首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Induction of petite yeast mutants by membrane-active agents.   总被引:1,自引:1,他引:0       下载免费PDF全文
J Jimnez  E Longo    T Benítez 《Applied microbiology》1988,54(12):3126-3132
Ethanol proved to be a strong mutagenic agent of Saccharomyces mitochondrial DNA. Other active membrane solvents, such as tert-butanol, isopropanol, and sodium dodecyl sulfate, also turned out to be powerful petite mutation [rho-] inducers. Mutants defective in ergosterol synthesis (erg mutants) showed an extremely high frequency of spontaneous petite cells, suggesting that mitochondrial membrane alterations that were caused either by changes in its composition, as in the erg mutants, or by the effects of organic solvents resulted in an increase in the proportion of petite mutants. Wine yeast strains were generally more tolerant to the mutagenic effects of alcohols on mitochondrial DNA and more sensitive to the effect of sodium dodecyl sulfate than laboratory strains. However, resistance to petite mutation formation in laboratory strains was increased by mitochondrial transfer from alcohol-tolerant wine yeasts. Hence, the stability of the [rho+] mitochondrial DNA in either the presence or absence of solvents depends in part on the nature of the mitochondrial DNA itself. The low frequency of petite mutants found in wine yeast-laboratory yeast hybrids and the fact that the high frequency of petite mutants of a particular wine spore segregated meiotically indicated that many nuclear genes also play an important role in the mitochondrial genome in both the presence and absence of membrane solvents.  相似文献   

2.
Summary Compound Hoe 15 030 is an analogue of berenil which is as effective as berenil in inducing petite mutants in Saccharomyces cerevisiae. Hoe 15 030 has greater stability than berenil in aqueous solution, and is less toxic to yeast at high drug concentrations. Mutants of S. cerevisia strain J69-1B have been isolated which are resistant to the petite inducing effects of Hoe 15 030. Three mutant strains (HR7, HR8 and HR10) were characterized and each was shown to carry a recessive nuclear mutation determining resistance to Hoe 15 030. The degree of resistance to Hoe 15 030 is different for each mutant, and each was found to be co-ordinately cross-resistant both to berenil and to another analogue of berenil, Hoe 13 548. However, the three mutants show no cross-resistance to other unrelated petite inducing drugs, including ethidium bromide, euflavine and 1-methyl phenyl neutral red.Further studies on the mutants revealed that each strain exhibits characteristic new properties indicative of changes in mitochondrial membrane functions concerned with the replication (and probably also repair) of mitochondrial DNA. Thus, mutant HR7 is hypersensitive to petite induction by the detergent sodium dodecyl sulphate under conditions where the parent J69-1B is unaffected by this agent. Mutant HR8 is even more sensitive to sodium dodecyl sulphate than is HR7, and additionally shows a markedly elevated spontaneous petite frequency. Isolated mitochondria from strains HR8 and HR10 (but not HR7) show resistance to the inhibitory effects of Hoe 15 030 on the replication of mitochondrial DNA in vitro.  相似文献   

3.
The objective of this study has been to gather data on genomic stability of baker's yeast strains during long-term mitotic growth under restrictive conditions so that comparisons could be made to other studies indicating genomic instability during meiosis. The work describes the analysis of mitotic stability of the nuclear and mitochondrial genomes in the baker's yeast strain V1 during incubation in continuous culture for 190 generations (300 days). The cells were cultured in complete medium containing 2% glucose and 8 to 12% ethanol, as a mutagenic agent specific for mtDNA. The high concentration of ethanol severely limited the growth rate of the cells. DNA samples were monitored for chromosomal pattern, polymorphisms in selected nuclear genes (SUC2, MALIT, ADH1) and mobile genetic elements (Ty1 and Y'), and for RFLPs in mtDNA. The results show that both the nuclear and mitochondrial genomes of grande cells were very stable. However, the frequency of petite mutants in the population varied dramatically during the course of the experiment, reaching as high as 87% petite during the first 27 days of the experiment and declining to 5.8% petite at the end. This decline can be attributed to selection against petite mutants in media containing high concentrations of ethanol. Moreover, when samples and the parental strain were compared at the end of the experiment, no change could be observed in parameters such as their growth rate in different media, capacity to leave doughs, viability in ethanol or frequency of petite mutants. Results therefore indicated that the majority of the cells in the population were very similar to the parental throughout the experiments, with no apparent molecular or phenotypical changes.  相似文献   

4.
Summary Several hundred petite mutants were isolated from yeast strains of different genotype to examine the effect of the petite mutation on maltose and alpha-methylglucoside fermentation. In most cases petite mutants isolated retain the ability to ferment maltose and alpha-methylglucoside, although at a slower rate. In one strain (1403-7A), however, the ability to ferment alpha-methylglucoside is completely lost in all petite mutants isolated from this strain. It is suggested that mitochondrial factors may be involved in the utilization of alpha-methylglucoside in strain 1403-7A.  相似文献   

5.
Ethidium bromide is known to be a powerful mutagen for the induction of cytoplasmically inherited petite mutations in yeast. The effect of ethidium bromide on the degree of suppressiveness of the induced mutants as a function of exposure time is described. The mitochondrial DNA of 20 ethidium bromide-induced petite mutants has been studied to determine its absence or presence and its buoyant density. Ten mutants, in which we were not able to detect any mitochondrial DNA, were neutral petites. The 10 remaining mutants with mitochondrial DNA simultaneously showed a measurable degree of suppressiveness. It was not possible to correlate the buoyant density of the mutant mitochondrial DNA with the degree of suppressiveness.This study was supported in part by USPHS grant GM 10017. G.M. received a Fulbright Travel Grant.  相似文献   

6.
When recently arisen spontaneous petite mutants of Saccharomyces cerevisiae are crossed, respiratory competent diploids can be recovered. Such restored strains can be divided into two groups having sectored or unsectored colony morphology, the former being due to an elevated level of spontaneous petite mutation. On the basis of petite frequency, the sectored strains can be subdivided into those with a moderate frequency (5–16%) and those with a high frequency (>60%) of petite formation. Each of the three categories of restored strains can be found on crossing two petites, suggesting either that the parental mutants contain a heterogeneous population of deleted mtDNAs at the time of mating or that different interactions can occur between the defective molecules. Restriction endonuclease analysis of mtDNA from restored strains that have a wild-type petite frequency showed that they had recovered a wild-type mtDNA fragmentation pattern. Conversely, all examined cultures from both categories of sectored strains contained aberrant mitochondrial genomes that were perpetuated without change over at least 200 generations. In addition, sectored colony siblings can have different aberrant mtDNAs. The finding that two sectored, restored strains from different crosses have identical but aberrant mtDNAs provides evidence for preferred deletion sites from the mitochondrial genome. Although it appears that mtDNAs from sectored strains invariably contain duplications, there is no apparent correlation between the size of the duplication and spontaneous petite frequency.  相似文献   

7.
The 27,100 base-pair circular mitochondrial DNA from the yeast Kloeckera africana has been found to contain an inverted duplication spanning 8600 base-pairs. Sequences hybridizing to transfer RNAs and the large ribosomal RNA are present in the duplication; however, one end of this segment terminates in the large mitochondrial ribosomal RNA sequence so that at least 1000 base-pairs of the gene are not repeated. The large and small mitochondrial ribosomal RNAs have been shown to have lengths of 2700 and 1450 bases, respectively, and genes for these sequences are separated by a minimum of 1300 base-pairs and a maximum of 1750 base-pairs. Consequences of the large inverted duplication to mechanisms of the petite mutation are discussed in terms of previous hypotheses centred on intramolecular recombination in yeast mitochondrial DNA at sequences of homology or partial homology. Despite the long inverted duplication in K. africana mitochondrial DNA, this yeast has one of the lowest frequencies of spontaneous petite mutants amongst petite positive yeasts. One implication of these findings is that in this yeast intra-molecular mitochondrial DNA sequence homology may not be an important factor in the excision process leading to petite formation.  相似文献   

8.
This paper describes investigations into the effects of ethidium bromide on the mitochondrial genomes of a number of different petite mutants derived from one respiratory competent strain of Saccharomyces cerevisiae. It is shown that the mutagenic effects of ethidium bromide on petite mutants occur by a similar mechanism to that previously reported for the action of this dye on grande cells. The consequences of ethidium bromide action in both cases are inhibition of the replication of mitochondrial DNA, fragmentation of pre-existing mitochondrial DNA, and the induction, often in high frequency, of cells devoid of mitochondrial genetic information (ρ ° cells).The susceptibility of the mitochondrial genomes to these effects of ethidium bromide varies in the different clones studied. The inhibition of mitochondrial DNA replication requires higher concentrations of ethidium bromide in petite cells than in the parent grande strain. Furthermore, the susceptibility of mitochondrial DNA replication to inhibition by ethidium bromide varies in different petite clones.It is found that during ethidium bromide treatment of the suppressive petite clones, the over-all suppressiveness of the cultures is reduced in parallel with the reduction in the over-all cellular levels of mitochondrial DNA. Furthermore, ethidium bromide treatment of petite clones carrying mitochondrial erythromycin resistance genes (ρ?ERr) leads to the elimination of these genes from the cultures. The rates of elimination of these genes are different in two ρ?ERr clones, and in both the gene elimination rate is slower than in the parent ρ+ ERr strain. It is proposed that the rate of elimination of erythromycin resistance genes by ethidium bromide is related to the absolute number of copies of these genes in different cell types. In general, the more copies of the gene in the starting cells, the slower is the rate of elimination by ethidium bromide. These concepts lead us to suggest that petite mutants provide a system for the biological purification of particular regions of yeast mitochondrial DNA and of particular relevance is the possible purification of erythromycin resistance genes.  相似文献   

9.
A range of physical and chemical agents induce the mitochondrial 'petite' mutation in the yeast Saccharomyces cerevisiae. DNA intercalating agents as well as chemicals which can interfere with DNA synthesis induce this mutation, but only in growing cells. Many chemical or physical agents that produce a DNA lesion which is not simply reversed can induce various levels of the petite mutation, and may be more effective in non-growing cells. A limited number of chemicals act like ethidium bromide, inducing a high frequency of petites which is partially reversible with increasing concentration or time. The ability of a specific compound to be transported into mitochondria or its affinity for AT base pairs in DNA may determine whether it acts primarily as a nuclear or mitochondrial mutagen. In mammalian cells, some neoplastic changes occur at the mitochondrial level. Analogies between yeast and mammalian mitochondria suggest that agents which increase petite mutagenesis in yeast may have some carcinogenic potential. Although some types of petite inducer may have potential as antitumour drugs, those which are very effective antimitochondrial agents appear to be too toxic for therapeutic use. A process comparable to early stages in petite mutagensis occurs in human degenerative diseases and it seems possible that a consequence of exposure to petite mutagens could be an increase in the rate of degenerative diseases or of the aging process.  相似文献   

10.
A 30 kd hydrophobic protein is extracted from yeast mitochondrial inner membrane. It is present in wild yeast strains but absent in mitochondrial DNA lacking mutants. The isoelectric point of the protein and its solubility in various organic solvents are determined. The fluorescence of a tryptophan residue near the surface of the 30 kd protein dissolved in butanol-1, can be quenched by phospholipids containing unsaturated fatty acids. Results are in accordance with the 30 kd protein being an integral protein of the yeast mitochondrial inner membrane.  相似文献   

11.
Summary The action of ethidium bromide and berenil on the mitochondrial genome of Saccharomyces cerevisiae has been compared in three types of study: (i) early kinetics (up to 4 h) of petite induction by the drugs in the presence or absence of sodium dodecyl sulphate; (ii) genetic consequences of long-term (8 cell generations) exposure to the drugs; (iii) inhibition of mitochondrial DNA replication, both in whole cells and in isolated mitochondria.The results have been interpreted as follows. Firstly, the early events in petite induction differ markedly for the two drugs, as indicated by differences in the short-term kinetics. After some stage a common pathway is apparently followed because the composition of the population of petite cells induced after long-term exposure are very similar for both ethidium bromide and berenil. Secondly, both drugs probably act at the same site to inhibit mitochondrial DNA replication, in view of the fact that a petite strain known to be resistant to ethidium bromide inhibition of mitochondrial DNA replication was found to have simultaneously acquired resistance to berenil. From consideration of the drug concentrations needed to inhibit mitochondrial DNA replication in vivo and in vitro it is suggested that in vivo permeability barriers impede the access of ethidium bromide to the site of inhibition of mitochondrial DNA replication, whilst access of berenil to this site is facilitated. The site at which the drugs act to inhibit mitochondrial DNA replication may be different from the site(s) involved in early petite induction. Binding of the drugs at the latter site(s) is considered to initiate a series of events leading to the fragmentation of yeast mitochondrial DNA and petite induction.  相似文献   

12.
When crosses are performed between newly arisen, spontaneous petite mutants of Saccharomyces cerevisiae, respiratory competent (restored) colonies can form. Some of the restored colonies are highly sectored and produce large numbers of petite mutants. The high-frequency petite formation trait is inherited in a non-Mendelian manner, and elimination of mitochondrial DNA from these strains results in the loss of the trait. These results indicate that abnormal mitochondrial genomes are sometimes formed during restoration of respiratory competence. It is hypothesized that these abnormalities result either from recombination between mitochondrial DNA fragments to produce molecules having partial duplications contained on inverted or transposed sequences, or else recombinational "hot spots" have been expanded.  相似文献   

13.
Wild-type yeast mitochondrial DNA (mtDNA) is inherited biparentally, whereas mtDNA of hypersuppressive petite mutants is inherited uniparentally in crosses to strains with wild-type mtDNA. Genomes of hypersuppressive petites contain a conserved ori sequence that includes a promoter, but it is unclear whether the ori confers a segregation or replication advantage. Fluorescent in situ hybridization analysis of wild-type and petite mtDNAs in crosses reveals no preferential segregation of hypersuppressive petite mtDNA to first zygotic buds. We identify single-stranded DNA circles and RNA-primed DNA replication intermediates in hypersuppressive petite mtDNA that are absent from non-hypersuppressive petites. Mutating the promoter blocks hypersuppressiveness in crosses to wild-type strains and eliminates the distinctive replication intermediates. We propose that promoter-dependent RNA-primed replication accounts for the uniparental inheritance of hypersuppressive petite mtDNA.  相似文献   

14.
Louise Prakash 《Genetics》1974,78(4):1101-1118
Two genes, rad6 and rad9, that confer radiation sensitivity in the yeast Saccharomyces cerevisiae also greatly reduce the frequency of chemically-induced reversions of a tester mutant cyc1-131, which is a chain initiation mutant in the structural gene determining iso-1-cytochrome c. Mutations induced by ethyl methanesulfonate (EMS), diethyl sulfate (DES), methyl methanesulfonate (MMS), dimethyl sulfate (DMS), nitroquinoline oxide (NQO), nitrosoguanidine (NTG), nitrogen mustard (HN2), beta-propiolactone, and tritiated uridine, as well as mutations induced by ultraviolet light (UV) and ionizing radiation were greatly diminished in strains homozygous for either the rad6 or rad9 gene. Nitrous acid and nitrosoimidazolidone (NIL), on the other hand, were highly mutagenic in these repair-deficient mutants, and at low doses, these mutagens acted with about the same efficiency as in the normal RAD strain. At high doses of either nitrous acid or NIL, however, reversion frequencies were significantly reduced in the two rad mutants compared to normal strains. Although both rad mutants are immutable to about the same extent, the rad9 strains tend to be less sensitive to the lethal effect of chemical mutagens than rad6 strains. It is concluded that yeast requires a functional repair system for mutation induction by chemical agents.  相似文献   

15.
Following targeted disruption of the unique CYC1 gene, the petite-negative yeast, Kluyveromyces lactis, was found to grow fermentatively in the absence of cytochrome c-mediated respiration. This observation encouraged us to seek mitochondrial mutants by treatment of K. lactis with ethidium bromide at the highest concentration permitting survival. By this technique, we isolated four mtDNA mutants, three lacking mtDNA and one with a deleted mitochondrial genome. In the three isolates lacking mtDNA, a nuclear mutation is present that permits petite formation. The three mutations occur at two different loci, designated MGI1 and MGI2 (for Mitochondrial Genome Integrity). The mgi mutations convert K. lactis into a petite-positive yeast. Like bakers' yeast, the mgi mutants spontaneously produce petites with deletions in mtDNA and lose this genome at high frequency on treatment with ethidium bromide. We suggest that the MGI gene products are required for maintaining the integrity of the mitochondrial genome and that, petite-positive yeasts may be naturally altered in one or other of these genes.  相似文献   

16.
Flor yeasts grow and survive in fino sherry wine where the frequency of respiratory-deficient (petite) mutants is very low. Mitochondria from flor yeasts are highly acetaldehyde- and ethanol-tolerant, and resistant to oxidative stress. However, restriction fragment length polymorphism (RFLP) of mtDNA from flor yeast populations is very high and reflects variability induced by the high concentrations of acetaldehyde and ethanol of sherry wine on mtDNA. mtDNA RFLP increases as the concentration of these compounds also increases, but is followed by a total loss of mtDNA in petite cells. Yeasts with functional mitochondria (grande) are target of continuous variability, so that flor yeast mtDNA can evolve extremely rapidly and may serve as a reservoir of genetic diversity, whereas petite mutants are eventually eliminated because metabolism in sherry wine is oxidative.  相似文献   

17.
Mechanism of Mitochondrial Mutation in Yeast   总被引:2,自引:0,他引:2  
THE yeast Saccharomyces cerevisiae can mutate to the respiratory-incompetent petite colony form. The mutation is probably caused by damage to, or loss of, the yeast's mitochondrial DNA, for petite mutants often lack mitochondrial DNA, possess it in abnormal amounts or with abnormal buoyant density1. Some of the agents, such as acrifiavine or ethidium bromide, which induce the petite mutation interfere with mitochondrial DNA synthesis2,3 whereas ethidium bromide also causes or permits degradation of Saccharomyces cerevisiae mitochondrial DNA2,3. We have observed that nalidixate (50 µg/ml.), an inhibitor of DNA synthesis, can prevent or delay petite mutation induced by ethidium bromide4. A similar effect has been observed by Hollenberg and Borst using a higher nalidixate concentration5. We have investigated the mechanism of this effect. A diploid prototrophic strain of Saccharomyces cerevisiae (NCYC 239) was used throughout.  相似文献   

18.
The phospholipid composition of various strains of the yeast, Saccharomyces cerevisiae, and several of their derived mitochondrial mutants grown under conditions designed to induce variations in the complement of mitochondrial membranes has been examined. Wild type and petite (cytoplasmic respiratory deficient) yeasts were fractionated into various subcellular fractions, which were monitored by electron microscopy and analyzed for cytochrome oxidase (in wild type) and phospholipid composition. 90% or more of the phospholipid, cardiolipin was found in the mitochondrial membranes of wild type and petite yeast. Cardiolipin content differed markedly under various growth conditions. Stationary yeast grown in glucose had better developed mitochondria and more cardiolipin than repressed log phase yeast. Aerobic yeast contained more cardiolipin than anaerobic yeast. Respiration-deficient cytoplasmic mitochondrial mutants, both suppressive and neutral, contained less cardiolipin than corresponding wild types. A chromosomal mutant lacking respiratory function had normal cardiolipin content. Log phase cells grown in galactose and lactate, which do not readily repress the development of mitochondrial membranes, contained as much cardiolipin as stationary phase cells grown in glucose. Cytoplasmic mitochondrial mutants respond to changes in the glucose concentration of the growth medium by variations in their cardiolipin content in the same way as wild type yeast does under similar growth conditions. It is concluded that cardiolipin content of yeast is correlated with, and is a good indicator of, the state of development of mitochondrial membrane.  相似文献   

19.
Crosses were made between haploid wild-type and suppressive petite strains of bakers' yeast to obtain zygotes for analysis of mitochondrial heterogeneity. Wild-type x petite zygotes contained about 40% noncristate mitochondria when immediate mating mixtures were examined. The frequency of defective mitochondria had decreased to an average of 9.2% in 1-week-old zygote isolate cultures, and to 4.4% in slant cultures 1.5 years after initial zygote isolation. The latter value was not significantly different from values obtained with wild x wild zygotes of either age. The noncristate mitochondria were of two types: one lacking inner membrane invaginations or elaborations and the other containing concentrically arranged loops of inner membrane. The significance of these two types of respiration-deficient mitochondria is unknown. The gradual decrease in frequency of noncristate mitochondria, perhaps due to selection pressures in mixed chondriomes, was discussed as a further indication of the semiautonomous nature of the yeast organelle.  相似文献   

20.
Summary Fourteen mutants have been identified in which the frequency of spontaneous mutations in mitochondrial DNA is increased. As well as increasing the frequency of mutations to resistance to erythromycin, oligomycin and spiramycin, all the mutants also show changes in the frequency of spontaneous petite induction. None of the mutants has any effect on the frequency of spontaneous nuclear mutations. Nine of the mutants are in one complementation group and five are in another. The phenotype of both groups is caused by a single nuclear mutation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号