy confirms the presence of PO4 vibrational bands. Upon excitation with near ultraviolet light, the PL studies indicated that Sr3(PO4)2:Sm3+ phosphors exhibit a yellow light emission, whereas Ca3(PO4)2:Sm3+ phosphors exhibit an emission of orange light. The PL emission results are in accordance with the CIE coordinates, with the Sr3(PO4)2:Sm3+ phosphors showing coordinates of (0.56, 0.44), and the Ca3(PO4)2:Sm3+ phosphors displaying coordinates of (0.60, 0.40). Thermal analysis shows improved stability of Ca3(PO4)2:Sm3+ based on lower weight reduction in thermogravimetric analysis. The effect of temperature on the luminescence properties of the phosphor has been examined upon a 405 nm excitation. By using the fluorescence intensity ratio (FIR) method, the temperature responses of the emission ratios from the Sm3+: the 4F3/26H5/2 transition to the 4G5/26H7/2 and 4F3/26H5/2 transition to the 4G5/26H9/2 emissions are characterized. The Ca3(PO4)2:Sm3+ phosphors are more sensitive as compared with the Sr3(PO4)2:Sm3+ phosphors. The earlier research findings strongly indicate that these phosphors hold great promise as ideal candidates for applications in non-invasive optical thermometry and solid-state lighting devices.  相似文献   

6.
In the present study we examine the effects of Al on the uptake of Ca2+ and H2PO-4 in beech (Fagus sylvatica L.) grown in inorganic nutrient solutions and nutrient solutions supplied with natural fulvic acids (FA). All the solutions used were chemically well characterized. The uptake of Al by roots of intact plants exposed to solutions containing 0, 0.15 or 0.3 mM AlCl3 for 24 h, was significantly less if FA (300 mg l−1) were also present in the solutions. The Ca2+(45Ca2+) uptake was less affected by Al in solutions supplied with FA than in solutions without FA. There was a strong negative correlation between the Al and Ca2+ uptake (r2=0.98). When the Al and Ca2+ (45Ca2+) uptake were plotted as a function of the Al3+ activity (or concentration of inorganic mononuclear Al), almost the same response curves were obtained for the -FA and +FA treatments. We conclude that FA-complexed Al was not available for root uptake and therefore could not affect the Ca2+ uptake. The competitive effect of Al on the Ca2+ uptake was also shown in a 5-week cultivation experiment, where the Ca concentration in shoots decreased at an AlCl3 concentration of 0.3 mM. The effect of Al on H2PO4 uptake was more complex. The P content in roots and shoots was not significantly affected, compared with the control, by cultivation for 5 weeks in a solution supplied with 0.3 mM AlCl3, despite a reduction of the H2PO4 concentration in the nutrient solution to about one-tenth. At this concentration Al obviously had a positive effect on H2PO4 uptake. The presence of FA decreased 32P-phosphate uptake by more than 60% during 24 h, and the addition of 0.15 or 0.3 mM AlCl3 to these solutions did not alter the uptake of 32P-phosphate.  相似文献   

7.
Summary 1. The ability of various divalent metal ions to substitute for Ca2+ in activating distinct types of Ca2+-dependent K+ [K+(Ca2+] channels has been investigated in excised, inside-out membrane patches of human erthrocytes and of clonal N1E-115 mouse neuroblastoma cells using the patch clamp technique. The effects of the various metal ions have been compared and related to the effects of Ca2+.2. At concentrations between 1 and 100 µM Pb2+, Cd2+ and Co2+ activate intermediate conductance K+(Ca2+) channels in erythrocytes and large conductance K+(Ca2+) channels in neuroblastoma cells. Pb2+ and Co2+, but not Cd2+, activate small conductance K+(Ca2+) channels in neuroblastoma cells. Mg2+ and Fe2+ do not activate any of the K+(Ca2+) channels.3. Rank orders of the potencies for K+(Ca2+) activation are Pb2+, Cd2+>Ca2+, Co2+>>Mg2+, Fe2+ for the intermediate erythrocyte K+(Ca2+) channel, and Pb2+, Cd2+>Ca2+>Co2+>>Mg2+, Fe2+ for the small, and Pb2+>Ca2+>Co2+>>Cd2+, Mg2+, Fe2+ for the large K+(Ca2+) channel in neuroblastoma cells.4. At high concentrations Pb2+, Cd2+, and Co2+ block K+(Ca2+) channels in erythrocytes by reducing the opening frequency of the channels and by reducing the single channel amplitude. The potency orders of the two blocking effects are Pb2+>Cd2+, Co2+>>Ca2+, and Cd2+>Pb2+, Co2+>>Ca2+, respectively, and are distinct from the potency orders for activation.5. It is concluded that the different subtypes of K+(Ca2+) channels contain distinct regulatory sites involved in metal ion binding and channel opening. The K+(Ca2+) channel in erythrocytes appears to contain additional metal ion interaction sites involved in channel block.  相似文献   

8.
Mercury (Hg) is a highly toxic element that causes bone defects and malformations. Structure and surface analyses using quantitative x-ray diffraction using the Rietveld method, High-Resolution Transmission Electron Microscopy and nanodiffraction analyses, and Fourier-Transformed Infrared spectroscopy showed that bone enriched naturally with Hg (≤ 2.3 %) contained Hg3PO4 [(Hg2)3(PO4)2] and HgO. Bone [mostly as apatite, verified as carboxyapatite Ca10(PO4)4(CO3)3(OH)2(s)] and cinnabar (HgS) dissolved releasing Hg+ (existing as dimer Hg22+) and PO43−, both of which became immobilized as (Hg2)3(PO4)2. Besides, released Hg2+ became oxidized to form HgO. The outcome of this work is novel, provided that only a handful of stable compounds of Hg22+ are found in nature.  相似文献   

9.
Synechococcus sp. MA19, grown autotrophically under phosphate-limited conditions at 50 °C, produced poly--hydroxybutyrate (PHB) when intracellular phosphate content was 0.043–0.076mmol per g of cellular components. In the culture for 260h using Ca3(PO4)2 as a phosphate source, strain MA19 accumulated PHB at 55% (w/w) of the dry cells and the amount of PHB produced was 2.4gl–1 which was almost twice that without Ca3(PO4)2 addition.  相似文献   

10.
《IRBM》2019,40(5):270-278
BackgroundBreast cancer reported in the young women exhibits high local and distant recurrence and a poor prognosis. Rare earth doped calcium phosphate phosphors have been extensively investigated due to their unique applications in biomedicine.MethodsIn the current study, Tb3+, Ce3+ doped Ca3(PO4)2 phosphor were prepared by hydrothermal method at 150 °C using citric acid as additive and characterized by PXRD, FT-IR, TG-DTA, EDX, TEM and PL techniques. The photoluminescence properties of Tb3+, Ce3+ doped Ca3(PO4)2 phosphor was investigated upon photo excitation at 240 nm. Antiproliferative activity was evaluated by MTT, BrdU proliferation, ELISA, Methylene blue and caspase-3 assays.ResultsCa3(PO4)2:Tb3+, Ce3+ phosphor exhibited needle like morphology with length and width ∼100-500 nm and ∼40-50 nm, respectively. It exhibited green emission at 550 nm corresponding to 5D47F5 transition with the CIE coordinates (x, y) as (0.284, 0.614). It also showed remarkable concentration dependent cytotoxicity against MCF-7 as well as MDA-MB 231 cells with negligible cytotoxicity compared to MCF-12A, a human epithelial healthy cell line. It reduced the proliferative index of both cell lines in a concentration dependent manner by inhibiting DNA synthesis and Ki67 protein. It also induced distinct apoptotic changes in the morphology of cell and nucleus and also activated the caspase-3 activity in breast cancer cell lines.ConclusionThe results suggest that Ca3(PO4)2:Tb3+, Ce3+ phosphor may be useful for therapeutic application in clinical settings.  相似文献   

11.
In the coupling of ATP pyrophosphorolysis to Ca2+ transport in beef heart mitochondria, for each molecule of ATP cleaved, one proton is released and one Ca2+ is transported into the interior space. With the use of tritium labelled ATP, it could be shown that ATP is pyrophosphorylyzed into a species equivalent to Pi that moves inward, and a species equivalent to ADP that is extruded into the aqueous space on the exterior of the mitochondrion. The species equivalent to Pi has been identified as a negatively charged form of Pi (PO?) and the species equivalent to ADP as a positively charged form (ADP+). The inward flow of PO? is coupled to the inward flow of Ca2+ in 1:1 stoichiometry—a token that Ca2+ must enter in the form of Ca2+A?, where A? is a monovalent anion. During ATP pyrophosphorolysis protons are released on the I side and taken up on the M side—one proton for each molecule of ATP cleaved. The alkalinization of the matrix space leads to the deposition of Ca3(PO4)2 and to the extrusion of the two species released by this deposition (Pi, K+). Two thirds of the PO? is trapped as Ca3(PO4)2 in the matrix space and one third is extruded into the external space. The extrusion of K+ provides a mechanism by which protons can be continuously brought into the matrix space to sustain a high rate of coupled pyrophosphorolysis of ATP. The coupling pattern for Ca2+ transport driven by ATP pyrophosphorolysis is identical with the corresponding pattern for Ca2+ transport driven by electron transfer. This identity is suggestive that coupling mediated by the Fo-F1 system and coupling mediated by electron transfer complexes are mechanistically indistinguishable.  相似文献   

12.
Of various metal ions (Ca2+, Cr3+, Cu2+, Fe2+, Mg2+, Mn2+, Ni2+ and Zn2+) added to the culture medium of Agrobacterium tumefaciens at 1 mM, only Ca2+ increased Coenzyme Q10 (CoQ10) content in cells without the inhibition of cell growth. In a pH-stat fed-batch culture, supplementation with 40 mM of CaCO3 increased the specific CoQ10 content and oxidative stress by 22.4 and 48%, respectively. Also, the effect of Ca2+ on the increase of CoQ10 content was successfully verified in a pilot-scale (300 L) fermentor. In this study, the increased oxidative stress in A. tumefaciens culture by the supplementation of Ca2+ is hypothesized to stimulate the increase of specific CoQ10 content in order to protect the membrane against lipid peroxidation. Our results improve the understanding of Ca2+ effect on CoQ10 biosynthesis in A. tumefaciens and should contribute to better industrial production of CoQ10 by biological processes.  相似文献   

13.
Summary The inhibition of Ca2–-ATPase, (Na++K+)-ATPase and Na+/Ca2+ exchange by Cd2+ was studied in fish intestinal basolateral plasma membrane preparations. ATP driven 45Ca2+ uptake into inside-out membrane vesicles displayed a K m for Ca2+ of 88±17 nm, and was extremely sensitive to Cd2+ with an IC50 of 8.2±3.0 pM Cd2+, indicating an inhibition via the Ca2+ site. (Na++K+)-ATPase activity was half-maximally inhibited by micromolar amounts of Cd2+, displaying an IC50 of 2.6±0.6 m Cd2+. Cd2+ ions apparently compete for the Mg2+ site of the (Na +K+)-ATPase. The Na+/Ca2+ exchanger was inhibited by Cd2+ with an IC50 of 73±11 nm. Cd2+ is a competitive inhibitor of the exchanger via an interaction with the Ca2+ site (K i = 11 nm). Bepridil, a Na+ site specific inhibitor of Na+/Ca2+ exchange, induced an additional inhibition, but did not change the K i of Cd2+. Also, Cd2+ is exchanged against Ca2+, albeit to a lesser extent than Ca2+. The exchanger is only partly blocked by the binding of Cd2+. In vivo cadmium that has entered the enterocyte may be shuttled across the basolateral plasma membrane by the Na+/Ca2+ exchanger. We conclude that intracellular Cd2+ ions will inhibit plasma membrane proteins predominantly via a specific interaction with divalent metal ion sites.We would like to thank Dr. D. Fackre (University of Alberta, Canada) for stimulating discussions and Mr. F.A.T. Spanings (University of Nijmegen, The Netherlands) for excellent fish husbandry. The fura-2 measurements of intracellular Ca2+ concentrations in tilapia enterocytes were carried out in the Department of Physiology, School of Medicine, University of Alberta, Edmonton, Alberta T6G 2H7, Canada. Th.J.M. Schoenmakers and G. Flik were supported by travel grants from the Foundation for Fundamental Biological Research (BION) and the Netherlands Organization for Scientific Research (NWO).  相似文献   

14.
The effect of calcium (Ca2+) on Trifolium repens L. seedlings subjected to cadmium (Cd2+) stress was studied by investigating plant growth and changes in activity of antioxidative enzymes. Physiological analysis was carried out on seedlings cultured for 2 weeks on half-strength Hoagland medium with Cd2+ concentrations of 0, 400 and 600 μM, and on corresponding medium supplied with CaCl2 (5 mM). Exposure to increasing Cd2+ reduced the fresh weight of the upper part (stems + leaves) of the seedlings more strongly than that of the root system. In both parts of T. repens seedlings H2O2 level and lipid peroxidation increased. In the upper part, Cd2+ exposure led to a significant decrease in the activity of superoxide dismutase, catalase and glutathione peroxidase and an increase in ascorbate peroxidase activity. In contrast, the roots showed an increase in the activity of antioxidative enzymes under Cd2+ stress. Ca2+ addition to medium reduced the Cd2+ accumulation, and considerably reversed the Cd2+-induced decrease in fresh mass as well as the changes in lipid peroxidation in the both parts of T. repens seedlings. Ca2+ application diminished the Cd2+ effect on the activity of antioxidative enzymes in the upper part, even though it did not significantly affect these enzymes in the roots. So the possible mechanisms for the action of Ca2+ in Cd2+ stress were considered to reduce Cd2+ accumulation, alleviate lipid peroxidation and promote activity of antioxidative enzymes.  相似文献   

15.
The purpose of this research was to study how the bacteria Bacillus cereus (DCB1) utilizes calcium ions in a culture medium with carbon dioxide (CO2) to yield calcium carbonate (CaCO3). The bacteria strain DCB1 was a dominant strain isolated from dolomitic surfaces in areas of Karst topographies. The experimental method was as follows: a modified beef extract-peptone medium (beef extract 3.0 g, peptone 10 g, NaCl 5.0 g, CaCl2 2.0 g, glass powder 2.0 g, distilled water 1 L, and a pH between 6.5 and 7.5) was inoculated with B. cereus to attempt to induce the synthesis of CaCO3. The sample was then processed by centrifugation every 24 h during the 7-day cultivation period. The pH, carbonic anhydrase (CA) activity, and the concentrations of both HCO- 3 and Ca2+ in the supernatant fluid were measured. Subsequently, precipitation in the culture medium was analyzed to confirm, or otherwise, the presence and if present, the formation, of CaCO3. Methods used included X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and Energy Dispersive Spectroscopy (EDS). Meanwhile, the carbon source in the carbonate was classified by its isotope composition. Results showed that B. cereus can improve its pH value in this culture medium; concentrations of HCO- 3 and Ca2+ showed a significant decline over the duration of the cultivation period. CA activity reached its maximum during the second day; XRD, SEM, TEM, and isotope analysis all revealed the presence of CaCO3 as a precipitate. Additionally, these results did not occur in an aseptic control group: no detectable level of CaCO3 was produced therein. In conclusion: B. cereus can metabolize active materials, such as secretase, by its own growth and metabolism, and can either utilize atmospheric CO2, or respire, to induce CaCO3 production. Experimental evidence is offered for a concomitant CO2 reduction and CaCO3 induction by microorganisms.  相似文献   

16.
The effects of a long-term blockade of L-type Ca2+ channels on membrane currents and on the number of dihydropyridine binding sites were investigated in skeletal muscle fibers. Ca2+ currents (I Ca) and intramembrane charge movement were monitored using a voltage-clamp technique. The peak amplitude of I Ca increased by more than 40% in fibers that were previously incubated for 24 hr in solutions containing the organic Ca2+ channel blocker nifedipine or in Ca2+-free conditions. A similar incubation period with Cd2+, an inorganic blocker, produced a moderate increase of 20% in peak I Ca. The maximum mobilized charge (Q max) increased by 50% in fibers preincubated in Ca2+-free solutions or in the presence of Cd2+. Microsomal preparations from frog skeletal muscle were isolated by differential centrifugation. Preincubation with Cd2+ prior to the isolation of the microsomal fraction doubled the number of 3H-PN200-110 binding sites and produced a similar increase in the values of the dissociation constant. The increase in the number of binding sites is consistent with the increase in the peak amplitude of I Ca as well as with the increase in Q max. Received: 31 August 1998/Revised: 7 December 1998  相似文献   

17.
Inorganic ions have been used widely to investigate biophysical properties of high voltage-activated calcium channels (HVA: Cav1 and Cav2 families). In contrast, such information regarding low voltage-activated calcium channels (LVA: Cav3 family) is less documented. We have studied the blocking effect of Cd2+, Co2+ and Ni2+ on T-currents expressed by human Cav3 channels: Cav3.1, Cav3.2, and Cav3.3. With the use of the whole-cell configuration of the patch-clamp technique, we have recorded Ca2+ (2 mM) currents from HEK−293 cells stably expressing recombinant T-type channels. Cd2+ and Co2+ block was 2- to 3-fold more potent for Cav3.2 channels (EC50 = 65 and 122 μM, respectively) than for the other two LVA channel family members. Current-voltage relationships indicate that Co2+ and Ni2+ shift the voltage dependence of Cav3.1 and Cav3.3 channels activation to more positive potentials. Interestingly, block of those two Cav3 channels by Co2+ and Ni2+ was drastically increased at extreme negative voltages; in contrast, block due to Cd2+ was significantly decreased. This unblocking effect was slightly voltage-dependent. Tail-current analysis reveals a differential effect of Cd2+ on Cav3.3 channels, which can not close while the pore is occupied with this metal cation. The results suggest that metal cations affect differentially T-type channel activity by a mechanism involving the ionic radii of inorganic ions and structural characteristics of the channels pore.  相似文献   

18.
Cadmium inhibits plasma membrane calcium transport   总被引:6,自引:0,他引:6  
Summary The interaction of Cd2+ with the plasma membrane Ca2+-transporting ATPase of fish gills was studied. ATP-driven Ca2+-transport in basolateral membrane (BLM) vesicles was inhibited by Cd2+ with anI 50 value of 3.0nm at 0.25 m free Ca2+ using EGTA, HEEDTA and NTA to buffer Ca2+ and Cd2+ concentrations. The inhibition was competitive in nature since theK 0.5 value for Ca2+ increased linearly with increasing Cd2+ concentrations while theV max remained unchanged. The Ca2+ pump appeared to be calmodulin dependent, but we conclude that the inhibition by Cd2+ occurs directly on the Ca2+ binding site of the Ca2+-transporting ATPase and not via the Ca2+-binding sites of calmodulin. It is suggested that Cd2+-induced inhibition of Ca2+-transporting enzymes is the primary effect in the Cd2+ toxicity towards cells followed by several secondary effects due to a disturbed cellular Ca2+ metabolism. Our data illustrate that apparent stimulatory effects of low concentrations of Cd2+ on Ca2+-dependent enzymes may derive from increased free-Ca2+ levels when Cd2+ supersedes Ca2+ on the ligands.  相似文献   

19.
In this article, we report the synthesis of Na2Sr1‐x(PO4)F:Eux phosphor via a combustion method. The influence of different annealing temperatures on the photoluminescence properties was investigated. The phosphor was excited at both 254 and 393 nm. Na2Sr1‐x(PO4)F:Eux3+ phosphors emit strong orange and red color at 593 and 612 nm, respectively, under both excitation wavelengths. Na2Sr1‐x(PO4)F:Eux3+ phosphors annealed at 1050°C showed stronger emission intensity compared with 600, 900 and 1200°C. Moreover, Na2Sr1‐x(PO4)F:Eux3+ phosphor was found to be more intense when compared with commercial Y2O3:Eu3+ phosphor. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
Ca3(PO4)2:Eu3+ phosphor was prepared using a facile chemistry method in the presence of surfactants. The effects of surfactants on the morphology and photoluminescence properties of Ca3(PO4)2:Eu3+ phosphor were investigated. The morphology of the phosphor was significantly influenced by the surfactants employed. When nonionic surfactant glyceryl monostearate and anionic surfactant sodium dodecylbenzene sulfonate were employed, the phospor powders are composed of a large number of homogeneous spherical particles with sizes of 0.3–0.6 µm and 2–3 µm, respectively. By contrast, when cationic surfactant cetyltrimethylammonium bromide was used, the morphology of the phosphor is completely different. The product is an excellent cuboid, and the phosphor prepared with 2.5 mmol cetyltrimethylammonium bromide showed higher luminescent intensity than phosphors prepared with the other two types of surfactants. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号