首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sometime before or during the early Mesozoic era, new lineages of actinopterygian (ray-finned) fishes radically transformed their mode of gastrulation. During this evolutionary transformation, yolky endoderm was a hotspot for ontogenetic change. As holoblastic cleavage patterns were modified into meroblastic cleavage patterns, major changes in cell identity specification occurred within the mesendodermal marginal zone, as well as in the superficial epithelium of the embryo. These cellular identity changes resulted in the appearance of two novel extra-embryonic tissues within the embryos of teleostean fishes: the enveloping layer (EVL) and the yolk syncytial layer (YSL). The generation of these extra-embryonic tissues prompted major morphogenetic changes within the Organizer Region. As these evolutionary changes occurred, the outermost cell layer of the Organizer (the Organizer Epithelium) was apparently retained as a signaling center necessary for the establishment of left-right embryonic asymmetry in the embryo. Conserved and derived features of Organizer morphogenesis and gastrulation within ancient lineages of ray-finned fishes provide important insights into how the genetically encoded cell behaviors of early morphogenesis can be altered during the course of evolution. In particular, a highly divergent form of actinopterygian gastrulation, which is found in the annual fishes of South America, demonstrates that no aspect of vertebrate gastrulation is inherently immutable to evolutionary change.  相似文献   

2.
Somatic cell nuclear transfer (SCNT) is the most efficient cell reprogramming technique available, especially when working with bovine species. Although SCNT blastocysts performed equally well or better than controls in the weeks following embryo transfer at Day 7, elongation and gastrulation defects were observed prior to implantation. To understand the developmental implications of embryonic/extra-embryonic interactions, the morphological and molecular features of elongating and gastrulating tissues were analysed. At Day 18, 30 SCNT conceptuses were compared to 20 controls (AI and IVP: 10 conceptuses each); one-half of the SCNT conceptuses appeared normal while the other half showed signs of atypical elongation and gastrulation. SCNT was also associated with a high incidence of discordance in embryonic and extra-embryonic patterns, as evidenced by morphological and molecular "uncoupling". Elongation appeared to be secondarily affected; only 3 of 30 conceptuses had abnormally elongated shapes and there were very few differences in gene expression when they were compared to the controls. However, some of these differences could be linked to defects in microvilli formation or extracellular matrix composition and could thus impact extra-embryonic functions. In contrast to elongation, gastrulation stages included embryonic defects that likely affected the hypoblast, the epiblast, or the early stages of their differentiation. When taking into account SCNT conceptus somatic origin, i.e. the reprogramming efficiency of each bovine ear fibroblast (Low: 0029, Med: 7711, High: 5538), we found that embryonic abnormalities or severe embryonic/extra-embryonic uncoupling were more tightly correlated to embryo loss at implantation than were elongation defects. Alternatively, extra-embryonic differences between SCNT and control conceptuses at Day 18 were related to molecular plasticity (high efficiency/high plasticity) and subsequent pregnancy loss. Finally, because it alters re-differentiation processes in vivo, SCNT reprogramming highlights temporally and spatially restricted interactions among cells and tissues in a unique way.  相似文献   

3.
In vertebrates, a bone morphogenetic protein (BMP) signaling pathway patterns all ventral cell fates along the embryonic axis. BMP activity is positively regulated by Tolloid, a metalloprotease, that can eliminate the activity of the BMP antagonist Chordin. A tolloid mutant in zebrafish, mini fin (mfn), exhibits a specific loss of ventral tail tissues. Here, we investigate the spatial and temporal requirements for Tolloid (Mfn) in dorsoventral patterning of the tail. Through chimeric analyses, we found that Tolloid (Mfn) functions cell non-autonomously in the ventral-most vegetal cells of the gastrula or their derivatives. We generated a tolloid transgene under the control of the inducible hsp70 promoter and demonstrate that tolloid (mfn) is first required at the completion of gastrulation. Although tolloid is expressed during gastrulation and dorsally and ventrally within the tail bud, our results indicate that Tolloid (Mfn) acts specifically in the ventral tail bud during a approximately 4 h period extending from the completion of gastrulation to early somitogenesis stages to regulate BMP signaling. Examination of the temporal requirements of Chordin activity by overexpression of the hsp70-tolloid transgene indicates that Chordin is required both during and after gastrulation for proper patterning of the tail, contrasting Tld's requirement only during post-gastrula stages. We hypothesize that the gastrula role of Chordin in tail patterning is to generate the proper size domains of cells to enter the ventral and dorsal tail bud, whereas post-gastrula Chordin activity patterns the derivatives of the tail bud. Thus, fine modulation of BMP signaling levels through the negative and positive actions of Chordin and Tolloid, respectively, patterns tail tissues.  相似文献   

4.
During gastrulation, the vertebrate embryo is patterned and shaped by complex signaling pathways and morphogenetic movements. One of the first regions defined during gastrulation is the prospective notochord, which exhibits specific cell behaviors that drive the extension of the embryonic axis. To examine the signals involved in notochord formation in Xenopus laevis and the competence of cells to respond to these signals, we performed cell transplantation experiments during gastrulation. Labeled cells from the prospective notochord, somitic mesoderm, ventrolateral mesoderm, neural ectoderm, and epidermis, between stages 9 (pregastrulation) and 12 (late gastrulation), were grafted into the prospective notochord region of the early gastrula. We show that cells from each region are competent to respond to notochord-inducing signals and differentiate into notochordal tissue. Cells from the prospective neural ectoderm are the most responsive to notochord-inducing signals, whereas cells from the ventrolateral and epidermal regions are the least responsive. We show that at the end of gastrulation, while transplanted cells lose their competence to form notochord, they remain competent to form somites. These results demonstrate that at the end of gastrulation cell fates are not restricted within germ layers. To determine whether notochord-inducing signals are present throughout gastrulation, grafts were made into progressively older host embryos. We found that regardless of the age of the host, grafted cells from each region give rise to notochordal tissue. This indicates that notochord-inducing signals are present throughout gastrulation and that these signals overlap with somite-inducing signals at the end of gastrulation. We conclude that it is the change of competence that restricts cells to specific tissues rather than the regulation of the inducing signals.  相似文献   

5.
Theoretical, numerical and experimental methods are used to develop a comprehensive understanding of how cell shape affects the mechanical characteristics of two-dimensional aggregates such as epithelia. This is an important step in relating the mechanical properties of tissues to those of the cells of which they are composed. Statistical mechanics is used to derive formulas for the in-plane stresses generated by tensions gamma along cell-cell interfaces in sheets with anisotropic cellular fabric characterized by average cell aspect ratio kappa. These formulas are then used to investigate self-deformation (strain relaxation) of an anisotropic sheet composed of cells of thickness h and having effective viscosity mu. Finite element simulations of epithelia and of isolated cells and novel relaxation studies of specimens of embryonic epithelia reported herein are consistent with the predictions of the theory. In all cases, geometric factors cause the relaxation responses to be more complex than a single decaying exponential.  相似文献   

6.
Nowadays the formation of germ layers (endoderm and mesoderm) is associated with gastrulation. The question of whether the cell movements during early embryonic development in sponges (Porifera) are gastrulation as in eumetazoans remains in dispute. Recent data on the histological organization, digestion and embryonic morphogenesis in sponges are analyzed here in an attempt to answer this question. Unique features of these basal Metazoa are the lack of intestinal epithelium, digestive parenchyma or any cell population specialized in digestion. Food particles are captured by cells of almost all types. These data show that sponges have no embryonic layers such as ectoderm or endoderm, characteristic to eumetazoans, and, consequently, no gastrulation. We make an assumption that the formation of germ layers cannot be considered as a recapitulation of events that took place in the common ancestor of Porifera and Eumetazoa. The unity of Metazoa is expressed not in the presence of gastrulation processes per se, but in the universal nature of cell movement mechanisms ensuring various types of morphogenesis, including those underlying gastrulation. It is concluded that metazoan mechanisms of morphogenetic movements must have emerged in the course of evolution prior to the separation of the germ layers like endoderm and ectoderm.  相似文献   

7.
Nur77 and its family members, Nor-1 and Nurr1, are orphan steroid receptors implicated in a wide variety of biological processes, including apoptosis and dopamine neuron agenesis. Expression of these family members can be detected at low levels in many tissues but they are expressed at very high levels when cells are stimulated by outside signals, including serum, nerve growth factor, and receptor engagement. Introduction of a dominant negative Nur77 protein that blocks the activities of all family members led to inhibition of apoptosis in T cells. Nur77-deficient mice, however, exhibit no phenotype, and a line of Nor-1 mutant mice was reported to exhibit a mild ear development phenotype but no other gross abnormalities. Here, we report the generation of Nor-1-deficient mice with a block in early embryonic development. Nor-1 is expressed early during embryogenesis, and its loss leads to embryonic lethality around embryonic day 8.5 of gestation. The mutant embryos fail to complete gastrulation and display distinct morphological abnormalities, including a decrease in overall size, developmental delay and an accumulation of mesoderm in the primitive streak during gastrulation. Abnormal expression of a number of early developmental markers and defects in growth or distribution of emerging mesoderm cells were also detected. These data suggest that Nor-1 plays a crucial role in gastrulation.  相似文献   

8.
9.
10.
Gastrulation is a dynamic tissue-remodeling process occurring during early development and fundamental to the later organogenesis. It involves both chemical signals and physical factors. Although much is known about the molecular pathways involved, the roles of physical forces in regulating cellular behavior and tissue remodeling during gastrulation have just begun to be explored. Here, we characterized the force generated by the leading edge mesoderm (LEM) that migrates preceding axial mesoderm (AM), and investigated the contribution of LEM during Xenopus gastrulation. First, we constructed an assay system using micro-needle which could measure physical forces generated by the anterior migration of LEM, and estimated the absolute magnitude of the force to be 20–80 nN. Second, laser ablation experiments showed that LEM could affect the force distribution in the AM (i.e. LEM adds stretch force on axial mesoderm along anterior–posterior axis). Third, migrating LEM was found to be necessary for the proper gastrulation cell movements and the establishment of organized notochord structure; a reduction of LEM migratory activity resulted in the disruption of mediolateral cell orientation and convergence in AM. Finally, we found that LEM migration cooperates with Wnt/PCP to form proper notochord.  相似文献   

11.
During vertebrate gastrulation, concurrent inductive events and cell movements fashion the body plan. Convergence and extension (C&E) gastrulation movements narrow the vertebrate embryonic body mediolaterally while elongating it rostrocaudally. Segmented somites are shaped and positioned by C&E alongside the notochord and differentiate into skeleton, fast, and slow muscles during somitogenesis. In zebrafish, simultaneous inactivation of non-canonical Wnt signaling components Knypek and Trilobite strongly impairs C&E gastrulation movements. Here we show that knypek;trilobite double mutants exhibit a severe deficit in slow muscles and their precursor, adaxial cells, revealing essential roles of C&E movements in adaxial cell development. Adaxial cells become distinguishable in the presomitic mesoderm during late gastrulation by their expression of myogenic factors and axial-adjacent position. Using cell tracing analyses and genetic manipulations, we demonstrate that C&E movements regulate the number of prospective adaxial cells specified during gastrulation by determining the size of the interface between the inductive axial and target presomitic tissues. During segmentation, when the range of Hedgehog signaling from the axial tissue declines, tight apposition of prospective adaxial cells to the notochord, which is achieved by convergence movements, is necessary for their continuous Hedgehog reception and fate maintenance. We provide direct evidence to show that the deficiency of adaxial cells in knypek;trilobite double mutants is due to impaired C&E movements, rather than an alteration in Hedgehog signal and its reception, or a cell-autonomous requirement for Knypek and Trilobite in adaxial cell development. Our results underscore the significance of precise coordination between cell movements and inductive tissue interactions during cell fate specification.  相似文献   

12.
T-box gene family members have important roles during murine embryogenesis, gastrulation, and organogenesis. Although relatively little is known about how T-box genes are regulated, published gene expression studies have revealed dynamic and specific patterns in both embryonic and extraembryonic tissues of the mouse conceptus. Mutant alleles of the T-box gene Brachyury (T) have identified roles in formation of mesoderm and its derivatives, such as somites and the allantois. However, given the cell autonomous nature of T gene activity and conflicting results of gene expression studies, it has been difficult to attribute a primary function to T in normal allantoic development. We report localization of T protein by sectional immunohistochemistry in both embryonic and extraembryonic tissues during mouse gastrulation, emphasizing T localization within the allantois. T was detected in all previously reported sites within the conceptus, including the primitive streak and its derivatives, nascent embryonic mesoderm, the node and notochord, as well as notochord-associated endoderm and posterior neurectoderm. In addition, we have clarified T within the allantois, where it was first detected in the proximal midline of the late allantoic bud (approximately 7.5 days postcoitum, dpc) and persisted within an expanded midline domain until 6-somite pairs (s; approximately 8.5 dpc). Lastly, we have discovered several novel T sites, including the developing heart, visceral endoderm, extraembryonic ectoderm, and its derivative, chorionic ectoderm. Together, these data provide a unified picture of T in the mammalian conceptus, and demonstrate T's presence in unrelated cell types and tissues in highly dynamic spatiotemporal patterns in both embryonic and extraembryonic tissues.  相似文献   

13.
The values of cell wall tensions were calculated with an assumption of mechanical equilibrium of every cell apex on schematic diagrams of histological sections of the common frog embryonic tissues. The maps of the main (the strongest) tensions were drawn for the early gastrula and early neurula. The further course of gastrulation and neurulation was simulated with an assumption that the cell apices are displaced due to active contractions of the most tensed cell walls (variant A of the model). In addition, a suggestion was studied that the capacity for contraction falls in the most extended cell walls (variant B). Up to seven steps of model morphogenesis were simulated and the tension field was recalculated at every step. The course of gastrulation and neurulation was reproduced during simulation with sufficient details, including regional peculiarities of neurulation in the trunk and head regions. Both variants gave roughly similar results for gastrulation, whereas variant B ensured a faster course of model morphogenesis for neurulation. A conclusion was drawn that the mechanical tension fields established by the onset of gastrulation and neurulation represent a sufficient informational base for their further course.  相似文献   

14.
Tetraploid (4n) mouse embryos die at variable developmental stages. By examining 4n embryos from F2 hybrid and outbred mice, we show that 4n developmental potential is influenced by genetic background. The imprinted inactivation of an X chromosome-linked eGFP transgene in extraembryonic tissues occurred correctly in 4n embryos. A decrease of the cleavage rate in 4n preimplantation embryos compared to diploid (2n) embryos was revealed by real-time imaging, using a histone H2b:eGFP reporter. It has previously been known that mouse chimeras produced by the combination of diploid (2n) embryos with embryonic stem (ES) cells result in mixtures of the two components in epiblast-derived tissues. In contrast, the use of 4n host embryos with ES cells restricts 4n cells from the embryonic regions of chimeras, resulting in mice that are believed to be completely ES-derived. Using H2b:eGFP transgenic mice and ES cells, the behavior of 4n cells was determined at single cell resolution in 4n:2n injection and aggregation chimeras. We found a significant contribution of 4n cells to the embryonic ectoderm at gastrulation in every chimera analyzed. We show that the transition of the embryonic regions from a chimeric tissue to a predominantly 2n tissue occurs after gastrulation and that tetraploid cells may persist to midgestation. These findings suggest that the results of previously published tetraploid complementation assays may be influenced by the presence of tetraploid cells in the otherwise diploid embryonic regions.  相似文献   

15.
Lai SL  Chan TH  Lin MJ  Huang WP  Lou SW  Lee SJ 《PloS one》2008,3(10):e3439
Intensive cellular movements occur during gastrulation. These cellular movements rely heavily on dynamic actin assembly. Rho with its associated proteins, including the Rho-activated formin, Diaphanous, are key regulators of actin assembly in cellular protrusion and migration. However, the function of Diaphanous in gastrulation cell movements remains unclear. To study the role of Diaphanous in gastrulation, we isolated a partial zebrafish diaphanous-related formin 2 (zdia2) clone with its N-terminal regulatory domains. The GTPase binding domain of zDia2 is highly conserved compared to its mammalian homologues. Using a yeast two-hybrid assay, we showed that zDia2 interacts with constitutively-active RhoA and Cdc42. The zdia2 mRNAs were ubiquitously expressed during early embryonic development in zebrafish as determined by RT-PCR and whole-mount in situ hybridization analyses. Knockdown of zdia2 by antisense morpholino oligonucleotides (MOs) blocked epiboly formation and convergent extension in a dose-dependent manner, whereas ectopic expression of a human mdia gene partially rescued these defects. Time-lapse recording further showed that bleb-like cellular processes of blastoderm marginal deep marginal cells and pseudopod-/filopod-like processes of prechordal plate cells and lateral cells were abolished in the zdia2 morphants. Furthermore, zDia2 acts cell-autonomously since transplanted zdia2-knockdown cells exhibited low protrusive activity with aberrant migration in wild type host embryos. Lastly, co-injection of antisense MOs of zdia2 and zebrafish profilin I (zpfn 1), but not zebrafish profilin II, resulted in a synergistic inhibition of gastrulation cell movements. These results suggest that zDia2 in conjunction with zPfn 1 are required for gastrulation cell movements in zebrafish.  相似文献   

16.
The expression of the Ca2+-dependent epithelial cell adhesion molecule E-cadherin (also known as uvomorulin and L-CAM) in the early stages of embryonic development of Xenopus laevis was examined. E-Cadherin was identified in the Xenopus A6 epithelial cell line by antibody cross-reactivity and several biochemical characteristics. Four independent mAbs were generated against purified Xenopus E-cadherin. All four mAbs recognized the same polypeptides in A6 cells, adult epithelial tissues, and embryos. These mAbs inhibited the formation of cell contacts between A6 cells and stained the basolateral plasma membranes of A6 cells, hepatocytes, and alveolar epithelial cells. The time of E-cadherin expression in early Xenopus embryos was determined by immunoblotting. Unlike its expression in early mouse embryos, E-cadherin was not present in the eggs or early blastula of Xenopus laevis. These findings indicate that a different Ca2+-dependent cell adhesion molecule, perhaps another member of the cadherin gene family, is responsible for the Ca2+-dependent adhesion between cleavage stage Xenopus blastomeres. Detectable accumulation of E-cadherin started just before gastrulation at stage 9 1/2 and increased rapidly up to the end of gastrulation at stage 15. In stage 15 embryos, specific immunofluorescence staining of E-cadherin was discernible only in ectoderm, but not in mesoderm and endoderm. The ectoderm at this stage consists of two cell layers. The outer cell layer of ectoderm was stained intensely, and staining was localized to the basolateral plasma membrane of these cells. Lower levels of staining were observed in the inner cell layer of ectoderm. The coincidence of E-cadherin expression with the process of gastrulation and its restriction to the ectoderm indicate that it may play a role in the morphogenetic movements of gastrulation and resulting segregation of embryonic germ layers.  相似文献   

17.
18.
19.
20.
As the gateway to shaping the body plan, gastrulation is an important problem in developmental biology, and recent advances in cell biology have overcome some of the limitations of past approaches to learning how genes control reshaping of embryonic tissues. The use of fluorescent tracer dyes and live cell imaging methods to evaluate at the cellular level the results of genetic and molecular manipulations has advanced our understanding of the cell motility and contact behavior underlying tissue remodeling during gastrulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号