首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The vacuum ultraviolet circular dichroism (VUVCD) spectra of 15 globular proteins (myoglobin, hemoglobin, human serum albumin, cytochrome c, peroxidase, alpha-lactalbumin, lysozyme, ovalbumin, ribonuclease A, beta-lactoglobulin, pepsin, trypsinogen, alpha-chymotrypsinogen, soybean trypsin inhibitor, and concanavalin A) were measured in aqueous solutions at 25 degrees C in the wavelength region from 260 to 160 nm under a high vacuum, using a synchrotron-radiation VUVCD spectrophotometer. The VUVCD spectra below 190 nm revealed some characteristic bands corresponding to different secondary structures. The contents of alpha-helices, beta-strands, turns, and unordered structures were estimated using the SELCON3 program with VUVCD spectra data on the 15 proteins. Prediction of the secondary-structure contents was greatly improved by extending the circular dichroism spectra to 165 nm. The numbers of alpha-helix and beta-strand segments calculated from the distorted alpha-helix and beta-strand contents did not differ greatly from those obtained from X-ray crystal structures. These results demonstrate that synchrotron-radiation VUVCD spectroscopy is a powerful tool for analyzing the secondary structures of proteins.  相似文献   

2.
To elucidate the structural characteristics of alcohol-denatured proteins, we measured the vacuum-ultraviolet circular dichroism (VUVCD) spectra of six proteins-myoglobin, human serum albumin, α-lactalbumin, thioredoxin, β-lactoglobulin, and α-chymotrypsinogen A-down to 170 nm in trifluoroethanol solutions (TFE: 0-50%) and down to 175 nm in methanol solutions (MeOH: 0-70%) at pH 2.0 and 25°C, using a synchrotron-radiation VUVCD spectrophotometer. The contents of α-helices, β-strands, turns, poly-L-proline type II helices (PPIIs), and unordered structures of these proteins were estimated using the SELCON3 program, including the numbers of α-helix and β-strand segments. Furthermore, the positions of α-helices and β-strands on amino acid sequences were predicted by combining these secondary-structure data with a neural-network method. All alcohol-denatured proteins showed higher α-helix contents (up to ~ 90%) compared with the native states, and they consisted of several long helical segments. The helix-forming ability was higher in TFE than in MeOH, whereas small amounts of β-strands without sheets were formed in the MeOH solution. The produced α-helices were transformed dominantly from the β-strands and unordered structures, and slightly from the turns. The content and mean length of α-helix segments decreased as the number of disulfide bonds in the proteins increased, suggesting that disulfide bonds suppress helix formation by alcohols. These results demonstrate that alcohol-denatured proteins constitute an ensemble of many long α-helices, a few β-strands and PPIIs, turns, and unordered structures, depending on the types of proteins and alcohols involved.  相似文献   

3.
The vacuum-ultraviolet circular dichroism (VUVCD) spectra of 16 globular proteins (insulin, lactate dehydrogenase, glucose isomerase, lipase, conalbumin, transferrin, catalase, subtilisin A, alpha-amylase, staphylococcal nuclease, papain, thioredoxin, carbonic anhydrase, elastase, avidin, and xylanase) were successfully measured in aqueous solutions at 25 degrees C from 260 to 160 nm under a high vacuum using a synchrotron-radiation VUVCD spectrophotometer. These proteins exhibited characteristic CD spectra below 190 nm that were related to their different secondary structures, which could not be detected with a conventional CD spectrophotometer. The component spectra of alpha-helices, beta-strands, turns, and unordered structures were obtained by deconvolution analysis of the VUVCD spectra of 31 reference proteins including the 15 proteins reported in our previous paper [Matsuo, K. et al. (2004) J. Biochem. 135, 405-411]. Prediction of the secondary-structure contents using the SELCON3 program was greatly improved, especially for alpha-helices, by extending the short-wavelength limit of CD spectra to 160 nm and by increasing the number of reference proteins. The numbers of alpha-helix and beta-strand segments, which were calculated from the distorted alpha-helix and beta-strand contents, were close to those obtained on X-ray crystallography. These results demonstrate the usefulness of synchrotron-radiation VUVCD spectroscopy for the secondary structure analysis of proteins.  相似文献   

4.
Matsuo K  Watanabe H  Gekko K 《Proteins》2008,73(1):104-112
Synchrotron-radiation vacuum-ultraviolet circular dichroism (VUVCD) spectroscopy can significantly improve the predictive accuracy of the contents and segment numbers of protein secondary structures by extending the short-wavelength limit of the spectra. In the present study, we combined VUVCD spectra down to 160 nm with neural-network (NN) method to improve the sequence-based prediction of protein secondary structures. The secondary structures of 30 target proteins (test set) were assigned into alpha-helices, beta-strands, and others by the DSSP program based on their X-ray crystal structures. Combining the alpha-helix and beta-strand contents estimated from the VUVCD spectra of the target proteins improved the overall sequence-based predictive accuracy Q(3) for three secondary-structure components from 59.5 to 60.7%. Incorporating the position-specific scoring matrix in the NN method improved the predictive accuracy from 70.9 to 72.1% when combining the secondary-structure contents, to 72.5% when combining the numbers of segments, and finally to 74.9% when filtering the VUVCD data. Improvement in the sequence-based prediction of secondary structures was also apparent in two other indices of the overall performance: the correlation coefficient (C) and the segment overlap value (SOV). These results suggest that VUVCD data could enhance the predictive accuracy to over 80% when combined with the currently best sequence-prediction algorithms, greatly expanding the applicability of VUVCD spectroscopy to protein structural biology.  相似文献   

5.
We have expanded our reference set of proteins used in the estimation of protein secondary structure by CD spectroscopy from 29 to 37 proteins by including 3 additional globular proteins with known X-ray structure and 5 denatured proteins. We have also modified the self-consistent method for analyzing protein CD spectra, SELCON3, by including a new selection criterion developed by W. C. Johnson, Jr. (Proteins Struct. Funct. Genet. 35, 307-312, 1999). The secondary structure corresponding to the denatured proteins was approximated to be 90% unordered, owing to the spectral similarity of the denatured proteins and unordered structures. We examined the thermal denaturation of ribonuclease T1 by CD using both the original and expanded sets of reference proteins and obtained more consistent results with the expanded set. The expanded set of reference proteins will be helpful for the determination of protein secondary structure from protein CD spectra with higher reliability, especially of proteins with significant unordered structure content and/or in the course of denaturation.  相似文献   

6.
Hemopexin is a serum glyco-protein that binds heme with the highest known affinity of any characterized heme-binding protein and plays an important role in receptormediated cellular heme uptake. Complete understanding of the function of hemopexin will require the elucidation of its molecular structure. Previous analysis of the secondary structure of hemopexin by far-UV circular dichroism (CD) failed due to the unusual positive ellipticity of this protein at 233 nm. In this paper, we present an examination of the structure of hemopexin by both Fourier-transform infrared (FTIR) and circular dichroism spectroscopy. Our studies show that hemopexin contains about 55% β-structure, 15% α-helix, and 20% turns. The two isolated structural domains of hemopexin each have secondary structures similar to hemopexin. Although there are significant tertiary conformational changes indicated by the CD spectra, the overall secondary structure of hemopexin is not affected by binding heme. However, moderate changes in secondary structure do occur when the heme-binding domain of hemopexin associates with heme. In spite of the exceptionally tight binding at neutral pH, heme is released from the bis-histidyl heme–hemopexin complex at pH 5.0. Under this acidic condition, hemopexin maintains the same overall secondary structure as the native protein and is able to resume the heme-binding function and the native structure of the hemeprotein (as indicated by the CD spectra) when returned to neutral pH. We propose that the state of hemopexin identified in vitro at pH 5.0 resembles that of this protein in the acidic environment of the endosomes in vivo when hemopexin releases heme during receptor-mediated endocytosis. © 1994 Wiley-Liss, Inc.  相似文献   

7.
We have developed an improved circular dichroism (CD) and linear dichroism (LD) simultaneous measurement system for the vacuum ultraviolet (VUV) region by polarization modulation techniques using a four-period Onuki-type crossed undulator as a polarized light source. The system has been constructed at the VUV beamline BL-5 in the electron storage ring TERAS, at AIST. Our improvements, in particular the adoption of an optical chopper as the detection method of incident light, have resulted in a flat baseline and a consequent simplification of the Mueller matrix calculation for our optical system. Based on the Mueller matrix calculation, we have successfully measured real VUV-CD and LD spectra of leucine films for wavelengths down to 160 nm with absolute optical constants. The obtained spectra show good consistency with spectra measured by conventional methods.  相似文献   

8.
How to study proteins by circular dichroism   总被引:16,自引:0,他引:16  
Circular dichroism (CD) is being increasingly recognised as a valuable technique for examining the structure of proteins in solution. However, the value of many studies using CD is compromised either by inappropriate experimental design or by lack of attention to key aspects of instrument calibration or sample characterisation. In this article, we summarise the basis of the CD approach and its application to the study of proteins, and then present clear guidelines on how reliable data can be obtained and analysed.  相似文献   

9.
Hu HY  Li Q  Cheng HC  Du HN 《Biopolymers》2001,62(1):15-21
Cross beta-sheet structure formation and abnormal aggregation of proteins are thought to be pathological characteristics of some neurodegenerative disorders. To investigate the novel structural transformation and aggregation, the solid-state secondary structures of some proteins and peptides associated in thin films were determined by circular dichroism spectroscopy. Insulin, lysozyme, DsbA protein, luciferase, and ovalbumin peptide fall into one group; they show no or slight structural rearrangement from solution to the solid state. Another group, including bovine serum albumin, ovalbumin, alpha-synuclein, and plasminogen activator inhibitor-1 (PAIRC) peptide, undergo structural transformation with an increase of beta-sheet structure in the solid state. The beta-sheet formation of PAIRC peptide may reflect the structural transformation of the serpin reactive center that is relevant to the inhibitor activity. The beta-sheet structure of alpha-synuclein in the solid state may correspond to the amyloid-like aggregates, which are implicated in the pathogenesis of some neurodegenerative diseases.  相似文献   

10.
11.
The analysis of the far-ultraviolet circular dichroism spectra of proteins   总被引:1,自引:0,他引:1  
D G Dalgleish 《FEBS letters》1972,24(1):134-136
  相似文献   

12.
The first MCD spectral data for an open shell first row transition metal complex of tetraphenyltetraacenaphthoporphyrin (TPTANP) are reported. The B (or Soret) band of cobalt tetraphenyltetraacenaphthoporphyrin (Co(II)TPTANP(-2)) exhibits an anomalous negative Faraday A(1) term as was reported previously in the case of ZnTPTANP, while a positive A(1) term is observed for the Q band. INDO/1 geometry optimizations predict that the TPTANP ligand is saddled due to steric hindrance at the ligand periphery to a slightly lesser extent than is the case with ZnTPTANP. The Q and B bands of CoTPTANP arising from the pi-system are blue shifted relative to those of ZnTPTANP, based on the "hypso" effect reported previously for planar porphyrin complexes of d(6-9) transition metals.  相似文献   

13.
Since the enantiomers of the N‐methyl‐D ‐aspartate (NMDA) receptors antagonist ketamine have different pharmacological profiles, CD and UV spectroscopy were applied for the study of conformer equilibrium and pH dependence in ketamine solutions. The assignment of the configurations and conformations was performed on the basis of the “octant rule” and UV spectra. In accord with published data, it was established that, on protonation, the phenyl group of the ketamine molecule occupies an axial position, while for the base form, the ratio of conformers containing axial/equatorial aryl moieties is strongly solvent‐dependent. The CD and UV spectra indicate the presence of an intramolecular H‐bond C=O····H—N in the conformer with axial aryl moiety. Chirality 11:280–285, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

14.
We report structural alterations of histone H3 proteins induced by lysine‐4 (K4) monomethylation, dimethylation, and trimethylation identified by using synchrotron radiation circular dichroism spectroscopy. Compared with unmethylated H3, monomethylation and dimethylation induced increases in α‐helix structures and decreases in β‐strand structures. In contrast, trimethylation decreased α‐helix content but increased β‐strand content. The structural differences among K4‐unmethylated/methylated H3 may allow epigenetic enzymes to discriminate the substrates both chemically and sterically.  相似文献   

15.
Magnetic circular dichroism of non-heme iron proteins   总被引:1,自引:0,他引:1  
The magnetic circular dichroism (MCD) at 45 kgauss has been determined for a group of non-heme iron proteins. Both transferrin and conalbumin exhibit a single, positive ellipticity band at 330 nm ([θ]M = 560). Oxy- and methemerythrin, spinach and clostridial ferredoxins and rubredoxin all display distinctive multibanded spectra which may reflect such factors as coordination of the metal, its ligands, metal bridging by other atoms, and varying degrees of metalmetal coupling. The MCD spectra of both ferredoxins and rubredoxin undergo dramatic change upon oxidoreduction providing a potential means for relating the electronic structure of the iron to protein function. In contrast to the plant ferredoxins, the magnetic field does not significantly affect the CD spectra of adrenodoxin and putidaredoxin.  相似文献   

16.
Fukuyama T  Matsuo K  Gekko K 《Chirality》2011,23(Z1):E52-E58
The electronic circular dichroism (ECD) spectra of three L-hydroxy acids (L-lactic acid, (+)-(S)-2-hydroxy-3-methylbutyric acid, and (-)-(S)-2-hydroxyisocaproic acid) were measured down to 160 nm in aqueous solution using a vacuum-ultraviolet ECD spectrophotometer. To assign the two positive peaks around 210 and 175 nm and the one negative peak around 190 nm in the observed spectra, the ECD spectrum of L-lactic acid was calculated using time-dependent density functional theory (DFT) for the optimized structures by DFT and a continuum model. The observed ECD spectrum was successfully reproduced as the average spectrum for four optimized structures with seven water molecules that localized around the COO(-) and OH groups of L-lactic acid. The positive peak around 210 nm and the negative peak around 185 nm in the calculated spectrum were attributable to the nπ* transition of the carboxyl group, with the latter peak also being influenced by the ππ* transition of the carboxyl group; however, the positive peak around 165 nm involved unassignable higher energy transitions. The comparison of the calculated ECD spectra for L-lactic acid and L-alanine revealed that the network with loose hydrogen bonding around the COO(-) and OH groups is responsible for the flexible conformation of hydroxy acids and complicated side-chain dependence of ECD spectra relative to amino acids.  相似文献   

17.
18.
Quantitative analysis of the circular dichroism of nucleohistones and protein-free DNA was carried out in order to determine the structure and the role of the linker region DNA in chromatin, in terms of the conformational change of chromatin as a function of the ionic strength. It is shown clearly that the circular dichroism of Hl-depleted chromatin isolated from calf thymus is determined only by the ratio of the core region to the linker region and demonstrated by the linear combination of the spectrum of protein-free DNA and that of the nucleosome core in 5 mm-Tris · HCl, 1 mm-EDTA (pH 7.8). The calculated spectrum for the linker region in the H1-depleted chromatin was in good agreement with that of protein-free DNA. From the difference spectra between nucleohistones and protein-free DNA, it is suggested that the chromatin has an additional winding of DNA other than 146 base-pairs of DNA around the histone core. By decreasing the ionic strength to values lower than 5 mm-Tris · HCl, 1 mm-EDTA, the ellipticity of H1-depleted chromatin increased greatly between 250 nm and 300 nm while the increase was small in the case of chromatin and the nucleosome core. Nucleosomes with linker region DNA but without histone H1 also show great increase in ellipticity in this range of wavelengths as the ionic strength is decreased. Therefore, the linker region in H1-depleted chromatin plays an important role in the conformational changes brought about by changes in the ionic strength, and the conformational changes caused in the DNA of chromatin by decreasing the ionic strength are suppressed by the presence of histone H1.  相似文献   

19.
Circular dichroism (CD) spectra have been obtained from several variants of green fluorescent protein: blue fluorescent protein (BFP), enhanced cyan fluorescent protein (CFP), enhanced green fluorescent protein (GFP), enhanced yellow fluorescent protein (YFP), all from Aequorea victoria, and the red fluorescent protein from the coral species Discosoma (DsRed). We demonstrate that CD spectra in the spectral fingerprint region of the chromophore yield spectra that after normalization are not coincident with the normalized absorbance spectra of GFP, YFP and DsRed. On the other hand, the CD spectra of BFP and CFP coincide with the absorbance spectra. The resolution of absorption and CD spectra into Gaussian bands confirmed the location of the different electronic band positions of GFP and YFP as reported in the literature using other techniques. In the case of BFP and CFP the location of Gaussian bands provided information of the vibrational progression of the electronic absorption bands. The CD spectrum of DsRed is anomalous in the sense that the major CD band has a clear excitonic character. Far-UV CD spectra of GFP confirmed the presence of the high beta-sheet content of the polypeptide chain in the three-dimensional structure.  相似文献   

20.
The secondary structure of a new type of recombinant RGD-hirudin, which has the activities of anti-thrombin and anti-platelet aggregation, has been studied by Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy and circular dichroism (CD) methods. The distribution of various secondary structure elements was determined using only a very small amount of sample protein. It was found that the recombinant RGD-hirudin contains about 26% extended chain, 21% beta-turn and 53% unordered structure, leaving no alpha-helix. The results showed that the regular secondary structure of recombinant RGD-hirudin is increased compared with wild-type hirudin. The RGD segment that is located at the end of a long arm of a beta-sheet is thought to play an important role in the additional function of anti-platelet aggregation. Throughout the experiments, FT-IR, Raman spectroscopy and CD generated mutually reinforcing results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号