首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Until recently, the point of view that the unique tertiary structure is necessary for protein function has prevailed. However, recent data have demonstrated that many cell proteins do not possess such structure in isolation, although displaying a distinct function under physiological conditions. These proteins were named the naturally, or intrinsically, disordered proteins. The fraction of intrinsically disordered regions in such proteins may vary from several amino acid residues to a completely unordered sequence of several tens or even several hundreds of residues. The main distinction of these proteins from structured (globular) proteins is that they have no unique tertiary structure in isolation and acquire it only upon interaction with their partners. The conformation of these proteins in a complex is determined not only by their own amino acid sequence (as is typical of structured, or globular, proteins) but also by the interacting partner. This review discusses the structure-function relationships in structured and intrinsically disordered proteins. The intricateness of this problem and the possible ways to solve it are illustrated by the example of the EF1A elongation factor family.  相似文献   

2.
The point of view that a uniquely folded protein tertiary structure is required for the protein functioning has been prevailing in the literature quite recently. However of lately it has been found that many proteins in a cell have no such structure in an isolated state, though they have a well-defined function in physiological conditions. These proteins were named as proteins with natural or internal disorder. The portion of disordered regions in such proteins may vary from a sequence of several amino acids to a completely disordered sequence containing from tens to hundreds of amino acids. The main difference of these proteins from the structured (globular) ones is that they have no unique tertiary structure in an isolated state and acquire it after interaction with their partners. Their conformation in such a complex depends on the interacting partner and not only on their own amino acid sequence, which is specific for structured (globular) proteins. The problem of structural and functional relations in the structured proteins and proteins with internal disorder is discussed in this review. The complexity of the problem and its potential solutions are illustrated by the example of elongation factors EFlA.  相似文献   

3.
The interferon-inducible Mx1 protein is responsible for inborn resistance of mice to influenza. It is now recognized that this protein is a member of a family of interferon-inducible, putative GTP-binding proteins found in many organisms. Thus, these proteins, called the Mx proteins, are found in species that are naturally infected with influenza virus, and also in species that are not. Some Mx proteins display a broader antiviral profile than the one observed for Mx1 in mice. Others, however, may not be antiviral. Two recently discovered GTP-binding proteins, Vps1p in yeast and dynamin in rat, are also related to Mx1. These proteins are synthesized constitutively and serve basic cellular functions.  相似文献   

4.
Summary Ribosomal proteins of E. coli and yeast were separated by gel filtration on dextran (Sephadex) and polyacrylamide (Bio-Gel) columns. Both gels revealed a valuable separation of the proteins. Finally only Bio-Gel columns were used, since their polyacrylamide matrix is more resistant to the applied organic acids.The wide distribution of the molecular weights for both the E. coli and yeast ribosomal proteins was confirmed. E. coli ribosomal proteins were separated into three main groups by a single chromatography on Bio-Gel P-10. The same was true for yeast ribosomal proteins. Rechromatography of these protein groups resulted in a further valuable resolution. The fractionated proteins are recovered without any loss and they are very useful for further purification by other procedures, especially on a large scale basis.  相似文献   

5.
The stomatin-domain defines a family of proteins that are found in all classes of life. The ubiquity of stomatin-family proteins and their high degree of homology suggest that they have a unifying cellular function, which has yet to be defined. The five stomatin family proteins in mammals show varying expression patterns and different sub-cellular distributions. In surveying the relevant literature, three common themes emerge; stomatin family members are oligomeric; they mostly localise to membrane domains; and in many cases, they have been shown to modulate ion channel activity. How oligomerisation and membrane localisation contribute to the modulation of channel function is unclear to date. Future studies into the precise structure and mechanism of stomatin-like proteins need to address these important questions to clarify the detailed cellular function of stomatin-domain containing proteins.  相似文献   

6.
Natively unfolded proteins   总被引:13,自引:0,他引:13  
It is now clear that a significant fraction of eukaryotic genomes encode proteins with substantial regions of disordered structure. In spite of the lack of structure, these proteins nevertheless are functional; many are involved in critical steps of the cell cycle and regulatory processes. In general, intrinsically disordered proteins interact with a target ligand (often DNA) and undergo a structural transition to a folded form when bound. Several features of intrinsically disordered proteins make them well suited to interacting with multiple targets and to cell regulation. New algorithms have been developed to identify disordered regions of proteins and have demonstrated their presence in cancer-associated proteins and proteins regulated by phosphorylation.  相似文献   

7.
Glycolipid-binding proteins   总被引:1,自引:0,他引:1  
Proteins which bind glycolipids with high specificity are tentatively divided into two groups. One group consists of activator proteins involved in the catabolism of glycolipids by acid lysosomal hydrolases. Two activator proteins, GM2-activator and sphingolipid activator protein-1, are critically appraised on their glycolipid-binding properties and on their activity to facilitate the transfer of glycolipids. These proteins are glycoproteins localized in the lysosomes. Their molecular weights are in a range of 21 000-27 000, and isoelectric points are 4-5. Glycolipid transfer protein (GLTP) is included in the other group. GLTP purified from pig brain has a molecular weight of about 20 000 and an isoelectric point of 8.3. GLTP facilitates the transfer of various glycosphingolipids and glyceroglycolipids between membranes. The protein does not facilitate the transfer of phospholipids or cholesterol. GLTP binds galactosylceramide. The galactosylceramide-GLTP complex participates in the transfer reaction as the intermediate. Each protein in both groups binds glycolipids with a characteristic specificity to the sugar moiety. A stoichiometry of 1 mol of lipid per mol of protein has been found in all three proteins. Proteins in both groups seem to have a hydrophobic region on their surface, since all three proteins have been efficiently purified by hydrophobic chromatography.  相似文献   

8.
14-3-3 proteins: regulators of numerous eukaryotic proteins   总被引:7,自引:0,他引:7  
van Heusden GP 《IUBMB life》2005,57(9):623-629
14-3-3 proteins form a family of highly conserved proteins capable of binding to more than 200 different mostly phosphorylated proteins. They are present in all eukaryotic organisms investigated, often in multiple isoforms, up to 13 in some plants. 14-3-3 binding partners are involved in almost every cellular process and 14-3-3 proteins play a key role in these processes. 14-3-3 proteins interact with products encoded by oncogenes, with filament forming proteins involved in Alzheimer'ss disease and many other proteins related to human diseases. Disturbance of the interactions with 14-3-3 proteins may lead to diseases like cancer and the neurological Miller-Dieker disease. The molecular consequences of 14-3-3 binding are diverse and only partly understood. Binding of a protein to a 14-3-3 protein may result in stabilization of the active or inactive phosphorylated form of the protein, to a conformational alteration leading to activation or inhibition, to a different subcellular localization or to the interaction with other proteins. Currently genome- and proteome-wide studies are contributing to a wider knowledge of this important family of proteins.  相似文献   

9.
Archaea, along with Bacteria and Eukarya, are the three domains of life. In all living cells, chromatin proteins serve a crucial role in maintaining the integrity of the structure and function of the genome. An array of small, abundant and basic DNA-binding proteins, considered candidates for chromatin proteins, has been isolated from the Euryarchaeota and the Crenarchaeota, the two major phyla in Archaea. While most euryarchaea encode proteins resembling eukaryotic histones, crenarchaea appear to synthesize a number of unique DNA-binding proteins likely involved in chromosomal organization. Several of these proteins (e.g., archaeal histones, Sac10b homologs, Sul7d, Cren7, CC1, etc.) have been extensively studied. However, whether they are chromatin proteins and how they function in vivo remain to be fully understood. Future investigation of archaeal chromatin proteins will lead to a better understanding of chromosomal organization and gene expression in Archaea and provide valuable information on the evolution of DNA packaging in cellular life.  相似文献   

10.
Salivary proline-rich proteins   总被引:10,自引:0,他引:10  
Summary Proline-rich proteins are major components of parotid and submandibular saliva in humans as well as other animals. They can be divided into acidic, basic and glycosylated proteins. The primary structure of the acidic proline-rich proteins is unique and shows that the proteins do not belong to any known family of proteins. The proline-rich proteins are apparently synthesized in the acinar cells of the salivary glands and their phenotypic expression is under complex genetic control.The acidic proline-rich proteins will bind calcium with a strength which indicates that they may be important in maintaining the concentration of ionic calcium in saliva. Moreover they can inhibit formation of hydroxyapatite, whereby growth of hydroxyapatite crystals on the tooth surface in vivo may be avoided. Both of these activities as well as the binding site for hydroxyapatite are located in the N-terminal proline-poor part of the protein. Little is known about the functions of the glycosylated and basic proline-rich proteins.  相似文献   

11.
The Homer family of adaptor proteins consists of three members in mammals, and homologs are also known in other animals but not elsewhere. They are predominantly localized at the postsynaptic density in mammalian neurons and act as adaptor proteins for many postsynaptic density proteins. As a result of alternative splicing each member has several variants, which are classified primarily into the long and short forms. The long Homer forms are constitutively expressed and consist of two major domains: the amino-terminal target-binding domain, which includes an Enabled/vasodilator-stimulated phosphoprotein (Ena/VASP) homology 1 (EVH1) domain, and the carboxy-terminal self-assembly domain containing a coiled-coil structure and leucine zipper motif. Multimers of long Homer proteins, coupled through their carboxy-terminal domains, are thought to form protein clusters with other postsynaptic density proteins, which are bound through the amino-terminal domains. Such Homer-mediated clustering probably regulates or facilitates signal transduction or cross-talk between target proteins. The short Homer forms lack the carboxy-terminal domain; they are expressed in an activity-dependent manner as immediate-early gene products, possibly disrupting Homer clusters by competitive binding to target proteins. Homer proteins are also involved in diverse non-neural physiological functions.  相似文献   

12.
Data available in literature on neurospecific proteins of cytoskeletal structures--microtubules, microfilaments and intermediate filaments are generalized. Properties of tissue-specific cytoskeletal proteins which are typical of nerve cells are summarized. The structure, physicochemical properties, cell localization, metabolism and function of cytoskeletal proteins are characterized. The coexpression and interaction of different cytoskeletal structures are considered. An analysis of neurospecific cytoskeletal proteins is of great practical importance for neurobiology, neurooncology, neurosurgery. The proteins can be used as markers of different pathologies in the nervous system.  相似文献   

13.
Sulfatide-binding proteins   总被引:4,自引:0,他引:4  
Sulfatides (galactosyl ceramide-I3-sulfate) and other sulfated glycolipids are found in many tissues. The cell adhesion proteins laminin, thrombospondin, and von Willebrand factor bind specifically to sulfated glycolipids. Methods for characterizing the specificity of these interactions using surface-adsorbed glycolipids are reviewed. The three proteins do not bind to other anionic lipids, including gangliosides, phospholipids, or cholesterol 3-sulfate. Binding to sulfatides is saturable and of relatively high affinity. Relative binding avidity depends on the oligosaccharide structure of the glycolipids. Binding to sulfatides in erythrocyte membranes can account for the hemagglutinating activities of the three proteins and may play a role in the interactions of these proteins with other cell types.  相似文献   

14.
Recent in silico analysis has revealed the presence of a group of proteins in pro and lower eukaryotes, but not in Man, that show extensive amino acid sequence similarity to known O(6)-alkylguanine-DNA alkyltransferases, but where the cysteine at the putative active site is replaced by another residue, usually tryptophan. Here we review recent work on these proteins, which we designate as alkyltransferase-like (ATL) proteins, and consider their mechanism of action and role in protecting the host organisms against the biological effects of O(6)-alkylating agents, and their evolution. ATL proteins from Escherichia coli (eAtl, transcribed from the ybaz open reading frame) and Schizosaccharomyces pombe (Atl1) are able to bind to a range of O(6)-alkylguanine residues in DNA and to reversibly inhibit the action of the human alkyltransferase (MGMT) upon these substrates. Isolated proteins were not able to remove the methyl group in O(6)-methylguanine-containing DNA or oligonucleotides, neither did they display glycosylase or endonuclease activity. S. pombe does not contain a functional alkyltransferase and atl1 inactivation sensitises this organism to a variety of alkylating agents, suggesting that Atl1 acts by binding to O(6)-alkylguanine lesions and signalling them for processing by other DNA repair pathways. Currently we cannot exclude the possibility that ATL proteins arose through independent mutation of the alkyltransferase gene in different organisms. However, analyses of the proteins from E. coli and S. pombe, are consistent with a common function.  相似文献   

15.
Conclusions The isolation of hnRNP complexes has identified many new proteins and their characterization has led to the identification of several motifs that are important for RNA binding. These motifs are present in a wide variety of proteins including splicing factors, ribosomal proteins, and several proteins of unknown function. These findings have blurred the lines of demarcation between proteins previously thought of as RNA packaging proteins and RNA processing factors. Recent findings on hnRNP proteins have suggested a plethora of possible functions along the pathway of mRNA metabolism. It can be expected that the next few years will see the unraveling of the detailed functions of hnRNP proteins.  相似文献   

16.
Three groups of proteins can be clearly discriminated in the total protein of L cell polysomes by selective labelling in the presence of low doses of actinomycin D and two-dimensional polyacrylamide/dodecylsulfate gel electrophoresis followed by autoradiography: (a) structural ribosomal proteins which are not labelled in the presence of actinomycin D and form stained non-radioactive spot in gels; (b) exchangeable ribosomal proteins which are labelled in the presence of actinomycin D and stained radioactive spots; (c) non-ribosomal proteins which are detectable only by autoradiography of gels. The large and small subunits of L cell ribosomes contain respectively 45 and 34 ribosomal proteins with molecular weights less than or equal to 50 000; seven of the large subunit proteins and nine of the small subunit proteins are exchangeable. Most of the non-ribosomal proteins migrate in the region of the related to the separation of the ribosomal proteins of mammalian cells and the possible significance of the presence of non-ribosomal proteins in polysomes are discussed.  相似文献   

17.
The review considers proteins of the synaptonemal complex (SC), a specific structure formed between homologous chromosomes in maturing germline cells during meiotic prophase I. The structure and functions are described for proteins that form ultrastructural SC elements in mammals, in yeast, and in higher plants. The roles of cohesions and of the SC proteins in meiotic sister-chromatid cohesion are considered. Though still scarce, data are summarized on the SC self-assembly and dissociation and on the molecular composition of SC-associated recombination nodules, which provide a compartment for meiotic recombination enzymes. The accumulating data on the SC molecular components and on their structure, properties, and interactions improve the understanding of the SC function.  相似文献   

18.
Biofilm-associated proteins   总被引:1,自引:0,他引:1  
Although exopolysaccharides are important and often essential compounds of the biofilm matrix, recent evidences suggest that a group of surface proteins plays a leading role during the development of the microbial communities. The first member of this group of proteins was described in a Staphylococcus aureus bovine mastitis isolate and was named Bap, for biofilm-associated protein. Later on, other surface proteins homologous to Bap and involved in biofilm development have been described in many gram-positive and gram-negative bacteria. In this review, we have summarized our knowledge about three members of this group of proteins: Bap of S. aureus, Esp of Enterococcus faecalis and BapA of Salmonella enterica ser. Enteritidis.  相似文献   

19.
Plastid translation occurs on bacterial-type 70S ribosomes consisting of a large (50S) subunit and a small (30S) subunit. The vast majority of plastid ribosomal proteins have orthologs in bacteria. In addition, plastids also possess a small set of unique ribosomal proteins, so-called plastid-specific ribosomal proteins (PSRPs). The functions of these PSRPs are unknown, but, based on structural studies, it has been proposed that they may represent accessory proteins involved in translational regulation. Here we have investigated the functions of five PSRPs using reverse genetics in the model plant Arabidopsis thaliana. By analyzing T-DNA insertion mutants and RNAi lines, we show that three PSRPs display characteristics of genuine ribosomal proteins, in that down-regulation of their expression led to decreased accumulation of the 30S or 50S subunit of the plastid ribosomes, resulting in plastid translational deficiency. In contrast, two other PSRPs can be knocked out without visible or measurable phenotypic consequences. Our data suggest that PSRPs fall into two types: (i) PSRPs that have a structural role in the ribosome and are bona fide ribosomal proteins, and (ii) non-essential PSRPs that are not required for stable ribosome accumulation and translation under standard greenhouse conditions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号