首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper reports a novel way for the synthesis of a europium (Eu)‐doped fluor‐hydroxyapatite (FHA) nanostructure to control the luminescence of hydroxyapatite nanophosphor, particularly, by applying optimum fluorine concentrations, annealed temperatures and pH value. The Eu‐doped FHA was made using the co‐precipitation method followed by thermal annealing in air and reducing in a H2 atmosphere to control the visible light emission center of the nanophosphors. The intensities of the OH? group decreased with the increasing fluorine concentrations. For the specimens annealed in air, the light emission center of the nanophosphor was 615 nm, which was emission from the Eu3+ ion. However, when they were annealed in reduced gas (Ar + 5% H2), a 448 nm light emission center from the Eu2+ ion of FHA was observed. The presence of fluorine in Eu‐doped FHA resulted in a significant enhancement of nanophosphor luminescence, which has potential application in light emission and nanomedicine.  相似文献   

2.
Trivalent europium (Eu3+) and terbium (Tb3+) ions are important activator centers used in different host lattices to produce red and green emitting materials. The current work shows the design of new clay minerals to act as host lattices for rare earth (RE) ions. Based on the hectorite structure, nano‐chlorohectorites and nano‐fluorohectorites were developed by replacing the OH? present in the hectorite structure with Cl? or F?, thus avoiding the luminescence quenching expected due to the OH? groups. The produced matrices were characterized through X‐ray powder diffraction (XPD), transmission electron microscopy (TEM), FT‐IR, 29Si MAS (magic angle spinning) NMR, nitrogen sorption, thermogravimetry‐differential scanning calorimetry (TGA‐DSC) and luminescence measurements, indicating all good features expected from a host lattice for RE ions. The nano‐clay materials were successfully doped with Eu3+ and/or Tb3+ to yield materials preserving the hectorite crystal structure and showing the related luminescence emissions. Thus, the present work shows that efficient RE3+ luminescence can be obtained from clays without the use of organic ‘antenna’ molecules.  相似文献   

3.
Michael addition of enantiopure N-acetoacetyl-oxazolidin-2-ones is shown to take place in the presence of catalytic amounts of Eu(+3) salts and complexes in high yields, very reduced reaction times, and moderate diastereoselectivity. The level of diastereoselectivity can be significantly enhanced by the suitable exploitation of the easy epimerization of the adducts in the presence of silica gel.  相似文献   

4.
Zn‐doped CaTiO3:Eu3+ red phosphors for enhanced photoluminescence in white light‐emitting diodes (LEDs) were synthesized by a solid‐state method. The structure and morphology of the obtained phosphor samples were observed by X‐ray diffraction (XRD) and scanning electron microscopy (SEM), and the impact of Ca, Zn and Eu content on their photoluminescence properties was studied. The results indicated that Zn not only participates in the formation of defects in suitable lattice matrices but also has a role in flux in the transformation from ZnO to Zn2TiO4, which is beneficial for the enhancement of photoluminescence properties. Photoluminescence test data showed that the Zn‐doped phosphor is excited efficiently by near‐ultraviolet (NUV) light at wavelengths around 398 nm and emits an intense red light with a broad peak around 616 nm corresponding to the 5D07F2 transition of Eu3+. The intensity of this phosphor emission is three times stronger than that without Zn‐doping. Furthermore, this phosphor has very good thermal stability, high color purity and a low sintered temperature, all of which suggest its potential as a promising red phosphor for white LEDs. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
We report here on transparent and luminescent ionogels that consist of ionic ternary europium (III) complexes and the inexpensive non‐toxic compound, poly(methyl methacrylate) (PMMA) and that were formed by dissolving these complexes in methacrylate (MMA) monomers followed by in situ polymerization. The resulting ionogels show a bright red emission under near‐UV light irradiation. Luminescence data confirm the energy transfer from terpyridine‐functionalized ionic liquid to Eu3+ ions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Sr3B2O6:Eu2+ yellow phosphor was prepared by the combustion method. The crystalline structure, photoluminescence and thermoluminescence properties of Sr3B2O6:Eu2+ were investigated extensively. The X‐ray diffraction result indicates that the Sr3B2O6:Eu2+ phosphor exhibited a rhombohedral crystal structure. The emission spectra under a 435 nm excited wavelength showed an intense broad band peaking at 574 nm, which corresponds to the 4f65d1 → 4f7 transition of Eu2+ ion. There were two different sites of Sr replaced by Eu in host lattice. The concentration quenching process between Eu2+ ions is determined and the corresponding concentration quenching mechanism was verified as dipole‐quadrupole interaction. The glow curve under 3 Gy β‐ ray irradiation had the glow peak at 160°C and the average activation energy was defined as about 0.98 eV. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Di‐barium magnesium silicate phosphor doped with Eu2+ and Dy3+ was prepared using a solid‐state reaction technique under a reducing atmosphere. The sample underwent impulsive deformation by impact from a piston for mechanoluminescence (ML) investigations. The temporal ML characteristics of the phosphor were observed, which expressed a single sharp peak with a long decaying period. To investigate the luminescence centre responsible for the ML peak, the ML spectrum of the phosphor was also observed. The recorded ML spectrum was similar in shape and peak wavelength to the photoluminescence (PL) spectrum, which verifies the existence of a single emission centre due to the transition of Eu2+ ions, i.e. transitions from any of the sublevels of the 4f65d1 configuration to the 8S7/2 level of the 4f7 configuration. Decay rates for different impact velocities were also calculated using curve‐fitting techniques. The time of the ML peak and the rate of decay did not change significantly with respect to increasing impact velocity of the load and peak ML intensity varied linearly. The mechanism of the ML emission was also discussed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
AIMS: To determine the extent and pattern of degradation of polychlorinated biphenyls (PCBs) in Aroclor 1232 at 5 degrees C by a psychrotolerant bacterium, and to confirm the formation of intermediates of PCB metabolism at low temperature using 2,4,4'-trichlorobiphenyl (2,4,4'-TCB). METHODS AND RESULTS: 10 ppm of Aroclor 1232 or 100 micromol l(-1) 2,4,4'-TCB was incubated with biphenyl-grown cells at 5 degrees C or 30 degrees C for 48 or 72 h. Degradation of PCBs and the products of metabolism of 2,4,4'-TCB were confirmed by gas chromatography and mass spectrometry. Extents of degradation of many of the PCBs were similar at 5 degrees C and 30 degrees C. The extent of biodegradation of PCBs in Aroclor 1232 at 5 degrees C was dependent on chlorination pattern. The 14 chlorine-containing intermediates of 2,4,4'-TCB metabolism, which were detected, include several isomers of dihydrodiols, dihydroxy compounds and meta-cleavage compounds. CONCLUSIONS: The bacterium will be useful for bioremediation of PCB-contaminated sites in cold climates; however, knowledge of the products of PCB metabolism is necessary, as they could be more toxic than the parent compounds. SIGNIFICANCE AND IMPACT OF THE STUDY: Substantial degradation of some PCBs in Aroclor 1232 was demonstrated at low temperature within 48 h. The detection of several isomeric intermediates suggests that multiple pathways are used to transform PCBs in this strain. For the first time, formation of metabolic products from 2,4,4'-TCB at low temperature is confirmed.  相似文献   

9.
Hydrolysis of sphingomyelin and 2-N-(hexade-canoyl)-amino-4-nitrophenyl-phosphorylcholine (HDA-PC), a synthetic analogue of sphingomyelin, by acid and Mg-dependent neutral sphingomyelinases was tested with a homogenate of normal human brain cortex. Results demonstrated quite different substrate specificities for these enzymes. Acid sphingomyelinase, which is neither activated by MgCl2 nor inhibited by EDTA, hydrolyzed both substrates (the hydrolysis ratio of HDA-PC to sphingomyelin is ?2). In contrast, Mg-dependent neutral sphingomyelinase, which is inhibited by EDTA and reactivated by MgCl2, hydrolyzed only sphingomyelin (the hydrolysis ratio of HDA-PC to sphingomyelin is ?0-0.05). This synthetic substrate seems to be useful for selective determination of acid sphingomyelinase and for avoiding interference of Mg-dependent neutral sphingomyelinase.  相似文献   

10.
Eu3+‐doped polystyrene and polyvinylidene fluoride (PVDF/Eu3+ and PS/Eu3+) nanofibers were made using electrospinning. These fibers were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT‐IR), energy dispersive spectroscopy (EDX) and photoluminescence (PL). Spectral analysis of PVDF/Eu3+ and PS/Eu3+ nanofibers was based on their emission spectra. A bright red emission was noticed from Eu3+ that was assigned to the hypersensitive 5D0 → 7F2 transition. The enhanced intensity ratios of 5D0 → 7F2 to 5D0 → 7F1 transitions in the nanofibers indicated a more polarized chemical environment for the Eu3+ ions and greater hypersensitivity for the 5D0 → 7F2 transition, which showed the potential for application in various polymer optoelectronic devices. The Eu3+‐doped polymer (PVDF/Eu3+ and PS/Eu3+) nanofibers are suitable for the photoluminescent white light fabric design of smart textiles. This paper focuses on the potential application of smart fabrics to address challenges in human life.  相似文献   

11.
We have explored the effect of gramicidin A (gA) on bicelle (Bic) orientation in the absence and presence of Eu(3+) by (31)P and (2)H NMR at different DMPC/gA ratios. FT-IR spectroscopy was used to assess the lipid chain ordering and verify the transmembrane peptide conformation. Our results show a time-dependent flipping of the bilayer normal alignment at high temperatures and high proportion of gA. The results are explained by both the diamagnetic susceptibility anisotropy of the beta(6.3) helical peptides and viscosity of the lipid mixture. The concentration effect of gramicidin on Bic/Eu(3+) is compared to that on Eu(3+)-doped DMPC liposomes. The Bic/Eu(3+) system is no longer oriented in the presence of gA and adopts a vesicular morphology while the peptide incorporation induces the formation of ellipsoidal DMPC/Eu(3+) assemblies aligned with their normal parallel to the magnetic field. The difference is explained in terms of lipid chain disorder and size of the bilayers.  相似文献   

12.
Gd2O2S:Eu3+ nanophosphors have been successfully synthesized using microwave irradiation and γ‐irradiation methods with polyvinyl pyrrolidone as a stabilizer. The physical and luminescence spectra were compared. The morphologies of both Gd2O2S:Eu3+ nanophosphors were in the hexagonal phase and mainly consisted of spherical nanostructures with diameters of ~90 nm and ~50 nm for both microwave irradiation and γ‐irradiation methods. Upon 325 nm of ultraviolet (UV) light excitation, strong red emissions (626 nm) were observed for both methods; these emissions corresponded to the 5D07F2 transition of Eu3+ ions. However, Gd2O2S:Eu3+ nanophosphors following microwave treatment showed better luminescence intensity than Gd2O2S:Eu3+ nanophosphors treated with γ‐irradiation. This difference was attributed to the crystallinity phase and surface quenching effects of Gd2O2S:Eu3+ nanophosphors. The reaction mechanisms of Gd2O2S:Eu3+ nanophosphors in both methods are discussed in detail.  相似文献   

13.
Eu3+‐doped calcium titanate red phosphors, Ca1‐xZnxTiO3:Eu3+, were prepared by the sol‐gel method. The structure of prepared Ca1‐xZnxTiO3:Eu3+ phosphors were investigated by X‐ray diffraction and infrared spectra. Due to the 5D07F1–3 electron transitions of Eu3+ ions, photoluminescence spectra showed a red emission at about 619 nm under excitation of 397 nm and 465 nm, respectively. When zinc was added to the host, the luminescent intensity of Ca1‐xZnxTiO3:Eu3+ was markedly improved several fold compared with that of CaTiO3:Eu3+. Ca0.9Zn0.1TiO3:Eu3+ also had higher luminescence intensity than the commercially available Y2O3:Eu3+ phosphors under UV light excitation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
Sr2MgSi2O7:Eu2+ and Sr2MgSi2O7:Eu2+,Dy3+ long afterglow phosphors were synthesized under a weak reducing atmosphere by the traditional high temperature solid state reaction method. The synthesized phosphors were characterized by powder X‐ray diffraction (XRD), energy dispersive X‐ray spectroscopy (EDX), and photo‐, thermo‐ and mechanoluminescence spectroscopic techniques. The phase structure of the sintered phosphor was an akermanite type structure, which belongs to tetragonal crystallography. The thermoluminescence properties of these phosphors were investigated and compared. Under ultraviolet light excitation, the emission spectra of both prepared phosphors were composed of a broad emission band peaking at 470 nm. When the Sr2MgSi2O7:Eu2+ phosphor was co‐doped with Dy3+, the photoluminescence (PL), afterglow and mechanoluminescence (ML) intensity were strongly enhanced. The decay graph indicated that both the sintered phosphors contained fast decay and slow decay processes. The ML intensities of Sr2MgSi2O7:Eu2+ and Sr2MgSi2O7:Eu2+,Dy3+ phosphors were increased proportionally with increasing impact velocity, a finding that suggests that these phosphors could be used as sensors to detect the stress of an object. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Growth of Delftia acidovorans MC1 on 2,4-dichlorophenoxyacetic acid (2,4-D) and on racemic 2-(2,4-dichlorophenoxy)propanoic acid ((RS)-2,4-DP) was studied in the perspective of an extension of the strain’s degradation capacity at alkaline pH. At pH 6.8 the strain grew on 2,4-D at a maximum rate (μmax) of 0.158 h−1. The half-maximum rate-associated substrate concentration (Ks) was 45 μM. At pH 8.5 μmax was only 0.05 h−1 and the substrate affinity was mucher lower than at pH 6.8. The initial attack of 2,4-D was not the limiting step at pH 8.5 as was seen from high dioxygenase activity in cells grown at this pH. High stationary 2,4-D concentrations and the fact that μmax with dichlorprop was around 0.2 h−1 at both pHs rather pointed at limited 2,4-D uptake at pH 8.5. Introduction of tfdK from D. acidovorans P4a by conjugation, coding for a 2,4-D-specific transporter resulted in improved growth on 2,4-D at pH 8.5 with μmax of 0.147 h−1 and Ks of 267 μM. Experiments with labeled substrates showed significantly enhanced 2,4-D uptake by the transconjugant TK62. This is taken as an indication of expression of the tfdK gene and proper function of the transporter. The uncoupler carbonylcyanide m-chlorophenylhydrazone (CCCP) reduced the influx of 2,4-D. At a concentration of 195 μM 2,4-D, the effect amounted to 90% and 50%, respectively, with TK62 and MC1. Cloning of tfdK also improved the utilization of 2,4-D in the presence of (RS)−2,4-DP. Simultaneous and almost complete degradation of both compounds occurred in TK62 up to D = 0.23 h−1 at pH 6.8 and up to D = 0.2 h−1 at pH 8.5. In contrast, MC1 left 2,4-D largely unutilized even at low dilution rates when growing on herbicide mixtures at pH 8.5.  相似文献   

16.
The triboluminescence of Eu2(SO4)3·8H2O and Tb2(SO4)3·8H2O crystals in an atmosphere of sulfur dioxide (SO2) or sulfur hexafluoride (SF6) was studied. Quenching of the gaseous (emitter N2) and solid‐state (emitter Ln3+) components of the triboluminescence (TL) emission spectrum was seen when compared with the TL spectra of the crystals in air. One reason for the quenching is a reduction in the effective charge both on the crystal surface and in micro‐cracks under an SO2 or SF6 atmosphere, leading to a decrease in the probability of electrical breakdown and a reduction in electric field strength responsible for the electroluminescence excitation of lanthanide ions in TL. In an SO2 atmosphere, there is an additional mode of quenching, as confirmed by quenching of the crystal photoluminescence (emitter Ln3+). It is supposed that this quenching is due to an exchange of energy on electronic excitation of the lanthanide ions to the vibrational sublevels of the SO2 molecules adsorbed on the crystal surface. Another additional channel of TL quenching originates from non‐radiative transfer of excitation energy during collisions between the *N2 and SO2 molecules in the gaseous phase.  相似文献   

17.
Two synthesis routes, solid‐state reaction and precipitation reaction, were employed to prepare BaSiO3:Eu2+ phosphors in this study. Discrepancies in the luminescence green emission at 505 nm for the solid‐state reaction method sample and in the yellow emission at 570 nm for the sample prepared by the precipitation reaction method, were observed respectively. A detail investigation about the discrepant luminescence of BaSiO3:Eu2+ phosphors was performed by evaluation of X‐ray diffraction (XRD), photoluminescence (PL)/photoluminescence excitation (PLE), decay time and thermal quenching properties. The results showed that the yellow emission was generated from the BaSiO3:Eu2+ phosphor, while the green emission was ascribed to a small amount of Ba2SiO4:Eu2+ compound that was present in the solid‐state reaction sample. This work clarifies the luminescence properties of Eu2+ ions in BaSiO3 and Ba2SiO4 hosts.  相似文献   

18.
Calcium aluminate phosphor co‐doped Eu2+, Dy3+, Nd3+ is prepared by the combustion method. We study systemically the influences of the quantity of mixed Dy3+ ion, the quantity of flux H3BO3, the differences in dispersing methods between magnetic stirring and ultrasonic dispersing and the combustion temperature on the long‐persistence phosphor. The analytical results indicate that Dy3+ ion improves the properties of the phosphors CaAl2O4:Eu2+, Nd3+. The appropriate quantity of flux H3BO3 to reduce the forming temperature of the sample was determined. The monoclinic single phase of CaAl2O4 formed at 500°C and remained steady. The calcium aluminate co‐doped Eu2+, Dy3+, Nd3+ was synthesized by dispersal of the raw material using the ultrasonic method, and it had better optical properties. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
The growth of four heathland species, two grasses (D. flexuosa,M. caerulea) and two dwarf shrubs (C. vulgaris, E. tetralix),was tested in solution culture at pH 4.0 with 2 mol m–3N, varying the N03/NH4+ ratio up to 40% nitrate. In addition,measurements of NRA, plant chemical composition, and biomassallocation were carried out on a complete N03/NH4+ replacementseries up to 100% nitrate. With the exception of M. caerulea, the partial replacement ofNH4+ by NO3 tended to enhance the plant's growth ratewhen compared to NH4+ only. In contrast to the other species,D. flexuosa showed a very flexible response in biomass allocation:a gradual increase in the root weight ratio (RWR) with NO3increasing from 0 to 100%. In the presence of NH4+, grassesreduced nitrate in the shoot only; roots did not become involvedin the reduction of nitrate until zero ambient NH4+. The dwarfshrubs, being species that assimilate N exclusively in theirroots, displayed an enhanced root NRA in the presence of nitrate;in contrast to the steady increase with increasing NO3in Calluna roots, enzyme activity in Erica roots followed arather irregular pattern. Free nitrate accumulated in the tissuesof grasses only, and particularly in D. flexuosa. The relative uptake ratio for NO3 [(proportion of nitratein N uptake)/(proportion of nitrate in N supply)] was lowestin M. caerulea and highest in D. flexuosa. Whereas M. caeruleaand the dwarf shrubs always absorbed ammonium highly preferentially(relative uptake ratio for NO3 <0.20), D. flexuosashowed a strong preference for NO3 at low external nitrate(the relative uptake ratio for N03 reaching a value of2.0 at 10% NO3). The ecological significance of thisprominent high preference for NO3 at low NO3/NH4+ratio by D. flexuosa and its consequences for soil acidificationare briefly discussed. Key words: Ammonium, heathland lants, N03/NH4+ ratio, nitrate, nitrate reductase activity, soil acidification, specific absorption rate  相似文献   

20.
Europium trivalent (Eu3+)‐doped Y2O3 nanopowders of different concentrations (0.5, 2.5, 5 or 7 at.%) were synthesized by the sol‐gel method, at different pH values (pH 2, 5 or 8) and annealing temperatures (600°C, 800°C or 1000°C). The nanopowders samples were characterized by X‐ray diffraction (XRD), field emission scanning electron microscopy (FE‐SEM), Fourier transform infrared spectroscopy (FT‐IR) and steady state photoluminescence spectroscopy. The effect of pH of solution and annealing temperatures on structural, morphological and photoluminescence properties of Eu3+‐doped Y2O3 were studied and are discussed. It was found that the average crystallite size of the nanopowders increased with increasing pH and annealing temperature values. The Y2O3:Eu3+ material presented different morphology and its evolution depended on the pH value and the annealing temperature. Activation energies at different pH values were determined and are discussed. Under ultraviolet (UV) light excitation, Y2O3:Eu3+ showed narrow emission peaks corresponding to the 5D0–7FJ (J = 0, 1, 2 and 3) transitions of the Eu3+ ion, with the most intense red emission at 611 assigned to forced electric dipole 5D07F2. The emission intensity became more intense with increasing annealing temperature and pH values, related to the improvement of crystalline quality. For the 1000°C annealing temperature, the emission intensity presented a maximum at pH 5 related to the uniform cubic‐shaped particles. It was found that for lower annealing temperatures (small crystallite size) the CTB (charge transfer band) position presented a red shift. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号