首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Visfatin has recently been identified as a novel visceral adipokine which may be involved in obesity-related vascular disorders. However, it is not known whether visfatin directly contributes to endothelial dysfunction. Here, we investigated the effect of visfatin on vascular inflammation, a key step in a variety of vascular diseases. Visfatin induced leukocyte adhesion to endothelial cells and the aortic endothelium by induction of the cell adhesion molecules, ICAM-1 and VCAM-1. Promoter analysis revealed that visfatin-mediated induction of CAMs is mainly regulated by nuclear factor-kappaB (NF-kappaB). Visfatin stimulated IkappaBalpha phosphorylation, nuclear translocation of the p65 subunit of NF-kappaB, and NF-kappaB DNA binding activity in HMECs. Furthermore, visfatin increased ROS generation, and visfatin-induced CAMs expression and NF-kappaB activation were abrogated in the presence of the direct scavenger of ROS. Taken together, our results demonstrate that visfatin is a vascular inflammatory molecule that increases expression of the inflammatory CAMs, ICAM-1 and VCAM-1, through ROS-dependent NF-kappaB activation in endothelial cells.  相似文献   

5.
6.
7.
Enterovirus 71 (EV71) is a widespread virus that causes severe and fatal diseases in patients, including circulation failure. The mechanisms underlying EV71-initiated intracellular signaling pathways to influence host cell functions remain unknown. In this study, we identified a requirement for PDGFR, PI3-K/Akt, p38 MAPK, JNK, and NF-kappaB in the regulation of VCAM-1 expression by rat vascular smooth muscle cells (VSMCs) in response to viral infection. EV71 induced VCAM-1 expression in a time- and viral concentration-dependent manner. Infection of VSMCs with EV71 stimulated VCAM-1 expression and phosphorylation of PDGFR, Akt, and p38 MAPK which were attenuated by AG1296, wortmannin, and SB202190, respectively. The phosphorylation of JNK stimulated by EV71 was not detected under present conditions. In contrast, JNK inhibitor SP600125 inhibited EV71-induced VCAM-1 expression. Furthermore, VCAM-1 expression induced by EV71 was significantly attenuated by a selective NF-kappaB inhibitor (helenalin). Consistently, EV71-stimulated translocation of NF-kappaB into the nucleus and degradation of IkappaB-alpha as well as VCAM-1 mRNA expression was blocked by helenalin, AG1296, SB202190, SP600125, wortmannin, and LY294002. Moreover, the involvement of p38 MAPK, PI3-K/Akt, and NF-kappaB in EV71-induced VCAM-1 expression was reveled by that transfection with dominant negative plasmids of p38 MAPK, p85, Akt, NIK, IKK-alpha, and IKK-beta attenuated these responses. These findings suggest that in VSMCs, EV71-induced VCAM-1 expression was mediated through activation of PDGFR, PI3-K/Akt, p38 MAPK, JNK, and NF-kappaB pathways.  相似文献   

8.
Expression of cell adhesion molecule in endothelial cells upon activation by human immunodeficiency virus (HIV) infection is associated with the development of atherosclerotic vasculopathy. We postulated that induction of vascular cell adhesion molecule-1 (VCAM-1) by HIV-1 Tat protein in endothelial cells might represent an early event that could culminate in inflammatory cell recruitment and vascular injury. We determined the role of HIV-1 Tat protein in VCAM-1 expression in human pulmonary artery endothelial cells (HPAEC). HIV-1 Tat protein treatment significantly increased cell-surface expression of VCAM-1 in HPAEC. Consistently, mRNA expression of VCAM-1 was also increased by HIV-1 Tat protein as measured by RT-PCR. HIV-1 Tat protein-induced VCAM-1 expression was abolished by the NF-kappaB inhibitor pyrrolidine dithiocarbamate (PDTC) and the p38 MAPK inhibitor SB-203580. Furthermore, HIV-1 Tat protein enhanced DNA binding activity of NF-kappaB, facilitated nuclear translocation of NF-kappaB subunit p65, and increased production of reactive oxygen species (ROS). Similarly to VCAM-1 expression, HIV-1 Tat protein-induced NF-kappaB activation and ROS generation were abrogated by PDTC and SB-203580. These data indicate that HIV-1 Tat protein is able to induce VCAM-1 expression in HPAEC, which may represent a pivotal early molecular event in HIV-induced vascular/pulmonary injury. These data also suggest that the molecular mechanism underlying the HIV-1 Tat protein-induced VCAM-1 expression may involve ROS generation, p38 MAPK activation, and NF-kappaB translocation, which are the characteristics of pulmonary endothelial cell activation.  相似文献   

9.
10.
Kang JH  Kim CS  Han IS  Kawada T  Yu R 《FEBS letters》2007,581(23):4389-4396
Adipokines are involved in the obesity-induced chronic inflammatory response that plays a crucial role in the development of obesity-related pathologies such as type II diabetes and atherosclerosis. We here demonstrate that capsaicin, a naturally occurring phytochemical, can suppress obesity-induced inflammation by modulating adipokine release from and macrophage behavior in obese mice adipose tissues. Capsaicin inhibited the expressions of IL-6 and MCP-1 mRNAs and protein release from the adipose tissues and adipocytes of obese mice, whereas it enhanced the expression of the adiponectin gene and protein. The action of capsaicin is associated with NF-kappaB inactivation and/or PPARgamma activation. Moreover, capsaicin suppressed not only macrophage migration induced by the adipose tissue-conditioned medium, but also macrophage activation to release proinflammatory mediators. Capsaicin may be a useful phytochemical for attenuating obesity-induced inflammation and obesity-related complications.  相似文献   

11.
Activation of thromboxane receptors (TPr) may promote atherosclerosis by enhancing oxidative stress and inflammation. This study examined the role of Nox1, an NADPH-oxidase subunit, in the enhancement of interleukin (IL)-1β-induced monocyte adhesion by TPr. In cultured rat aortic vascular smooth muscle cells (VSMCs), U46619, a stable thromboxane A(2) mimetic, together with interleukin-1β significantly enhanced Nox1 mRNA expression, as well as adhesion of THP-1 monocytes. Activation of TPr also enhanced IL-1β-induced vascular cell adhesion molecule (VCAM)-1 expression, but inhibited inducible nitric oxide synthase (iNOS) expression. Silencing Nox1 expression by siRNA prevented the U46619 enhancement of IL-1β-induced monocyte adhesion, but had no significant effect on VCAM-1 or iNOS expression. Furthermore, monocyte adhesion was inhibited by superoxide dismutase, enhanced by a specific iNOS inhibitor, l-N(6)-(1-iminoethyl)-lysine, but not influenced by catalase. U46619 inhibited IL-1β-induced cyclic GMP production, and the inhibition was partially prevented by superoxide dismutase. In conclusion, activation of TPr enhances IL-1β-induced Nox1 expression in VSMCs, which is responsible for the up-regulation of monocyte adhesion. The effect of Nox1 is independent of the changes in VCAM-1 and iNOS expression, but depends on the inactivation of nitric oxide via generation of superoxide anion.  相似文献   

12.
Angiotensin II is implicated in cardiovascular diseases, which is associated with a role in increasing vascular inflammation. The present study investigated how angiotensin II modulates vascular inflammatory signaling and expression of inducible nitric oxide synthase (iNOS) and vascular cell adhesion molecule (VCAM)-1. In cultured rat aortic vascular smooth muscle cells (VSMCs), angiotensin II suppressed interleukin-1β-induced prolonged phosphorylation of extracellular signal-regulated kinase (ERK) and ribosomal S6 kinase (RSK)-1, and nuclear translocation of nuclear factor (NF)-κB, leading to decreased iNOS but enhanced VCAM-1 expression, associated with an up-regulation of mitogen-activated protein kinase phosphatase-1 expression. Knock-down of RSK1 selectively down regulated interleukin-1β-induced iNOS expression without influencing VCAM-1 expression. In vivo experiments showed that interleukin-1β, iNOS, and VCAM-1 expression were detectable in the aortic arches of both wild-type and apolipoprotein E-deficient (ApoE−/−) mice. VCAM-1 and iNOS expression were higher in ApoE−/− than in wild type mouse aortic arches. Angiotensin II infusion (3.2 mg/kg/day, for 6 days, via subcutaneous osmotic pump) in ApoE−/− mice enhanced endothelial and adventitial VCAM-1 and iNOS expression, but reduced medial smooth muscle iNOS expression associated with reduced phosphorylation of ERK and RSK-1. These results indicate that angiotensin II can differentially modulate inflammatory gene expression in aortic smooth muscle cells through influencing ERK-NF-κB crosstalk, which may contribute to angiotensin II-induced inflammatory disorders related to cardiovascular diseases.  相似文献   

13.
14.
Targeting cannabinoid-2 (CB(2)) receptors with selective agonists may represent a novel therapeutic avenue in various inflammatory diseases, but the mechanisms by which CB(2) activation exerts its anti-inflammatory effects and the cellular targets are elusive. Here, we investigated the effects of CB(2)-receptor activation on TNF-alpha-induced signal transduction in human coronary artery endothelial cells in vitro and on endotoxin-induced vascular inflammatory response in vivo. TNF-alpha induced NF-kappaB and RhoA activation and upregulation of adhesion molecules ICAM-1 and VCAM-1, increased expression of monocyte chemoattractant protein, enhanced transendothelial migration of monocytes, and augmented monocyte-endothelial adhesion. Remarkably, all of the above-mentioned effects of TNF-alpha were attenuated by CB(2) agonists. CB(2) agonists also decreased the TNF-alpha- and/or endotoxin-induced ICAM-1 and VCAM-1 expression in isolated aortas and the adhesion of monocytes to aortic vascular endothelium. CB(1) and CB(2) receptors were detectable in human coronary artery endothelial cells by Western blotting, RT-PCR, real-time PCR, and immunofluorescence staining. Because the above-mentioned TNF-alpha-induced phenotypic changes are critical in the initiation and progression of atherosclerosis and restenosis, our findings suggest that targeting CB(2) receptors on endothelial cells may offer a novel approach in the treatment of these pathologies.  相似文献   

15.
Endoplasmic reticulum (ER) stress is widely implicated in various pathological conditions such as diabetes. Previously, we reported that enhanced ER stress contributes to inflammation and vascular damage in diabetic and ischemia-induced retinopathy. However, the exact role of the signaling pathways activated by ER stress in vascular inflammation remains poorly understood. In the present study, we investigated the role of X-box binding protein 1 (XBP1) in retinal adhesion molecule expression, leukostasis, and vascular leakage. Exposure of human retinal endothelial cells to low dose ER stress inducers resulted in a robust activation of XBP1 but did not affect inflammatory gene expression. However, ER stress preconditioning almost completely abolished TNF-α-elicited NF-κB activation and adhesion molecule ICAM-1 and VCAM-1 expression. Pharmaceutical inhibition of XBP1 activation or knockdown of XBP1 by siRNA markedly attenuated the effects of preconditioning on inflammation. Moreover, loss of XBP1 led to an increase in ICAM-1 and VCAM-1 expression. Conversely, overexpression of spliced XBP1 attenuated TNF-α-induced phosphorylation of IKK, IκBα, and NF-κB p65, accompanied by decreased NF-κB activity and reduced adhesion molecule expression. Finally, in vivo studies show that activation of XBP1 by ER stress preconditioning prevents TNF-α-induced ICAM-1 and VCAM-1 expression, leukostasis, and vascular leakage in mouse retinas. These results collectively indicate a protective effect of ER stress preconditioning against retinal endothelial inflammation, which is likely through activation of XBP1-mediated unfolded protein response (UPR) and inhibition of NF-κB activation.  相似文献   

16.
17.
18.
Vascular endothelial growth factor (VEGF) induces adhesion molecules on endothelial cells during inflammation. Here we examined the mechanisms underlying VEGF-stimulated expression of intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), and E-selectin in human umbilical vein endothelial cells. VEGF (20 ng/ml) increased expression of ICAM-1, VCAM-1, and E-selectin mRNAs in a time-dependent manner. These effects were significantly suppressed by Flk-1/kinase-insert domain containing receptor (KDR) antagonist and by inhibitors of phospholipase C, nuclear factor (NF)-kappaB, sphingosine kinase, and protein kinase C, but they were not affected by inhibitors of mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK) 1/2 or nitric-oxide synthase. Unexpectedly, the phosphatidylinositol (PI) 3'-kinase inhibitor wortmannin enhanced both basal and VEGF-stimulated adhesion molecule expression, whereas insulin, a PI 3'-kinase activator, suppressed both basal and VEGF-stimulated expression. Gel shift analysis revealed that VEGF stimulated NF-kappaB activity. This effect was inhibited by phospholipase C, NF-kappaB, or protein kinase C inhibitor. VEGF increased VCAM-1 and ICAM-1 protein levels and increased leukocyte adhesiveness in a NF-kappaB-dependent manner. These results suggest that VEGF-stimulated expression of ICAM-1, VCAM-1, and E-selectin mRNAs was mainly through NF-kappaB activation with PI 3'-kinase-mediated suppression, but was independent of nitric oxide and MEK. Thus, VEGF simultaneously activates two signal transduction pathways that have opposite functions in the induction of adhesion molecule expression. The existence of parallel inverse signaling implies that the induction of adhesion molecule expression by VEGF is very finely regulated.  相似文献   

19.
Tan YR  Qin XQ  Guan CX  Zhang CQ  Luo ZQ  Sun XH 《生理学报》2003,55(2):121-127
细胞间粘附分子—1(ICAM—1)是介导细胞与细胞之间粘附的重要生物分子;核因子—κB(NF—κB)是体内普遍存在、能迅速对刺激产生反应的重要核转录因子。越来越多的证据显示,ICAM—1表达与NF—κB激活是炎症反应的重要步骤。我们应用免疫组化、RT—PCR、凝胶阻滞电泳(EMSA)等多种实验方法,观察了肺内调节肽对支气管上皮细胞ICAM—1表达及NF—κB活性的影响,以及NF—κB抑制剂MG—132对ICAM—1表达的影响。实验结果发现,VIP、EGF可使臭氧应激BECS的ICAM—1表达降低;ET—1、CGRP可使未受应激BECs的ICAM—1表达增加。NF—κB抑制剂MG—132可阻断O3、ET—1、CGRP引起的ICAM—1表达,提示NF—κB在调控ICAM—1表达中起重要作用。EMSA结果显示,BECs中NF—κB在臭氧应激下反复激活,CGRP与ET—1可促进NF—κB的激活;VIP与EGF可抑制臭氧应激的BECs中NF—κB的激活。以上结果说明,VIP、EGF可通过下调ICAM—1转录及NF—κB激活减轻炎症反应,而ET—1、CGRP可通过上调ICAM—1转录及NF—κB激活、加大炎症反应。ICAM—1与NF—κB的持续表达和反复激活是炎症持续加重发展的重要因素。  相似文献   

20.
Hyperinsulinemia is an independent risk factor for cardiovascular events and may contribute to cardiovascular disease. Low-grade chronic inflammation has been implicated in the pathogenesis of atherosclerosis. We aimed at determining the impact of pathophysiologically high insulin concentrations on cytokine-induced endothelial activation in human umbilical vein endothelial cells (HUVEC). HUVEC were incubated with insulin (0-24 h)+/-tumor necrosis factor (TNF)-alpha or lipopolysaccharide (LPS). At pathophysiological/pharmacological concentrations (10(-9)-10(-7) mol/L), insulin selectively induced VCAM-1 expression and potentiated the effects of TNF-alpha andLPS, effects reverted by the proteasome inhibitor lactacystin. Compared with TNF-alpha alone, insulin+TNF-alpha doubled U937 cell adhesion. Insulin markedly increased TNF-alpha-induced NF-kappaB activation and induced phosphorylated IkappaB-alpha accumulation. Therefore, hyperinsulinemia enhances cytokine-induced VCAM-1 expression in endothelial cells, thus potentially contributing to detrimental effects of other inflammatory stimuli on atherogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号