首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated responsiveness to cytokines and differentiating potential of early human T cell precursors in vitro. Human CD3- CD4- CD8- (triple negative) thymocytes were highly purified by using magnetic bead columns and cell sorting. These cells proliferated for the first 3 to 4 days and then remained viable for up to 14 days in the presence of IL-7, IL-2 or IL-4 had only limited growth-promoting activity on these cells and could not maintain the cell viability. We followed the phenotypic change of triple negative thymocytes during culture with IL-7. After 7 to 14 days of culture with IL-7, a considerable proportion became CD4+ CD8+ (double positive). These cells were found to be CD3- CD4+ CD8 alpha+ beta- in contrast to common double positive thymocytes, which express low levels of CD3 and both alpha- and beta-chains of CD8. By using four-color immunofluorescence and multi-parameter cytofluorometric analysis, we could identify this novel subset in fresh thymocytes. These results suggest that the CD3- CD4+ CD8 alpha+ beta- subset exists physiologically in the human thymus and may represent an intermediate stage between triple negative and common double positive thymocytes.  相似文献   

2.

Background

CD4+/CD8+ double positive (DP) T cells have been described in healthy individuals as well as in patients with autoimmune and chronic infectious diseases. In chronic viral infections, this cell subset has effector memory phenotype and displays antigen specificity. No previous studies of double positive T cells in parasite infections have been carried out.

Methodology/Principal Findings

Seventeen chronic chagasic patients (7 asymptomatic and 10 symptomatic) and 24 non-infected donors, including 12 healthy and 12 with non-chagasic cardiomyopathy donors were analyzed. Peripheral blood was stained for CD3, CD4, CD8, HLA-DR and CD38, and lymphocytes for intracellular perforin. Antigen specificity was assessed using HLA*A2 tetramers loaded with T. cruzi K1 or influenza virus epitopes. Surface expression of CD107 and intracellular IFN-γ production were determined in K1-specific DP T cells from 11 chagasic donors. Heart tissue from a chronic chagasic patient was stained for both CD8 and CD4 by immunochemistry. Chagasic patients showed higher frequencies of DP T cells (2.1%±0.9) compared with healthy (1.1%±0.5) and non-chagasic cardiomyopathy (1.2%±0.4) donors. DP T cells from Chagasic patients also expressed more HLA-DR, CD38 and perforin and had higher frequencies of T. cruzi K1-specific cells. IFN-γ production in K1-specific cells was higher in asymptomatic patients after polyclonal stimulation, while these cells tended to degranulate more in symptomatic donors. Immunochemistry revealed that double positive T cells infiltrate the cardiac tissue of a chagasic donor.

Conclusions

Chagasic patients have higher percentages of circulating double positive T cells expressing activation markers, potential effector molecules and greater class I antigenic specificity against T. cruzi. Although K1 tetramer positive DP T cell produced little IFN-γ, they displayed degranulation activity that was increased in symptomatic patients. Moreover, K1-specific DP T cells can migrate to the heart tissue.  相似文献   

3.
Nam KO  Shin SM  Lee HW 《Cytokine》2006,33(2):87-94
4-1BB, one of co-stimulatory molecules, is a member of TNF receptor superfamily and expressed on T cells upon TCR ligation. We have shown that 4-1BB is a co-stimulatory molecule enhancing cell cycle progression and inhibiting activation-induced cell death of CD8+ T cells by enhancing TCR signaling pathways. Here, we first report that the cross-linking of 4-1BB increased the expression of IL-13 mRNA and protein, and its secretion apparently via calcineurin, a Ca2+/calmodulin-dependent phosphatase. Ligation of 4-1BB with p815-m-4-1BBL evoked intracellular Ca2+ level in CD8+ T cells. CD8+ T cells express IL-13 receptor alpha1 mRNA. Incubation with anti-IL-13 blocking mAb reduced proliferation of CD8+ T cells enhanced by 4-1BB, and the treatment of CD3/4-1BB-ligated CD8+ T cells with recombinant IL-13 enhances cell proliferation, indicating that 4-1BB-induced IL-13 expression is partially responsible for the CD8+ T cell expansion in an autocrine or paracrine manner.  相似文献   

4.
Classical CD4(+) and CD8(+) T cells recognize Ag presented by MHC class II (MHCII) and MHC class I (MHCI), respectively. However, our results show that CD4(-/-) mice mount a strong, readily detectable CD8(+) T cell response to MHCII-restricted epitopes after a primary bacterial or viral infection. These MHCII-restricted CD8(+)CD4(-) T cells are more similar to classical CD8(+) T cells than to CD4(+) T cells in their expression of effector functions during a primary infection, yet they also differ from MHCI-restricted CD8(+) T cells by their inability to produce high levels of the cytolytic molecule granzyme B. After resolution of a primary infection, epitope-specific MHCII-restricted T cells in CD4(-/-) mice persist for a long period of time as memory T cells. Surprisingly, upon reinfection the secondary MHCII-restricted response in CD4(-/-) mice consists mainly of CD8(-)CD4(-) T cells. In contrast to CD8(+) T cells, MHCII-restricted CD8(-)CD4(-) T cells are capable of producing IL-2 in addition to IFN-gamma and thus appear to have attributes characteristic of CD4(+) T cells rather than CD8(+) T cells. Therefore, MHCII-restricted T cells in CD4(-/-) mice do not share all phenotypic and functional characteristics with MHCI-restricted CD8(+) T cells or with MHCII-restricted CD4(+) T cells, but, rather, adopt attributes from each of these subsets. These results have implications for understanding thymic T cell selection and for elucidating the mechanisms regulating the peripheral immune response and memory differentiation.  相似文献   

5.
We previously reported that IL-7 maintains the viability and differentiation potential of CD25 (IL-2R p55) positive CD3-CD4-CD8- thymic pre-T cells in vitro. This culture system is suitable for studying signals that regulate differentiation of T cell precursors in the thymus. In this study, we screened cytokines for their capacity to induce CD4 or CD8 in murine thymic pre-T cells cultured with IL-7. Of 15 cytokines tested, only transforming growth factor (TGF-beta) and TNF-alpha induced CD8 (Lyt-2), while no cytokine was able to induce CD4 on CD25+CD3-CD4-CD8- thymocytes. The combination of TGF-beta and TNF-alpha was synergistic, and the majority of cells recovered after 2 to 3 days in culture expressed CD8 (but not CD3 or CD4). A similar effect of TGF-beta and TNF-alpha was observed using day-15 fetal thymocytes, CD3+CD4-CD8- or CD3+CD4+CD8- adult thymocytes, although the combination of these cytokines resulted in an additive rather than a synergistic effect in these subsets. In contrast, neither TGF-beta nor TNF-alpha induced CD8 expression on splenic CD4+CD8- T cells. These observations suggest a role for these cytokines in the induction of CD8 expression in CD8- thymocyte subsets including CD3-CD4-CD8- thymic pre-T cells.  相似文献   

6.
CD4 T cell-dependent CD8 T cell maturation   总被引:7,自引:0,他引:7  
We have investigated the contribution of CD4 T cells to the optimal priming of functionally robust memory CD8 T cell subsets. Intranasal infection of CD4 T cell-deficient (CD4(-/-)) mice with lymphocytic choriomeningitis virus resulted in the elaboration of virus-specific CD8 T cell responses that cleared the infection. However, by comparison with normal mice, the virus-specific CD8 T cells in CD4(-/-) mice were quantitatively and qualitatively different. In normal mice, lymphocytic choriomeningitis virus-specific memory CD8 T cells are CD44(high), many are CD122(high), and a majority of these cells regain expression of CD62L overtime. These cells produce IFN-gamma and TNF-alpha, and a subset also produces IL-2. In the absence of CD4 T cell help, a distinct subset of memory CD8 T cells develops that remains CD62L(low) up to 1 year after infection and exhibits a CD44(int)CD122(low) phenotype. These cells are qualitatively different from their counterparts in normal hosts, as their capacity to produce TNF-alpha and IL-2 is diminished. In addition, although CD4-independent CD8 T cells can contain the infection following secondary viral challenge, their ability to expand is impaired. These findings suggest that CD4 T cell responses not only contribute to the optimal priming of CD8 T cells in chronically infected hosts, but are also critical for the phenotypic and functional maturation of CD8 T cell responses to Ags that are more rapidly cleared. Moreover, these data imply that the development of CD62L(high) central memory CD8 T cells is arrested in the absence of CD4 T cell help.  相似文献   

7.
CD4+/CD8+ T cells play a major role in conferring immune protection against tuberculosis (TB), but it remains unknown how the immune responses of CD4+/CD8+ T cells exactly correlate with the clinical variables and disease statuses during anti-TB chemotherapy. To address this, several major immune parameters of CD4+/CD8+ T cells in peripheral blood derived from pulmonary TB patients and healthy volunteers were evaluated. We observed that active TB infection induced lower CD3+ T cell and CD4+ T cell levels but higher CD8+T cell levels, while anti-TB chemotherapy reversed these effects. Also, anti-TB treatment induced enhanced production of IL-2 and IFN-γ but reduced expression of IL-10 and IL-6. Moreover, the dynamic changes of CD3, CD4, and CD8 levels did not show a significant association with sputum smear positivity. However, the frequencies of IL-2+CD4+ or IL-10 + CD4+ T effector subpopulation or IL-1β production in peripheral blood showed significant difference between patients positive for sputum smear and patients negative for sputum smear after anti-TB treatment. These findings implicated that recovery of Th1/CD8+T cell effector levels might be critical immunological events in pulmonary TB patients after treatment and further suggested the importance of these immunological parameters as potential biomarkers for prediction of TB progress and prognosis.  相似文献   

8.
Impaired clonal expansion in athymic nude CD8+CD4- T cells   总被引:3,自引:0,他引:3  
A comparative study of the phenotype and immune functions of highly purified CD8+CD4- T cells obtained from the spleen and thymus of normal mice and from the spleen of athymic nude mice was conducted. Of seven individual normal and nude mice examined, the range of V beta 8+ cells among CD8+ T cells was a heterogeneous 4.3 to 30.5% for athymic nude mice and a much more uniform spread from 14.7 to 18.5% for normal mice. In six of the seven nude mice examined, the fraction of V beta 8+ cells was below the lower limit of the V beta 8 distribution in normal mice. However, one of the seven nude mice contained nearly twice the percentage of normal V beta 8+ cells. A reduction in the density of V beta 8 as well as CD3 Ag expression was also observed in athymic CD8+CD4- cells although an Ly-6-linked Ag, B4B2 displayed a highly increased expression. Considering the battery of Ag analyzed in entirety, athymic CD8+CD4- T cells were clearly distinct from their "counterpart" CD8+CD4- T cells isolated from either thymus or spleen of normal (euthymic) mice. Anti-CD3-mediated triggering of the TCR:CD3 complex caused extensive clonal proliferation in cultures to which single responding CD8+ T cells had been deposited. Under identical conditions, however, anti-CD3 caused little, if any clonal expansion in CD8+ cells from athymic nude mice. Highly purified athymic CD8+CD4- cells produced readily detectable IL-2R expression and IL-2 synthesis and secretion upon stimulation by anti-CD3 and by Con A. Production of IL-2 by purified athymic CD8+CD4- cells was due to CD8+CD4- cells and not due to a minor population of contaminating CD8- cells as anti-CD8 + C treatment completely abrogated the ability of athymic CD8+CD4- cells to produce IL-2. Despite IL-2 production and IL-2R expression by athymic nude CD8+CD4- T cells in response to anti-CD3 and to Con A, an impaired proliferative response followed.  相似文献   

9.
Frequency analysis of CD4+CD8+ T cells cloned with IL-4   总被引:2,自引:0,他引:2  
The coexpression of both CD4 and CD8 molecules on T cells occurs in the peripheral blood at a low frequency and can be generated transiently on CD4+ peripheral blood T cells by treatment with lectin which induces CD8 biosynthesis and cell surface expression. We have cloned T cells in a nonselective fashion from normal subjects in the presence of either IL-2, rIL-4 and IL-2, or rIL-4 and have examined the phenotypic expression of CD4 and CD8. The addition of excess rIL-4 increased the expression of CD8 on the surface of CD4+ T cell clones but did not increase CD4 expression on CD8+ T cell clones. There were three patterns of CD4 and CD8 expression observed: high density CD8 with no CD4 expression; high density CD4 with low CD8 expression; or high density CD4 with higher cell surface CD8 expression which was regulated by the presence of rIL-4. CD4+ T cell clones originally cultured in IL-2 and rIL-4 and subsequently grown in IL-2 alone exhibited decreased expression of the CD8 molecule. The increased expression of CD8 did not correlate with NK activity or lectin-dependent cytotoxicity in an antigen independent system. In addition, rIL-4 alone or in combination with IL-2 appeared to accelerate the growth curve of T cell clones as compared to IL-2 alone. These results show that IL-4 can upregulate CD8 expression on CD4+ T cell clones while not effecting CD4 expression on CD8+ T cell clones. As class I MHC is the ligand for the CD8 molecule, expression of CD8 induced by IL-4 on CD4+ T cells may allow for increased nonspecific cell to cell contact during the course of an inflammatory response.  相似文献   

10.
It is clear that dendritic cells (DCs) are essential for priming of T cell responses against tumors. However, the distinct roles DC subsets play in regulation of T cell responses in vivo are largely undefined. In this study, we investigated the capacity of OVA-presenting CD4-8-, CD4+8-, or CD4-8+ DCs (OVA-pulsed DC (DC(OVA))) in stimulation of OVA-specific T cell responses. Our data show that each DC subset stimulated proliferation of allogeneic and autologous OVA-specific CD4+ and CD8+ T cells in vitro, but that the CD4-8- DCs did so only weakly. Both CD4+8- and CD4-8+ DC(OVA) induced strong tumor-specific CD4+ Th1 responses and fully protective CD8+ CTL-mediated antitumor immunity, whereas CD4-8- DC(OVA), which were less mature and secreted substantial TGF-beta upon coculture with TCR-transgenic OT II CD4+ T cells, induced the development of IL-10-secreting CD4+ T regulatory 1 (Tr1) cells. Transfer of these Tr1 cells, but not T cells from cocultures of CD4-8- DC(OVA) and IL-10-/- OT II CD4+ T cells, into CD4-8+ DC(OVA)-immunized animals abrogated otherwise inevitable development of antitumor immunity. Taken together, CD4-8- DCs stimulate development of IL-10-secreting CD4+ Tr1 cells that mediated immune suppression, whereas both CD4+8- and CD4-8+ DCs effectively primed animals for protective CD8+ CTL-mediated antitumor immunity.  相似文献   

11.
12.
CD4+ T cells, particularly Th2 cells, play a pivotal role in allergic airway inflammation. However, the requirements for interactions between CD4+ and CD8+ T cells in airway allergic inflammation have not been delineated. Sensitized and challenged OT-1 mice in which CD8+ T cells expressing the transgene for the OVA(257-264) peptide (SIINFEKL) failed to develop airway hyperresponsiveness (AHR), airway eosinophilia, Th2 cytokine elevation, or goblet cell metaplasia. OT-1 mice that received naive CD4+IL-4+ T cells but not CD4+IL-4- T cells before sensitization developed all of these responses to the same degree as wild-type mice. Moreover, recipients of CD4+IL-4+ T cells developed significant increases in the number of CD8+IL-13+ T cells in the lung, whereas sensitized OT-1 mice that received primed CD4+ T cells just before challenge failed to develop these responses. Sensitized CD8-deficient mice that received CD8+ T cells from OT-1 mice that received naive CD4+ T cells before sensitization increased AHR and eosinophil numbers in bronchoalveolar lavage fluid when challenged with allergen. In contrast, sensitized CD8-deficient mice receiving CD8+ T cells from OT-1 mice without CD4+ T cells developed reduced AHR and eosinophil numbers in bronchoalveolar lavage fluid when challenged. These data suggest that interactions between CD4+ and CD8+ T cells, in part through IL-4 during the sensitization phase, are essential to the development of CD8+IL-13+ T cell-dependent AHR and airway allergic inflammation.  相似文献   

13.
Regulatory T cells (T(R)) play a critical role in the inhibition of self-reactive immune responses and as such have been implicated in the suppression of tumor-reactive effector T cells. In this study, we demonstrate that follicular lymphoma (FL)-infiltrating CD8+ and CD4+ T cells are hyporesponsive to CD3/CD28 costimulation. We further identify a population of FL-infiltrating CD4+CD25+GITR+ T(R) that are significantly overrepresented within FL nodes (FLN) compared with that seen in normal (nonmalignant, nonlymphoid hyperplastic) or reactive (nonmalignant, lymphoid hyperplastic) nodes. These T(R) actively suppress both the proliferation of autologous nodal CD8+CD25- and CD4+CD25- T cells, as well as cytokine production (IFN-gamma, TNF-alpha and IL-2), after CD3/CD28 costimulation. Removal of these cells in vitro by CD25+ magnetic bead depletion restores both the proliferation and cytokine production of the remaining T cells, demonstrating that FLN T cell hyporesponsiveness is reversible. In addition to suppressing autologous nodal T cells, these T(R) are also capable of suppressing the proliferation of allogeneic CD8+CD25- and CD4+CD25- T cells from normal lymph nodes as well as normal donor PBL, regardless of very robust stimulation of the target cells with plate-bound anti-CD3 and anti-CD28 Abs. The allogeneic suppression is not reciprocal, as equivalent numbers of CD25+FOXP3+ cells derived from either normal lymph nodes or PBL are not capable of suppressing allogeneic CD8+CD25- and CD4+CD25- T cells, suggesting that FLN T(R) are more suppressive than those derived from nonmalignant sources. Lastly, we demonstrate that inhibition of TGF-beta signaling partially restores FLN T cell proliferation suggesting a mechanistic role for TGF-beta in FLN T(R)-mediated suppression.  相似文献   

14.
CD8+ T cells can be primed in vitro to produce IL-4.   总被引:19,自引:0,他引:19  
IL-4 production by T lymphocytes from naive mice in response to stimulation by plate-bound anti-CD3 is concentrated among CD4+ T cells. In vitro stimulation of lymph node T cells with anti-CD3 plus IL-2 and IL-4 strikingly increases the frequency of cells that produce IL-4 in response to subsequent stimulation with anti-CD3 plus IL-2. Separation of these primed cell populations into CD4+ and CD8+ T cell by cell sorting reveals that the frequency of IL-4-producing cells in both population is similar. Verification that CD8+ T cells produce IL-4 is provided by the capacity of anti-IL-4 mAb to inhibit the response of the indicator cell line to the growth factor produced by the primed cells and by detection of IL-4 by an IL-4-specific ELISA. The in vitro "priming" of CD8+ T cells to produce IL-4 is not dependent on the presence of CD4+ T cells because highly purified CD8+ T cells can be stimulated to develop into cells capable of producing IL-4 by culture with plate-bound anti-CD3 plus IL-2 and IL-4.  相似文献   

15.
The heat-stable antigen (HSA), recognized by the monoclonal antibodies M1/69, B2A2, and J11d, is low or absent on the surface of most murine peripheral T cells but present on all but 3% of thymocytes. The CD4-CD8+ and CD4+CD8- or "single positive" thymic populations may be divided into further subgroups based on surface HSA expression. One group, CD4-CD8+ and expressing very high levels of HSA (HSA++), is an immature, T cell antigen receptor (TcR) negative, outer cortical blast cell. However, a further subdivision of CD4-CD8+ and CD4+CD8- single positives may be made, into those negative to low for HSA (HSA-) and those expressing moderate amounts of HSA (HSA+). The proportion of HSA- single positives is low in the thymus of young mice, whereas the proportion of HSA+ single positives is similar to that of the adult. Both the HSA- and the HSA+ subsets of single positive thymocytes from adult mice are CD3+ and express the normal peripheral T cell incidence of V beta 8 determinants on the TcR. On stimulation with concanavalin A in limit-dilution culture both HSA- and HSA+ subsets of single positive thymocytes give a high frequency of proliferating clones, and the clones from both HSA- and HSA+ subsets of CD4-CD8+ thymocytes are cytotoxic. Thus both HSA- and HSA+ single positive thymocytes are functionally mature. The HSA- subsets of single positive thymocytes differ from the HSA+ subsets in being slightly larger in size, in expressing higher levels of MEL-14, in binding more peanut agglutinin, and in including a proportion of cells expressing high levels of the Pgp-1 glycoprotein. It is suggested that HSA- CD4-CD8+ and HSA- CD4+CD8- thymocytes are more mature than their HSA+ counterparts, and might represent a previously activated or "memory" thymic subpopulation.  相似文献   

16.
Exposure to IL-4 during activation of naive murine CD8+ T cells leads to generation of IL-4-producing effector cells with reduced surface CD8, low perforin, granzyme B and granzyme C mRNA, and poor cytolytic function. We show in this study that maximal development of these cells depended on exposure to IL-4 for the first 5 days of activation. Although IL-4 was not required at later times, CD8 T cell clones continued to lose surface CD8 expression with prolonged culture, suggesting commitment to the CD8low phenotype. This state was reversible in early differentiation. When single CD8low cells from 4-day cultures were cultured without IL-4, 65% gave rise to clones that partly or wholly comprised CD8high cells; the proportion of reverted clones was reduced or increased when the cells were cloned in the presence of IL-4 or anti-IL-4 Ab, respectively. CD8 expression positively correlated with perforin and granzyme A, B, and C mRNA, and negatively correlated with IL-4 mRNA levels among these clones. By contrast, most CD8low cells isolated at later time points maintained their phenotype, produced IL-4, and exhibited poor cytolytic function after many weeks in the absence of exogenous IL-4. We conclude that IL-4-dependent down-regulation of CD8 is associated with progressive differentiation and commitment to yield IL-4-producing cells with little cytolytic activity. These data suggest that the CD4-CD8- cells identified in some disease states may be the product of a previously unrecognized pathway of effector differentiation from conventional CD8+ T cells.  相似文献   

17.
IL-7 maintains the T cell precursor potential of CD3-CD4-CD8- thymocytes.   总被引:10,自引:0,他引:10  
We and other investigators have reported that IL-4 (in the presence of PMA) or IL-7 (used alone) induce proliferation of both adult and fetal (gestation day 15) CD4-CD8- thymocytes. These results suggested that these cytokines may be growth factors for pre-T cells. However, we recently observed that among adult CD4-CD8- thymocytes, only the CD3+ subset proliferates in response to IL-7, whereas IL-4 + PMA induces proliferative responses in both CD3- and CD3+ subsets. Thus, we concluded that IL-7 used alone is not a potent growth stimulus for adult thymic CD3-CD4-CD8- triple negative (TN) T cell precursors. Interestingly, the viability of adult TN thymocytes in culture was improved by IL-7 for up to 1 wk, in spite of the inability of IL-7 to induce significant [3H]TdR incorporation in these cells. After culture in IL-7 for 4 days, the viable cells remained CD4-CD8-, but 25 to 35% expressed CD3 whereas the rest remained CD3-. In contrast, most of the cells cultured with IL-4 + PMA for 4 days remained TN. To investigate whether adult TN thymocytes that survive in vitro in the presence of IL-4 + PMA or IL-7 retain T cell progenitor potential, we tested whether they could reconstitute lymphoid cell-depleted (2-deoxyguanosine-treated) fetal thymus organ cultures. Our results demonstrate that TN cells cultured in IL-7 retain T cell progenitor potential.  相似文献   

18.
In addition to TCR-derived signals, costimulatory signals derived from stimulation of the CD28 molecule by its natural ligand, B7, have been shown to be required for CD4+8- T cell activation. We investigate the ability of B7 to provide costimulatory signals necessary to drive proliferation and differentiation of virgin CD4-8+ T-cells that express a transgenic TCR specific for the male (H-Y) Ag presented by H-2Db class I MHC molecules. Virgin male-specific CD4-8+ T cells can be activated either with B7 transfected chinese hamster ovary (CHO) cells and T3.70, a mAb specific for the transgenic TCR-alpha chain that is associated with male-reactivity, or by male dendritic cells (DC). Activated CD4-8+ T cells proliferated in the absence of exogenously added IL-2. IL-2 activity was detected in supernatants of CD4-8+T3.70+ cells that were stimulated with T3.70 and B7+CHO cells. The response of CD4-8+T3.70+ cells to T3.70/B7+CHO or to male DC stimulation were inhibited by CTLA4Ig, a fusion protein comprising the extracellular portion of CTLA4 and human IgG C gamma 1. It has been previously shown that CTLA4Ig binds B7 with high affinity. Staining with CTLA4Ig revealed that DC express about 50 times more B7 than CD4-8+ T cells. CTLA4Ig also specifically blocked the proliferation of male-reactive cells in vivo. We have also used an in vitro deletion assay whereby immature CD4+8+ thymocytes expressing the transgenic male-specific TCR are deleted by overnight incubation with either immobilized T3.70 or male DC to investigate the participation of the CD28/B7 pathway in the negative selection of immature thymocytes. Staining with B7Ig established that both immature murine CD4+8+ and mature CD4-8+ thymocytes express a high level of CD28. However, despite the high expression of CD28 on CD4+8+ thymocytes, it was found that deletion of CD4+8+ thymocytes expressing the male-specific TCR by the T3.70 mAb was not inhibited by B7+CHO cells. Furthermore, the deletion of these thymocytes by DC also was not inhibited by CTLA4Ig. These findings provide evidence that although signaling through CD28 can costimulate a primary anti-male response in mature CD4-8+ T cells, the CD28/B7 pathway does not appear to participate in the negative selection of immature CD4+8+ thymocytes.  相似文献   

19.
This study follows our previous investigation describing the production of four cytokines (IL-2, IL-4, IFN-gamma, and TNF-alpha) by subsets of thymocytes defined by the expression of CD3, 4, 8, and 25. Here we investigate in greater detail subpopulations of CD4-CD8- double negative (DN) thymocytes. First we divided immature CD25-CD4-CD8-CD3- (CD25- triple negative) (TN) thymocytes into CD44+ and CD44- subsets. The CD44+ population includes very immature precursor T cells and produced high titers of IL-2, TNF-alpha, and IFN-gamma upon activation with calcium ionophore and phorbol ester. In contrast, the CD44- subset of CD25- TN thymocytes did not produce any of the cytokines studied under similar activation conditions. This observation indicates that the latter subset, which differentiates spontaneously in vitro into CD4+CD8+, already resembles CD4+CD8+ thymocytes (which do not produce any of the tested cytokines). We also subdivided the more mature CD3+ DN thymocytes into TCR-alpha beta- and TCR-gamma delta-bearing subsets. These cells produced cytokines upon activation with solid phase anti-CD3 mAb. gamma delta TCR+ DN thymocytes produced IL-2, IFN-gamma and TNF-alpha, whereas alpha beta TCR+ DN thymocytes produced IL-4, IFN-gamma, and TNF-alpha but not IL-2. We then studied alpha beta TCR+ DN T cells isolated from the spleen and found a similar cytokine production profile. Furthermore, splenic alpha beta TCR+ DN cells showed a TCR V beta gene expression profile reminiscent of alpha beta TCR+ DN thymocytes (predominant use of V beta 8.2). These observations suggest that at least some alpha beta TCR+ DN splenocytes are derived from alpha beta TCR+ DN thymocytes and also raises the possibility that these cells may play a role in the development of Th2 responses through their production of IL-4.  相似文献   

20.
CD4+ T cells are crucial to the development of CD8+ T cell responses against hepatocytes infected with malaria parasites. In the absence of CD4+ T cells, CD8+ T cells initiate a seemingly normal differentiation and proliferation during the first few days after immunization. However, this response fails to develop further and is reduced by more than 90%, compared to that observed in the presence of CD4+ T cells. We report here that interleukin-4 (IL-4) secreted by CD4+ T cells is essential to the full development of this CD8+ T cell response. This is the first demonstration that IL-4 is a mediator of CD4/CD8 cross-talk leading to the development of immunity against an infectious pathogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号