首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have investigated the kinetics of complex formation between bacteriophage MS2 coat protein subunits and synthetic RNA fragments encompassing the natural translational operator site, or the consensus sequences of three distinct RNA aptamer families, which are known to bind to the same site on the protein. Reactions were assayed using stopped-flow fluorescence spectroscopy and either the intrinsic tryptophan fluorescence of the protein or the signals from RNA fragments site-specifically substituted with the fluorescent adenosine analogue 2'-deoxy, 2-aminopurine. The kinetics observed were independent of the fluorophore being monitored or its position within the complex, indicating that the data report global events occurring during complex formation. Competition assays show that the complex being formed consists of a single coat protein dimer and one RNA molecule. The binding reaction is at least biphasic. The faster phase, constituting 80-85 % of the amplitude, is a largely diffusion driven RNA-protein interaction (k1 approximately 2x10(9) M(-1) s(-1)). The salt dependence of the forward reaction and the similarities of the on-rates of lower-affinity RNA fragments are consistent with a diffusion-controlled step dominated by electrostatic steering. The slower phase is independent of reactant concentration, and appears to correspond to isomerisation of the coat protein subunit(s) prior to RNA binding (k(iso) approximately 0.23 s(-1)). Measurements with a coat protein mutant (Pro78Asn) show that this phase is not due to cis-trans isomerisation at this residue. The conformational changes in the protein ligand during formation of an RNA-protein complex might play a role in the triggering of capsid self-assembly and a model for this is discussed.  相似文献   

2.
Specific RNA-protein interactions and ribonucleoprotein complexes are essential for many biological processes, but our understanding of how ribonucleoprotein particles form and accomplish their biological functions is rudimentary. This paper describes the interaction of alfalfa mosaic virus (A1MV) coat protein or peptides with viral RNA. A1MV coat protein is necessary both for virus particle formation and for the initiation of replication of the three genomic RNAs. We have examined protein determinants required for specific RNA binding and analyzed potential structural changes elicited by complex formation. The results indicate that the amino-terminus of the viral coat protein, which lacks primary sequence homology with recognized RNA binding motifs, is both necessary and sufficient for binding to RNA. Circular dichroism spectra and electrophoretic mobility shift experiments suggest that the RNA conformation is altered when amino-terminal coat protein peptides bind to the viral RNA. The peptide--RNA interaction is functionally significant because the peptides will substitute for A1MV coat protein in initiating RNA replication. The apparent conformational change that accompanies RNA--peptide complex formation may generate a structure which, unlike the viral RNA alone, can be recognized by the viral replicase.  相似文献   

3.
The MS2 RNA operator capsid offers an unparalleled opportunity to study sequence-specific protein-protein and RNA-protein interactions in molecular detail. RNA molecules encompassing the minimal translational operator recognition elements can be soaked into crystals of RNA-free coat protein shells, allowing the RNA to access the interior of the capsids and make contact with the operator binding sites. Correct interpretation of these structural studies depends critically on functional analysis in solution to confirm that the interactions seen in the crystal are not an artefact of the unusual approach used to generate the RNA-protein complexes. Here we present a series of in vivo and in vitro functional assays, using coat proteins carrying single amino acid substitutions at residues which either interact with the operator RNA or are involved in stabilizing the conformation of the FG loop, the site of the major quasi-equivalent conformational change. Variant operator RNAs have been assayed for coat protein affinity in vitro. The results reveal the robustness of the operator-coat protein interaction and the requirement for both halves of a protein dimer to contact RNA in order to achieve tight binding. They also suggest that there may be a direct link between the conformation of the FG loop and RNA binding.  相似文献   

4.
Batey RT  Doudna JA 《Biochemistry》2002,41(39):11703-11710
The signal recognition particle (SRP) targets proteins to the endoplasmic reticulum in eukaryotes or to the inner membrane in prokaryotes by binding to hydrophobic signal sequences. Signal peptide recognition occurs within the highly conserved RNA-protein core of the SRP, underscoring the importance of this complex in SRP function. Structural analysis of the RNA and protein components of the prokaryotic SRP in the free and bound states revealed that the RNA undergoes a significant conformational change upon protein binding involving the uptake of several monovalent and divalent cations. To investigate the role of these metal ions in formation of the functional SRP complex, we used binding affinity assays and X-ray crystallography to analyze the specificity and energetic contributions of mono- and divalent metal ions bound in the RNA. Our results demonstrate that several metal ion binding sites important for RNA conformation can accommodate chemically distinct ions, often without affecting the structure of the complex. Thus, while these metal ions are highly ordered and essential for the formation and stability of the SRP complex, they behave like nonspecific metal ions.  相似文献   

5.
We describe a protocol in which dimethyl sulfate (DMS) modification of the base-pairing faces of unpaired adenosine and cytidine nucleotides is used for structural analysis of RNAs and RNA-protein complexes (RNPs). The protocol is optimized for RNAs of small to moderate size (< or = 500 nt). The RNA or RNP is first exposed to DMS under conditions that promote formation of the folded structure or complex, as well as 'control' conditions that do not allow folding or complex formation. The positions and extents of modification are then determined by primer extension, polyacrylamide gel electrophoresis and quantitative analysis. From changes in the extent of modification upon folding or protein binding (appearance of a 'footprint'), it is possible to detect local changes in the secondary and tertiary structure of RNA, as well as the formation of RNA-protein contacts. This protocol takes 1.5-3 d to complete, depending on the type of analysis used.  相似文献   

6.
Y Tang  L Nilsson 《Biophysical journal》1999,77(3):1284-1305
RNA-protein interactions are essential to a wide range of biological processes. In this paper, a 0.6-ns molecular dynamics simulation of the sequence-specific interaction of human U1A protein with hairpin II of U1 snRNA in solution, together with a 1.2-ns simulation of the free RNA hairpin, is reported. Compared to the findings in the x-ray structure of the complex, most of the interactions remained stable. The nucleotide U8, one of the seven conserved nucleotides AUUGCAC in the loop region, was unusually flexible during the simulation, leading to a loss of direct contacts with the protein, in contrast to the situation in the x-ray structure. Instead the sugar-phosphate backbone of nucleotide C15 was found to form several interactions with the protein. Compared to the NMR structure of U1A protein complexed with the 3'-untranslated region of its own pre-mRNA, the protein core kept the same conformation, and in the two RNA molecules the conserved AUUGCAC of the loop and the closest CG base pair were located in very similar positions and orientations, and underwent very similar interactions with the protein. Therefore, a common sequence-specific interaction mechanism was suggested for the two RNA substrates to bind to the U1A protein. Conformational analysis of the RNA hairpin showed that the conformational changes of the RNA primarily occurred in the loop region, which is just involved in the sites of binding to the protein and in agreement with experimental observation. Both the loop and stem of the RNA became more ordered upon binding to the protein. It was also demonstrated that the molecular dynamics method could be successfully used to simulate the dynamical behavior of a large RNA-protein complex in aqueous solution, thus opening a path for the exploration of the complex biological processes involving RNA at a molecular level.  相似文献   

7.
8.
Formation of the eukaryotic ribosomal 5 S RNA-protein complex has been shown to be critical to ribosome biogenesis and has been speculated to contribute to a quality control mechanism that helps ensure that only normal precursors are processed and assembled into active ribosomes. To study the structural basis of these observations, the RNA-protein interface in the 5 S RNA-protein complex of the yeast (Saccharomyces cerevisiae) ribosome was examined based on a systematic introduction of targeted base substitutions in the RNA sequence. Most base substitutions had little or no effect on the efficiency of complex formation, but large effects were observed when changes disrupted helix I, the secondary structure formed between the interacting termini. Again, only modest effects were evident when the extended 3' end of the mature RNA molecule was altered, but essentially no complex was formed when the 5' end of the mature 5 S RNA sequence was artificially extended by one nucleotide. In vitro analyses demonstrated that this extension also dramatically altered the maturation of 5 S rRNA precursor molecules as well as the stability of the mature 5 S rRNA. Taken together, the results indicate that in the course of RNA maturation, the 5 S RNA-binding protein binds precisely over or "caps" the termini in a critical manner that protects the RNA from further degradation.  相似文献   

9.
We present a high throughput, versatile approach to identify RNA-protein interactions and to determine nucleotides important for specific protein binding. In this approach, oligonucleotides are coupled to microbeads and hybridized to RNA-protein complexes. The presence or absence of RNA and/or protein fluorescence indicates the formation of an oligo-RNA-protein complex on each bead. The observed fluorescence is specific for both the hybridization and the RNA-protein interaction. We find that the method can discriminate noncomplementary and mismatch sequences. The observed fluorescence reflects the affinity and specificity of the RNA-protein interaction. In addition, the fluorescence patterns footprint the protein recognition site to determine nucleotides important for protein binding. The system was developed with the human protein U1A binding to RNAs derived from U1 snRNA but can also detect RNA-protein interactions in total RNA backgrounds. We propose that this strategy, in combination with emerging coded bead systems, can identify RNAs and RNA sequences important for interacting with RNA-binding proteins on genomic scales.  相似文献   

10.
Elucidating protein translational regulation is crucial for understanding cellular function and drug development. A key molecule in protein translation is ribosome, which is a super-molecular complex extensively studied for more than a half century. The structure and dynamics of ribosome complexes were resolved recently thanks to the development of X-ray crystallography, Cryo-EM, and single molecule biophysics. Current studies of the ribosome have shown multiple functional states, each with a unique conformation. In this study, we analyzed the RNA-protein distances of ribosome (2.5 MDa) complexes and compared these changes among different ribosome complexes. We found that the RNA-protein distance is significantly correlated with the ribosomal functional state. Thus, the analysis of RNA-protein binding distances at important functional sites can distinguish ribosomal functional states and help understand ribosome functions. In particular, the mechanism of translational attenuation by nascent peptides and antibiotics was revealed by the conformational changes of local functional sites.  相似文献   

11.
Although conformational dynamics of RNA molecules are potentially important in microRNA (miRNA) processing, the role of the protein binding partners in facilitating the requisite structural changes is not well understood. In previous work, we and others have demonstrated that nonduplex structural elements and the conformational flexibility they support are necessary for efficient RNA binding and cleavage by the proteins associated with the two major stages of miRNA processing. However, recent studies showed that the protein DGCR8 binds primary miRNA and duplex RNA with similar affinities. Here, we study RNA binding by a small recombinant construct of the DGCR8 protein and the RNA conformation changes that result. This construct, the DGCR8 core, contains two double-stranded RNA-binding domains (dsRBDs) and a C-terminal tail. To assess conformational changes resulting from binding, we applied small-angle x-ray scattering with contrast variation to detect conformational changes of primary-miR-16-1 in complex with the DGCR8 core. This method reports only on the RNA conformation within the complex and suggests that the protein bends the RNA upon binding. Supporting work using smFRET to study the conformation of RNA duplexes bound to the core also shows bending. Together, these studies elucidate the role of DGCR8 in interacting with RNA during the early stages of miRNA processing.  相似文献   

12.
A prominent feature of the interaction of MS2 coat protein with RNA is the quasi-symmetric insertion of a bulged adenine (A-10) and a loop adenine (A-4) into conserved pockets on each subunit of the coat protein dimer. Because of its presence in both of these adenine-binding pockets, Thr(45) is thought to play an important role in interaction with RNA on both subunits of the dimer. To test the significance of Thr(45), we introduced all 19 amino acid substitutions. However, we were initially unable to determine the effects of the mutations on RNA binding because every substitution compromised the ability of coat protein to fold correctly. Genetic fusion of coat protein subunits reverted these protein structural defects, allowing us to show that the RNA binding activity of coat protein tolerates substitution of Thr(45), but only on one or the other subunit of the dimer. Single-chain heterodimer complementation experiments suggest that the primary site of Thr(45) interaction with RNA is with A-4 in the translational operator. Either contact of Thr(45) with A-10 makes little contribution to stability of the RNA-protein complex, or the effects of Thr(45) substitution are offset by conformational adjustments that introduce new, favorable contacts at nearby sites.  相似文献   

13.
A ribosomal protein binding site in the eukaryotic 5S rRNA has been delineated by examining the effect of sequence variation and nucleotide modification on the RNA's ability to exchange into the EDTA-released, yeast ribosomal 5S RNA-protein complex. 5S RNAs of divergent sequence from a variety of eukaryotic origins could be readily exchanged into the yeast complex but RNA from bacterial origins was rejected. Nucleotide modifications in any of three analogous helical regions in eukaryotic 5S RNAs of differing origin reduced the ability of this RNA molecule to form homologous or heterologous RNA-protein complexes. Because sequence comparisons did not indicate common nucleotide sequences in the interacting helical regions, a model is suggested in which the eukaryotic 5S RNA binding protein does not simply recognize specific nucleotide sequences but interacts with three strategically oriented helical domains or functional groups within these domains. Two of the domains bear a limited sequence homology with each other and contain an unpaired nucleotide or "bulge" similar to that recently reported for one of the 5S RNA binding proteins in Escherichia coli (Peattie, D.A., Douthwaite, S., Garrett, R.A. and Noller, H.F. (1981) Proc. Natl. Acad. Sci. 78, 7331-7335). The results further indicate that the single ribosomal protein of eukaryotic 5S RNA-protein complexes interacts with the same region of the 5S rRNA molecule as do the multiple protein components in complexes of prokaryotic origin.  相似文献   

14.
Pseudouridylation is one of the most common forms of RNA modification. In eukaryotes and archaea, these modifications are carried out by H/ACA ribonucleoprotein (RNP) complexes, composed of an H/ACA guide RNA and four proteins, including the pseudouridine synthase, Cbf5. Remarkable progress has been made toward understanding the structure and function of H/ACA RNPs, both through mapping of RNA-protein and protein-protein interactions and the availability of X-ray structures, including that of the entire RNP. The pseudouridine synthase, Cbf5, is also the protein that specifically recognizes the guide RNAs. In this work, we have investigated the molecular basis of this key interaction. A mass spectrometric protein footprinting approach was employed to determine the amino acids of archaeal Cbf5 involved in interaction with the guide RNA. We found amino acid protections along the same RNA binding track observed in the crystal structure of the fully assembled complex, indicating that this interaction is established in the subcomplex. However, in addition, we observed a set of protections in the D2 subdomain of Cbf5 that appear to represent a unique, additional interaction of the guide RNA with the protein in the subcomplex. On the basis of these results, we present a model for the Cbf5-guide RNA complex that also incorporates other recent findings. Our analysis suggests that the assembly or function of H/ACA RNPs may be accompanied by dynamic changes in RNA-protein interactions.  相似文献   

15.
The I-AniI maturase facilitates self-splicing of a mitochondrial group I intron in Aspergillus nidulans. Binding occurs in at least two steps: first, a specific but labile encounter complex rapidly forms and then this intermediate is slowly resolved into a native, catalytically active RNA/protein complex. Here we probe the structure of the RNA throughout the assembly pathway. Although inherently unstable, the intron core, when bound by I-AniI, undergoes rapid folding to a near-native state in the encounter complex. The next transition includes the slow destabilization and docking into the core of the peripheral stacked helix that contains the 5' splice site. Mutational analyses confirm that both transitions are important for native complex formation. We propose that protein-driven destabilization and docking of the peripheral stacked helix lead to subtle changes in the I-AniI binding site that facilitate native complex formation. These results support an allosteric-feedback mechanism of RNA-protein recognition in which proteins engaged in an intermediate complex can influence RNA structure far from their binding sites. The linkage of these changes to stable binding ensures that the protein and RNA do not get sequestered in nonfunctional complexes.  相似文献   

16.
Molecular dynamics simulations of the RNA-binding domain of the U1A spliceosomal protein in complex with its cognate RNA hairpin, performed at low and high ionic strength in aqueous solution, suggest a pathway for complex dissociation. First, cations condense around the RNA and compete with the protein for binding sites. Then solvated ions specifically destabilize residues at the RNA-protein interface. For a discrete cluster of residues at the complex interface, the simulations reveal an increased deviation from the crystal structure at high salt concentrations while the remaining protein scaffold is stabilized under these conditions. The microscopic picture of salt influence on the complex suggests guidelines for rational design of interface inhibitors targeted at RNA-protein complexes.  相似文献   

17.
Prediction of RNA binding sites in proteins from amino acid sequence   总被引:3,自引:0,他引:3  
RNA-protein interactions are vitally important in a wide range of biological processes, including regulation of gene expression, protein synthesis, and replication and assembly of many viruses. We have developed a computational tool for predicting which amino acids of an RNA binding protein participate in RNA-protein interactions, using only the protein sequence as input. RNABindR was developed using machine learning on a validated nonredundant data set of interfaces from known RNA-protein complexes in the Protein Data Bank. It generates a classifier that captures primary sequence signals sufficient for predicting which amino acids in a given protein are located in the RNA-protein interface. In leave-one-out cross-validation experiments, RNABindR identifies interface residues with >85% overall accuracy. It can be calibrated by the user to obtain either high specificity or high sensitivity for interface residues. RNABindR, implementing a Naive Bayes classifier, performs as well as a more complex neural network classifier (to our knowledge, the only previously published sequence-based method for RNA binding site prediction) and offers the advantages of speed, simplicity and interpretability of results. RNABindR predictions on the human telomerase protein hTERT are in good agreement with experimental data. The availability of computational tools for predicting which residues in an RNA binding protein are likely to contact RNA should facilitate design of experiments to directly test RNA binding function and contribute to our understanding of the diversity, mechanisms, and regulation of RNA-protein complexes in biological systems. (RNABindR is available as a Web tool from http://bindr.gdcb.iastate.edu.).  相似文献   

18.
The pre-tRNA processing enzyme ribonuclease P is a ribonucleoprotein. In Escherichia coli assembly of the holoenzyme involves binding of the small (119 amino acid residue) C5 protein to the much larger (377 nucleotide) P RNA subunit. The RNA subunit makes the majority of contacts to the pre-tRNA substrate and contains the active site; however, binding of C5 stabilizes P RNA folding and contributes to high affinity substrate binding. Here, we show that RNase P ribonucleoprotein assembly also influences the folding of C5 protein. Thermal melting studies demonstrate that the free protein population is a mixture of folded and unfolded conformations under conditions where it assembles quantitatively with the RNA subunit. Changes in the intrinsic fluorescence of a unique tryptophan residue located in the folded core of C5 provide further evidence for an RNA-dependent conformational change during RNase P assembly. Comparisons of the CD spectra of the free RNA and protein subunits with that of the holoenzyme provide evidence for changes in P RNA structure in the presence of C5 as indicated by previous studies. Importantly, monitoring the temperature dependence of the CD signal in regions of the holoenzyme spectra that are dominated by protein or RNA structure permitted analysis of the thermal melting of the individual subunits within the ribonucleoprotein. These analyses reveal a significantly higher Tm for C5 when bound to P RNA and show that unfolding of the protein and RNA are coupled. These data provide evidence for a general mechanism in which the favorable free energy for formation of the RNA-protein complex offsets the unfavorable free energy of structural rearrangements in the RNA and protein subunits.  相似文献   

19.
We have determined the X-ray structures of six MS2 RNA hairpin-coat-protein complexes having five different substitutions at the hairpin loop base -5. This is a uracil in the wild-type hairpin and contacts the coat protein both by stacking on to a tyrosine side chain and by hydrogen bonding to an asparagine side chain. The RNA consensus sequence derived from coat protein binding studies with natural sequence variants suggested that the -5 base needs to be a pyrimidine for strong binding. The five -5 substituents used in this study were 5-bromouracil, pyrimidin-2-one, 2-thiouracil, adenine, and guanine. The structure of the 5-bromouracil complex was determined to 2.2 A resolution, which is the highest to date for any MS2 RNA-protein complex. All the complexes presented here show very similar conformations, despite variation in affinity in solution. The results suggest that the stacking of the -5 base on to the tyrosine side chain is the most important driving force for complex formation. A number of hydrogen bonds that are present in the wild-type complex are not crucial for binding, as they are missing in one or more of the complexes. The results also reveal the flexibility of this RNA-protein interface, with respect to functional group variation, and may be generally applicable to other RNA-protein complexes.  相似文献   

20.
T Furuya  M M Lai 《Journal of virology》1993,67(12):7215-7222
The termini of viral genomic RNA and its complementary strand are important in the initiation of viral RNA replication, which probably involves both viral and cellular proteins. To detect the possible cellular proteins involved in the replication of mouse hepatitis virus RNA, we performed RNA-protein binding studies with RNAs representing both the 5' and 3' ends of the viral genomic RNA and the 3' end of the negative-strand complementary RNA. Gel-retardation assays showed that both the 5'-end-positive- and 3'-end-negative-strand RNA formed an RNA-protein complex with cellular proteins from the uninfected cells. UV cross-linking experiments further identified a 55-kDa protein bound to the 5' end of the positive-strand viral genomic RNA and two proteins 35 and 38 kDa in size bound to the 3' end of the negative-strand cRNA. The results of the competition assay confirmed the specificity of this RNA-protein binding. No proteins were found to bind to the 3' end of the viral genomic RNA under the same conditions. The binding site of the 55-kDa protein was mapped within the 56-nucleotide region from nucleotides 56 to 112 from the 5' end of the positive-strand RNA, and the 35- and 38-kDa proteins bound to the complementary region on the negative-strand RNA. The 38-kDa protein was detected only in DBT cells but was not detected in HeLa or COS cells, while the 35-kDa protein was found in all three cell types. The juxtaposition of the different cellular proteins on the complementary sites near the ends of the positive- and negative-strand RNAs suggests that these proteins may interact with each other and play a role in mouse hepatitis virus RNA replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号