首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of the non-ionic detergents Triton X-100 and n-octyl beta-D-glucopyranoside on energy transfer between pigment-protein complexes of Pisum sativum thylakoids were investigated. This was done by monitoring the 77K fluorescence-emission characteristics of stacked and unstacked thylakoids exposed to a range of detergent concentrations. At sub-critical micellar concentrations, the detergents had little effect, whereas above these concentrations they caused increases of up to 20-fold in short-wavelength fluorescence intensity and a shift in its maximum wavelength from 685 to 680 nm. Fluorescence-emission intensities at 695 and 735 nm were relatively unaffected by detergent treatments, although Triton X-100 caused a wavelength shift in the emission peak from 735 to 728 nm. The results are discussed in terms of reversible dissociation of pigment-protein complexes induced by mild detergent solubilization and the consequent cessation of inter-complex energy transfer.  相似文献   

2.
A crucial bottleneck in membrane protein studies, particularly G-protein coupled receptors, is the notorious difficulty of finding an optimal detergent that can solubilize them and maintain their stability and function. Here we report rapid production of 12 unique mammalian olfactory receptors using short designer lipid-like peptides as detergents. The peptides were able to solubilize and stabilize each receptor. Circular dichroism showed that the purified olfactory receptors had alpha-helical secondary structures. Microscale thermophoresis suggested that the receptors were functional and bound their odorants. Blot intensity measurements indicated that milligram quantities of each olfactory receptor could be produced with at least one peptide detergent. The peptide detergents' capability was comparable to that of the detergent Brij-35. The ability of 10 peptide detergents to functionally solubilize 12 olfactory receptors demonstrates their usefulness as a new class of detergents for olfactory receptors, and possibly other G-protein coupled receptors and membrane proteins.  相似文献   

3.
The red antenna states of the external antenna complexes of higher plant photosystem I, known as LHCI, have been analyzed by measurement of their preequilibrium fluorescence upon direct excitation at 280 K. In addition to the previously detected F735 state, a hitherto undetected low-energy state with emission maximum around 713 nm was observed. The 280 K bandwidths (FWHM) are 55 nm for the F735 state and approximately 27 nm for the F713-nm state, much greater than for non-red-shifted antenna chlorophylls. The origin absorption band for the F735-nm state was directly detected by determination of its excitation (action) spectrum and lies at 709-710 nm. The absorption spectrum for F735, calculated using the Stepanov expression, closely overlaps the excitation spectrum, indicating that the very large Stokes shift (25 nm) is due to vibrational relaxation within the excited-state manifold and solvent effects can be excluded. Fluorescence anisotropy measurements, with direct excitation of F735, indicate that the transition dipoles of the two red states are parallel. Similar experiments performed in the long-wavelength absorbing tail of PSI-LHCI indicate the presence of emission state(s) that are red-shifted with respect to F735 of isolated LHCI. It is suggested that these are brought about by interactions between the complexes in PSI-LHCI, which occur in some yet undefined way, and which are broken upon solubilization of the component parts.  相似文献   

4.
Despite the major interest in membrane proteins at functional, genomic, and therapeutic levels, their biochemical and structural study remains challenging, as they require, among other things, solubilization in detergent micelles. The complexity of this task derives from the dependence of membrane protein structure on their anisotropic environment, influenced by a delicate balance between many different physicochemical properties. To study such properties in a small protein–detergent complex, we used fluorescence measurements and molecular dynamics (MD) simulations on the transmembrane part of glycophorin A (GpAtm) solubilized in micelles of dihexanoylphosphatidylcholine (DHPC) detergent. Fluorescence measurements show that DHPC has limited ability to solubilize the peptide, while MD provides a possible molecular explanation for this. We observe that the detergent molecules are balanced between two different types of interactions: cohesive interactions between detergent molecules that hold the micelle together, and adhesive interactions with the peptide. While the cohesive interactions are detergent mediated, the adhesion to the peptide depends on the specific interactions between the hydrophobic parts of the detergent and the topography of the peptide dictated by the amino acids. The balance between these two parameters results in a certain frustration of the system and rather slow equilibration. These observations suggest how molecular properties of detergents could influence membrane protein stabilization and solubilization.  相似文献   

5.
The secondary structure content of the COOH-terminal tryptic peptide of colicin E1 has been measured by analysis of UV circular dichroism spectra as a function of pH in aqueous medium and in the presence of the nonionic detergents octyl glucoside and Triton X-100. The alpha-helical content of the peptide increased by approximately 10%, from 45-47% to 56-57%, in the presence of the nonionic detergents, but not in aqueous medium, as the pH was decreased from 4.5 to 3.5. This pH dependence of conformation is similar to that reported elsewhere for the in vitro activity and binding of this peptide. A smaller increase in helical content was observed for the peptide in aqueous medium or in Triton X-100 as the pH was decreased from 6.5 to 4.5. The letter change in helical content was not seen in octyl glucoside which was present at a detergent:peptide stoichiometry 100 times that of Triton. The mean residue ellipticity measured at 222 nm for peptide added to asolectin vesicles by a freeze-thaw treatment was slightly larger at pH 3.5, and substantially larger at pH 4.5, than found at these pH values in the detergent solutions. Changes in helical content at the former, but not the latter pH, could be attributed to peptide insertion. It appears that protonation of one or more acidic amino acid residues in the COOH-terminal region of the molecule causes a conformational change that can be attributed to an extra helical domain that is stabilized in a nonpolar environment. From the similar pH dependence of the conformational change and in vitro binding and activity, it is inferred that interaction of this domain with the membrane is essential for binding and insertion.  相似文献   

6.
The kinetics of thylakoid membrane protein phosphorylation in the presence of light and adenosine triphosphate is correlated to an incease in the 77 °K fluorescence emission at 735 nm (F735) relative to that at 685 nm (F685). Analysis of detergent-derived submembrane fractions indicate phosphorylation only of the polypeptides of Photosystem II, and the light-harvesting chlorophyll-protein complex serving Photosystem II (LHC-II). Although several polypeptides are phosphorylated, only the dephosphorylation kinetics of LHC-II follow the kinetics of the decrease of the F735F685 fluorescence emission ratios. The relative quantum yield of Photosystem II was significantly lower in phosphorylated membranes compared to dephosphorylated membranes. Reversible LHC-II phosphorylation thus provides the physiological mechanism for the control of the distribution of absorbed excitation energy between the two photosystems.  相似文献   

7.
Herman J.M. Kramer  Jan Amesz 《BBA》1982,682(2):201-207
Spectra of fluorescence polarization were measured between 4 and 120 K of spinach chloroplasts, oriented in a magnetic field. At least seven emission bands were observed. The well known bands near 685 nm (‘F-685’) and 735–740 nm (‘F-735’) and the band near 680 nm (‘F-680’) were strongly polarized parallel to the plane of the thylakoid membrane, whereas emission bands near 695 nm (‘F-695’), 710, 730–735 and 760 nm showed perpendicular polarization. Assuming perfect orientation of the thylakoid membranes, we calculated orientation angles of 64, 47 and 66.5° for the emission dipoles of F-685, F-695 and F-735, respectively, with respect to the normal of the membrane. Excitation spectra of F-695 and F-735 in polarized light at 4 K provided information about the orientation of the absorption dipoles of chlorophylls a and b. The spectra thus obtained were in very good agreement with the linear dichroism spectrum. Moreover, they allowed us to distinguish between the pigments associated with Photosystems I and Ii, which is not possible from measurement of linear dichroism alone. The results indicate that a high degree of orientation is not confined to the long-wave absorbing bands, but also bands at shorter wavelength show a clear anisotropy. The calculated orientations were in quantitative agreement with the hypothesis that F-685 and F-735 are associated with chlorophylls absorbing at 676 and 710–715 nm, respectively.  相似文献   

8.
A rather simple method of isolation of photosystem 2 fragments, which are highly purified from Photosystem 1 admixture, has been developed on the basis of combined action of detergents and differential centrifugation. The isolated fragments are characterized by insignificant content of P700 (one molecule per 10500 molecules of chlorophyll) and by high ratio of band values at 685 and 735 nm in the low temperature emission spectrum of fluorescence (F685/F735=5.9). The data on photochemical activity and ability for photoinduced changes in fluorescence prove that the activity of Photosystem 2 is retained both at the level of reaction centre operation and at that of water photooxidation with oxygen evolution.  相似文献   

9.
The fluorescence yield (F) of spinach chloroplasts at 100°K measured at 735 nm (photosystem I fluorescence—F 735) and at 685 nm (photosystem II fluorescence—F 685) has been determined with different modes of laser excitation. The modes of excitation included a single picosecond pulse, sequences of picosecond pulses (4, 22, and 300 pulses spaced 5 ns apart) and a single nonmode-locked 2-μs pulse (MP mode). The F 735/F 685 intensity ratios decrease from 1.62 to 0.61 when a single picosecond pulse (or low-power continuous helium-neon laser) is replaced by excitation with the 300-ps pulse train (PPT mode) or MP mode. In the PPT mode of excitation, the 735-nm fluorescence band is quenched by a factor of 45 as the intensity is increased from 1015 to 1018 photons/cm2 per pulse train and the 685-nm fluorescence is quenched by a factor of 10. In the MP mode, the quenching factors are 25 and 7, respectively, in the same intensity range. Fluorescence quantum yield measurements with different picosecond pulse sequences indicate that relatively long-lived quenching species are operative, which survive from one picosecond pulse to another within the pulse train. The excitonic processes possible in the photosynthetic units are discussed in detail. The differences in the quenching factors between the MP and PPT modes of excitation are attributed to singlet-singlet annihilation, possible when picosecond pulses are utilized, but minimized in the MP mode of excitation. The long-lived quenchers are identified as triplets and/or bulk chlorophyll ions formed by singlet-singlet annihilation. The preferential quenching in photosystem I is attributed to triplet excitons. The influence of heating effects, photochemistry, bleaching, and two-photon processes is also considered and is shown to be negligible.  相似文献   

10.
Stability of membrane protein is crucial during protein purification and crystallization as well as in the fabrication of protein-based devices. Several recent studies have examined how various surfactants can stabilize membrane proteins out of their native membrane environment. However, there is still no single surfactant that can be universally employed for all membrane proteins. Because of the lack of knowledge on the interaction between surfactants and membrane proteins, the choice of a surfactant for a specific membrane protein remains purely empirical. Here we report that a group of short amphiphilic peptides improve the thermal stability of the multi-domain protein complex photosystem-I (PS-I) in aqueous solution and that the peptide surfactants have obvious advantages over other commonly used alkyl chain based surfactants. Of all the short peptides studied, Ac-I5K2-CONH2 (I5K2) showed the best stabilizing effect by enhancing the melting temperature of PS-I from 48.0°C to 53.0°C at concentration of 0.65 mM and extending the half life of isolated PS-I significantly. AFM experiments showed that PS-I/I5K2/Triton X-100 formed large and stable vesicles and thus provide interfacial environment mimicking that of native membranes, which may partly explain why I5K2 enhanced the thermal stability of PS-I. Hydrophobic and hydrophilic group length of IxKy had an important influence on the stabilization of PS-I. Our results showed that longer hydrophobic group was more effective in stabilizing PS-I. These simple short peptides therefore exhibit significant potential for applications in membrane protein studies.  相似文献   

11.
Tulumello DV  Deber CM 《Biochemistry》2011,50(19):3928-3935
α-Helical transmembrane (TM) segments in membrane proteins are comprised primarily of hydrophobic amino acids that accommodate insertion from water into the nonpolar membrane bilayer. In many such segments, however, polar residues are also present for structural or functional reasons. These latter residues impair the local favorable acyl interactions required for solvation by hydrophobic media such as phospholipids in native bilayers or detergents used for in vitro characterization. Using a series of Lys-tagged designed TM-like peptides (typified by KK-YAAAIAAIAWAIAAIAAAIAA-KKK) in which single-Asn residue substitutions (from Ile or Ala) were made successively from the center of the hydrophobic region toward the C-terminus, we demonstrate that polar residues strongly alter the nature of the interaction between TM segments and the solvating detergent. Through the application of sodium dodecyl sulfate-polyacrylamide gel electrophoresis, circular dichroism spectroscopy, and tryptophan fluorescence, we observed drastic differences in the structures of the detergent-peptide complexes that contain relatively minor sequence differences. For example, the blue shift of the Trp fluorescence (indicating local detergent solvation at this location) differs by as much as ~10 nm depending upon the position of a single Asn substitution in an otherwise identical segment. The overall results suggest that polar point mutations occurring in a biological membrane will elicit comparable effects, placing a significant refolding burden on the local protein structure and potentially leading to disease states through altered protein--lipid interactions in membrane proteins.  相似文献   

12.
The use of neutron scattering in studying the organisation of detergents in pure micelles, in protein/detergent mixed micelles and in crystals of membrane proteins, is reviewed. Small angle scattering has been used to study the size, shape and composition of pure and mixed protein/detergent micelles as well as the effects of adding small amphiphiles. The technique of contrast variation applied to single crystals is described and its application to the determination of the organization of detergent in single crystals of membrane proteins is discussed. A better understanding of protein/detergent interactions should help in producing crystals of membrane proteins more easily as well as clues to the nature of protein/lipid interactions in vivo.  相似文献   

13.
Non-ionic detergents are important tools for the investigation of interactions between membrane proteins and lipid membranes. Recent studies led to the question as to whether the ability to capture protein-lipid interactions depends on the properties of detergents or their concentration in purification buffers. To address this question, we present the synthesis of an asymmetric, hybrid detergent that combines the head groups of detergents with opposing delipidating properties. We discuss detergent properties and protein purification outcomes to reveal whether the properties of detergent micelles or the detergent concentration in purification buffers drive membrane protein delipidation. We anticipate that our findings will enable the development of rationally design detergents for future applications in membrane protein research.  相似文献   

14.
A new method is described for the isolation of subunits of the light-harvesting complex from Rhodospirillum rubrum (wild type and the G-9 mutant) in yields that approach 100%. The procedure involved treating membrane vesicles with ethylenediaminetetraacetic acid-Triton X-100 to remove components other than the light-harvesting complex and reaction center. In the preparation from wild-type cells, a benzene extraction was then employed to remove carotenoid and ubiquinone. The next step involved a careful addition of the detergent n-octyl beta-D-glucopyranoside, which resulted in a quantitative shift of the long-wavelength absorbance maximum from 873 to 820 nm. This latter complex was then separated from reaction centers by gel filtration on Sephadex G-100. The pigment-protein complex, now absorbing at 820 nm, contained two polypeptides of about 6-kilodalton molecular mass (referred to as alpha and beta) in a 1:1 ratio and two molecules of bacteriochlorophyll (BChl) for each alpha beta pair. This complex is much smaller in size than the original complex absorbing at 873 nm but probably is an associated form such as alpha 2 beta 2 X 4BChl or alpha 3 beta 3 X 6BChl. The 820-nm form could be completely shifted back to a form once again having a longer wavelength lambda max near 873 nm by decreasing the octyl glucoside concentration. Thus, the complex absorbing at 820 nm appears to be a subunit form of the original 873-nm complex.  相似文献   

15.
当突变种大麦Chlorina-f 2的类囊体膜在SDS/叶绿素的重量比为10:1,叶绿素的浓度为0.5mg/ml的条件下增溶,并在SDS-聚丙烯酰胺凝胶电泳中进行分离时,共出现4条含叶绿素的带。按电泳迁移率的增加,这些带分别是CP Ⅰ,CPa 1,CPa 2和FC。光谱测定表明CP Ⅰ为混有少量光系统Ⅱ??成分的光系统Ⅰ反应中心复合体,CPa 2为光系统Ⅱ反应中心复合体,CPa 2为光系统Ⅱ内周天线复合体。属于光系统Ⅰ的CP Ⅰ的叶绿素含量占总叶绿素的45.6%,而属于光系统Ⅱ的CPa Ⅰ和CPa 2的叶绿素之和则占总叶绿素的43.2%。可见在缺b大麦中,两个都失缺其外周天线的光系统的叶绿素含量是基本相等的。这和光合作用中两个光反应相互串联的理论是完全一致的。  相似文献   

16.
Rabbit or human erythrocytes lysed with Staphylococcus aureus alpha-toxin were solubilized with Triton X-100, and the toxin was subsequently isolated by gel chromatography, sucrose density gradient centrifugation, and reincorporation into liposomes. In the presence of Triton X-100, the toxin exhibited a sedimentation coefficient of 11S and eluted at a position between those of IgG and alpha 2-macroglobulin in gel chromatography. A single polypeptide subunit of 34,000 mol wt was found in SDS PAGE. In the electron microscope, ring-shaped or cylindrical structures were observed, 8.5-10 nm in diameter, harboring central pits or channels 2-3 nm in diameter. An amphiphilic nature of these structures was evident from their capacity to bind lipid and detergent, aggregation in the absence of detergents, and low elutability from biological and artificial membranes through ionic manipulations. In contrast to the membrane-derived form of alpha-toxin, native toxin was a water-soluble, 34,000 mol wt, 3S molecule, devoid of an annular structure. Because studies on the release of radioactive markers from resealed erythrocyte ghosts indicated the presence of circumscribed lesions of approximately 3-nm effective diameter in toxin-treated membranes, the possibility is raised that native alpha-toxin oligomerizes on and in the membrane to form an amphiphilic annular complex that, through its partial embedment within the lipid bilayer, generates a discrete transmembrane channel.  相似文献   

17.
Molecular dynamics simulations have been used to characterize the effects of transfer from aqueous solution to a vacuum to inform our understanding of mass spectrometry of membrane-protein-detergent complexes. We compared two membrane protein architectures (an α-helical bundle versus a β-barrel) and two different detergent types (phosphocholines versus an alkyl sugar) with respect to protein stability and detergent packing. The β-barrel membrane protein remained stable as a protein-detergent complex in vacuum. Zwitterionic detergents formed conformationally destabilizing interactions with an α-helical membrane protein after detergent micelle inversion driven by dehydration in vacuum. In contrast, a nonionic alkyl sugar detergent resisted micelle inversion, maintaining the solution-phase conformation of the protein. This helps to explain the relative stability of membrane proteins in the presence of alkyl sugar detergents such as dodecyl maltoside.  相似文献   

18.
Many attempts have been made to rationalize the use of detergents for membrane protein studies [J. Biol. Chem. 264 (1989) 4907]. The barrier properties of the detergent headgroup may be one parameter critically involved in protein protection. In this paper, we analyzed these properties using a model system, by comparing the accessibility of tryptophan octyl ester (TOE) to water-soluble collisional quenchers (iodide and acrylamide) in three detergent micelles. The detergents used differed only in the chemical nature of their polar headgroups, zwitterionic for dodecylphosphocholine (DPC) and nonionic for octa(ethylene glycol) dodecyl monoether (C(12)E(8)) and dodecylmaltoside (DM). In all cases, in phosphate buffer at pH 7.5, the binding of 5 microM TOE was complete in the presence of a slight excess of detergent micelles over TOE molecules, resulting in a significant blue shift and greater intensity of TOE fluorescence emission. The resulting quantum yield of bound TOE was between 0.08 (in DPC) and 0.12 (in DM) with an emission maximum (lambda(max)) of approximately 335 nm whatever the detergent micelle. Time-resolved fluorescence intensity decays of TOE at lambda(max) were heterogeneous in all micelles (3-4 lifetime populations), with mean lifetimes of 1.7 ns in DPC, and 2 ns in both C(12)E(8) and DM. TOE fluorescence quenching by iodide, in detergent micelles, yielded linear Stern-Volmer plots characteristic of a dynamic quenching process. The accessibility of TOE to this ion was the greatest with C(12)E(8), followed by DPC and finally DM (Stern-Volmer quenching constants K(sv) of 2 to 5.5 M(-1)). In contrast, the accessibility of TOE to acrylamide was greatest with DPC, followed by C(12)E(8) and finally DM (K(sv)=2.7-7.1 M(-1)). TOE also presents less rotational mobility in DM than in the other two detergents, as shown from anisotropy decay measurements. These results, together with previous TOE quenching measurements with brominated detergents [Biophys. J. 77 (1999) 3071] provide reference data for analyzing Trp characteristics in peptide (and more indirectly protein)-detergent complexes. The main finding of this study was that TOE was less accessible (to soluble quenchers) in DM than in DPC and C(12)E(8), the cohesion of DM headgroup region being suggested to play a role in the ability of this detergent to protect function and stability of solubilized membrane proteins.  相似文献   

19.
After saturating light illumination for 3 h the potential photochemical efficiency of photosystem Ⅱ (PSⅡ) (Fv/Fm, the ratio of variable to maximal fluorescence) decreased markedly and recovered basically to the level before saturating light illumination after dark recovery for 3 h in both soybean and wheat leaves, indicating that the decline in Fv/Fm is a reversible down-regulation. Also, the saturating light illumination led to significant decreases in the low temperature (77 K) chlorophyll fluorescence parameters F685 (chlorophyll a fluorescence peaked at 685 nm ) and F685/F735 (F735, chlorophyll a fluorescence peaked at 735 nm) in soybean leaves but not in wheat leaves. Moreover,trypsin (a protease) treatment resulted in a remarkable decrease in the amounts of PsbS protein (a nuclear gene psbS-encoded 22 kDa protein) in the thylakoids from saturating light-illuminated (SI), but not in those from darkadapted (DT) and dark-recovered (DRT) soybean leaves. However, the treatment did not cause such a decrease in amounts of the PsbS protein in the thylakoids from saturating light-illuminated wheat leaves. These results support the conclusion that saturating light illumination induces a reversible dissociation of some light-harvesting complex Ⅱ (LHCⅡ) from PSⅡ reaction center complex in soybean leaf but not in wheat leaf.  相似文献   

20.
In membrane proteins, the extent to which polarity, hydrogen bonding, and van der Waals packing interactions of the buried, internal residues direct protein folding and association of transmembrane segments is poorly understood. The energetics associated with these various interactions should differ substantially between membrane versus water-soluble proteins. To help evaluate these energetics, we have altered a water-soluble, two-stranded coiled-coil peptide to render its sequence soluble in membranes. The membrane-soluble peptide associates in a monomer-dimer-trimer equilibrium, in which the trimer predominates at the highest peptide/detergent ratios. The oligomers are stabilized by a buried Asn side chain. Mutation of this Asn to Val essentially eliminates oligomerization of the membrane-soluble peptide. Thus, within a membrane-like environment, interactions involving a polar Asn side chain provide a strong thermodynamic driving force for membrane helix association.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号