首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the International Union for the Protection of New Varieties of Plants Act of 1991, mutation is mentioned as one of the mechanisms to obtain an essentially derived variety (EDV). For the implementation of the EDV concept in the case of mutation, it is important that the level of genetic relatedness between an initial variety and derived mutant varieties can clearly be distinguished from the level of relatedness between arbitrary pairs of varieties without a derivation relation. Conditions to be fulfilled for such a distinction include enough genetic differentiation in the germplasm pool of interest, sufficiently low levels of genomic sampling error and technical laboratory error and high reproducibility within and between laboratories. In rose, mutants or sports are frequently observed during multiplication, making it a suitable crop for studying the possibilities for introduction of the EDV concept in ornamentals. We studied genetic similarities among 83 rose varieties, including 13 mutant groups. Twelve AFLP primer combinations generated 284 polymorphic markers and 114 monomorphic (fixed) bands. Pair-wise Jaccard similarities between original varieties and derived mutants were close to 1.0 (>0.96), whereas all similarities between original varieties were below 0.80, with 75% of the non-mutant similarities even being below 0.50. Values less than 1.0 for similarity among original varieties and their mutants were to a major extent due to scoring errors. Error rates in automated scoring proved to be lower than those in manually scored and transferred data. Experimental errors, even between laboratories, turned out to be very small. On the basis of a consistent and large difference between similarities, relations between an original variety and its mutants can easily be identified and distinguished from relations between original varieties. These results open the way for implementing the essential derivation concept in rose.  相似文献   

2.
3.
利用SSR和AFLP两种分子标记技术,分析了52份转基因抗虫棉品种(系)的遗传多样性。结果表明:在61对SSR引物中,有4对引物在供试材料中表现出多态性,共扩增出102个标记,其中多态性标记25个,多态性百分率为24.51%,每对引物的扩增带数变化在17~30之间;在100对AFLP引物中,有9对引物在供试材料中产生多态性,共扩增出618个标记,多态性标记33个,占总数的5.34%,每对引物组合扩增的标记数分布于47~81之间。成对品种的欧式距离变化在2.00~5.57之间,平均值为4.21,单一品种欧氏距离的平均值分布在3.73~4.75之间,表明不同品种之间遗传差异不大。基于SSRs和AFLPs多态性数据的聚类分析,可以将供试材料划分为3个类群(SAGs),但类群划分与品种地理来源不十分吻合。  相似文献   

4.
Accuracy and reproducibility of genetic distances (GDs) based on molecular markers are crucial issues for identification of essentially derived varieties (EDVs). Our objectives were to investigate (1) the amount of variation for amplified fragment length polymorphism (AFLP) markers found among different accessions within maize inbreds and doubled haploid (DH) lines, (2) the proportion attributable to genetic and technical components and marker system specific sources, (3) its effect on GDs between maize lines and implications for identification of EDVs, and (4) the comparison to published SSR data from the same plant materials. Two to five accessions from nine inbred lines and five DH lines were taken from different sources of maintenance breeding or drawn as independent samples from the same seed lot. Each of the 41 accessions was genotyped with 20 AFLP primer combinations revealing 988 AFLP markers. Map positions were available for 605 AFLPs covering all maize chromosomes. On average, six (0.6%) AFLP bands were polymorphic between different accessions of the same line. GDs between two accessions of the same line averaged 0.013 for inbreds and 0.006 for DH lines. The correlation of GDs based on AFLPs and SSRs was tight (r = 0.97**) across all 946 pairs of accessions but decreased (r = 0.55**) for 43 pairs of accessions originating from the same line. On the basis of our results, we recommend specific EDV thresholds for marker systems with different degree of polymorphism. In addition, precautions should be taken to warrant a high level of homogeneity for DNA markers within maize lines before applying for plant variety protection.  相似文献   

5.
6.
Assessment of genetic diversity in Azadirachta indica using AFLP markers   总被引:4,自引:0,他引:4  
 Genetic diversity was estimated in 37 neem accessions from different eco-geographic regions of India and four exotic lines from Thailand using AFLP markers. Seven AFLP selective primer combinations generated a total of 422 amplification products. The average number of scorable fragments was 60 per experiment, and a high degree (69.8%) of polymorphism was obtained per assay with values ranging from 58% to 83.8%. Several rare and accession-specific bands were identified which could be effectively used to distinguish the different genotypes. Genetic relationships within the accessions were evaluated by generating a similarity matrix based on the Jaccard index. The phenetic dendrogram generated by UPGMA as well as principal correspondence analysis separated the 37 Indian genotypes from the four Thai lines. The cluster analysis indicated that neem germplasm within India constitutes a broad genetic base with the values of genetic similarity coefficient ranging from 0.74 to 0.93. Also, the Indian genotypes were more dispersed on the principal correspondence plot, indicating a wide genetic base. The four lines from Thailand, on the other hand, formed a narrow genetic base with similarity coefficients ranging from 0.88 to 0.92. The lowest genetic similarity coefficient value (0.47) was observed between an Indian and an exotic genotype. The level of genetic variation detected within the neem accessions with AFLP analysis suggests that it is an efficient marker technology for delineating genetic relationships amongst genotypes and estimating genetic diversity, thereby enabling the formulation of appropriate strategies for conservation and tree improvement programs. Received: 20 October 1998 / Accepted: 28 November 1998  相似文献   

7.
 Amplified fragment length polymorphism (AFLP) analysis is a rapid and efficient method for producing DNA fingerprints. The AFLP diversity of sunflower has not been described, and much of the public germ plasm of sunflower has not yet been fingerprinted. Our objectives were to: (1) estimate genetic similarities, polymorphism rates, and polymorphic information contents (PICs) for AFLP markers among elite public oilseed inbred lines, and (2) assess the genetic diversity of inbred lines using genetic similarities estimated from AFLP fingerprints. We produced fingerprints for 24 public inbred lines of sunflower (Helianthus annuus L.) using six AFLP primer combinations. These primers produced a total of 359 AFLP markers or about 60 markers per primer combination. Genetic similarities ranged from 0.70 to 0.91, polymorphism rates ranged from 7 to 24%, and PICs ranged from 0.0 to 0.5. Genetic similarities were lower overall for maintainer (B)×restorer (R) crosses than for B×B or R×R crosses. Principal-coordinate and cluster analyses separated lines into two groups, one for B-lines and another for R-lines. These groupings illustrate the breeding history and basic heterotic pattern (B×R) of sunflower and the widespread practice of using B×B and R×R crosses to develop new lines. There were, nevertheless, distinct subgroups within these groups. These subgroups may represent unique heterotic groups and create a basis for formally describing heterotic patterns in sunflower. Received: 10 June 1996 / Accepted: 4 April 1997  相似文献   

8.
Development of AFLP markers in barley   总被引:36,自引:0,他引:36  
To investigate the application of amplified fragment length polymorphism (AFLP) markers in barley, 96 primer combinations were used to generate AFLP patterns with two barley lines, L94 and Vada. With seven primer combinations, only a few intense bands were obtained, probably derived from repeated sequences. With the majority of the remaining 89 primer combinations, on average about 120 amplification products were generated, and the polymorphism rate between the two lines was generally over 18%. Based on the number of amplified products and the polymorphism rate, the 48 best primer combinations were selected and tested on 16 barley lines, again including L94 and Vada. Using a subset of 24 primer combinations 2188 clearly visible bands within the range from 80 to 510 bp were generated; 55% of these showed some degree of polymorphism among the 16 lines. L94 versus Vada showed the highest polymorphism rate (29%) and Proctor versus Nudinka yielded the lowest (12%). The polymorphism rates per primer combination showed little dependence on the barley lines used. Hence the most efficient and informative primer combinations identified for a given pair of lines turned out to be highly efficient when applied to others. Generally, more than 100 common markers (possibly locus specific) among populations or crosses were easily identified by comparing 48 AFLP profiles of the parent lines. The existence of such a large number of markers common to populations will facilitate the merging of molecular marker data and other genetic data into one integrated genetic map of barley. Received: 28 October 1996 / Accepted: 27 November 1996  相似文献   

9.
Molecular‐marker‐aided evaluation of germplasm plays an important role in defining the genetic diversity of plant genotypes for genetic and population improvement studies. A collection of African cassava landraces and elite cultivars was analysed for genetic diversity using 20 amplified fragment length polymorphic (AFLP) DNA primer combinations and 50 simple sequence repeat (SSR) markers. Within‐population diversity estimates obtained with both markers were correlated, showing little variation in their fixation index. The amount of within‐population variation was higher for landraces as illustrated by both markers, allowing discrimination among accessions along their geographical origins, with some overlap indicating the pattern of germplasm movement between countries. Elite cultivars were grouped in most cases in agreement with their pedigree and showed a narrow genetic variation. Both SSR and AFLP markers showed some similarity in results for the landraces, although SSR provided better genetic differentiation estimates. Genetic differentiation (Fst) in the landrace population was 0.746 for SSR and 0.656 for AFLP. The molecular variance among cultivars in both populations accounted for up to 83% of the overall variation, while 17% was found within populations. Gene diversity (He) estimated within each population varied with an average value of 0.607 for the landraces and 0.594 for the elite lines. Analyses of SSR data using ordination techniques identified additional cluster groups not detected by AFLP and also captured maximum variation within and between both populations. Our results indicate the importance of SSR and AFLP as efficient markers for the analysis of genetic diversity and population structure in cassava. Genetic differentiation analysis of the evaluated populations provides high prospects for identifying diverse parental combinations for the development of segregating populations for genetic studies and the introgression of desirable genes from diverse sources into the existing genetic base.  相似文献   

10.
Cultivated tomato (L. esculentum L.) germplasm exhibits limited genetic variation compared with wild Lycopersicon species. Amplified fragment length polymorphism (AFLP) markers were used to evaluate genetic variation among 74 cultivars, primarily from California, and to fingerprint germplasm to determine if cultivar-specific patterns could be obtained. All 74 cultivars were genotyped using 26 AFLP primer combinations; of the 1092 bands scored, 102 AFLP bands (9.3%) were polymorphic. Pair-wise genetic similarity coefficients (Jaccard and Nei-Li) were calculated. Jaccard coefficients varied from 0.16 to 0.98 among cultivar pairs, and 72% of pair-wise comparisons exceeded 0.5. UPGMA (unweighted pair-group method with arithmetic averaging) clustering and principle component analysis revealed four main clusters, I-IV; most modern hybrid cultivars grouped in II, whereas most vintage cultivars grouped in I. Clusters III and IV contained three and two cultivars, respectively. Some groups of cultivars closely related by pedigree exhibited high bootstrap values, but lower values (<50%) were obtained for cluster II and its four subgroups. Unique fingerprints for all 74 cultivars were obtained by a minimum of seven AFLP primer pairs, despite inclusion of some closely related cultivars. This study demonstrated that AFLP markers are effective for obtaining unique fingerprints of, and assessing genetic diversity among, tomato cultivars.  相似文献   

11.
To map the QTLsof Fusarium moniliforme ear rot resistance inZea mays L., a total of 230 F2 individuals, derived from a single cross between inbred maize lines R15 (resistant) and Ye478 (susceptible), were genotyped for genetic map construction using simple sequence repeat (SSR) markers and amplified fragment length polymorphism (AFLP) markers. We used 778 pairs of SSR primers and 63 combinations of AFLP primers to detect the polymorphisms between parents, R15 and Ye478. From the polymorphic 30 AFLP primer combinations and 159 SSR primers, we scored 260 loci in the F2 population, among which 8 SSR and 13 AFLP loci could not be assigned to any of the linkage groups. An integrated molecular genetic linkage map was constructed by the remaining 151 SSR and 88 AFLP markers, which distributed throughout the 10 linkage groups of maize and spanned the genome of about 3463.5 cM with an average of 14.5 cM between two markers. On 4 chromosomes, we detected 5 putative segregation distortion regions (SDRs), including 2 new ones (SDR2 and SDR7). The other 3 SDRs were located near the regions where gametophyte genes were mapped, indicating that segregation distortion could be partially caused by gametophytic factors.  相似文献   

12.
利用 RFLP、SSR.AFLP和RAPD 4种分子标记方法研究了 15个玉米(Zea mays L.)自交系的遗传多样性,同时对4种标记系统进行比较。在供试材料中筛选到具多态性的RFLP探针酶组合56个,66对SSR引物,20个RAPD引物和9个AFLP引物组合,分别检测到多态性带167、201、87和108条。SSR标记位点的平均多态性信息量(PIC)最大(0.54),AFLP标记位点最小(0.36),但AFLP标记具有最高的多态性检测效率(Ai,32.2)。4种分子标记所得遗传相似系数相关性显著,比较相关系数表明 RAPD可靠性较低。依据 4种分子标记结果将 15个供试自交系划分为塘四平头、旅大红骨、兰卡斯特、瑞德和PN共5个类群,与系谱分析基本一致。认为SSR和RFLP两种分子标记方法适合进行玉米种质遗传多样性的研究。  相似文献   

13.
Eight primer combinations were used to investigate the application of amplified fragment length polymorphism (AFLP) markers in catfish for genetic analysis. Intraspecific polymorphism was low among channel catfish or blue catfish strains. Interspecific AFLP polymorphism was high between the channel catfish and blue catfish. Each primer combination generated from 70 to more than 200 bands, of which 38.6–75.7% were polymorphic between channel catfish and blue catfish. On average, more than 20 polymorphic bands per primer combination were produced as quality markers suitable for genetic analysis. All AFLP markers were transmitted into channel catfish × blue catfish F1 hybrids, except rare markers that were heterozygous in the parents and therefore were segregating in F1 hybrids. The two reciprocal channel catfish × blue catfish F1 hybrids (channel catfish female × blue catfish male; blue catfish female × channel catfish male) produced identical AFLP profiles. The AFLP markers were inherited and segregated in expected Mendelian ratios. At two loci, E8-b9 and E8-b2, markers were found at significantly lower frequencies than expected with F2 and backcross hybrids which had been selected for increased growth rates. The reproducibility of AFLP was excellent. These characteristics of the catfish AFLP markers make them highly useful for genetic analysis of catfish, especially for construction of genetic linkage and quantitative trait loci maps, and for marker-assisted selection. Received: 10 September 1997 / Accepted: 10 December 1997  相似文献   

14.
Cyathostomins are among the most important intestinal nematodes of horses, yet, the literature on the molecular genetics of these worms is scarce. In this study, the technique of amplified fragment length polymorphism (AFLP) was applied to study the genetic diversity as well as to determine the effect of moxidectin selection on the population genetic diversity for Cylicocyclus nassatus, one of the most common cyathostomin species. Genomic DNAs from 30 individual male worms were used from each of two populations: an avermectin-milbemycin (AM)-naive population (Population-S) and a population derived from Population-S following 21 treatments with moxidectin (Population-Mox). Three selective primer pairs were used for each worm, yielding a total of 229 AFLP markers. Calculation of average pair wise Jaccard indices revealed a high degree of genetic variation within both populations using all three primer combinations. In addition, selection by moxidectin during a 3-year period caused a significant decrease in the level of genetic diversity as evidenced by analysis of AFLP markers for two primer combinations but not for the third. A dendrogram of relationships among individuals based on AFLP markers did not show a clear classification of individuals in separate groups. It was concluded that a high degree of genetic intrapopulation variation exists in C. nassatus and that moxidectin selection has a significant effect on the genetic composition of C. nassatus.  相似文献   

15.
用SSR和AFLP技术分析花生抗青枯病种质遗传多样性的比较   总被引:10,自引:0,他引:10  
由Ralstonia solanacearum E.F.Smith引起的青枯病是若干亚洲和非洲国家花生生产的重要限制因子,利用抗病品种是防治这一病害最好的措施。虽然一大批抗青枯病花生种质资源材料已被鉴定出来,但对其遗传多样性没有足够的研究,限制了在育种中的有效利用。本研究以31份对青枯病具有不同抗性的栽培种花生种质为材料,通过简单序列重复(SSR)和扩增片段长度多态性(AFLP)技术分析了它们的遗传多样性。通过78对SSR引物和126对AFLP引物的鉴定,筛选出能显示抗青枯病种质多态性的SSR引物29对和AFLP引物32对。所选用的29对多态性SSR引物共扩增91条多态性带,平均每对引物扩增3.14条多态性带;32对多态性AFLP引物共扩增72条多态性带,平均扩增2.25条多态性带。在所筛选引物中,4对SSR引物(14H06,7G02,3A8,16C6)和1对AFLP引物(P1M62)检测花生多态性的效果优于其他引物。SSR分析获得的31个花生种质的遗传距离为0.12-0.94,平均为0.53,而AFLP分析获得的遗传距离为0.06~0.57,平均为0.25,基于SSR分析的遗传距离大于基于AFLP分析的遗传距离,疏枝亚种组的遗传分化相对大于密枝亚种组。基于两种分析方法所获得的聚类结果基本一致,但SSR数据聚类结果与栽培种花生的形态分类系统更为吻合。根据分析结果,对构建青枯病抗性遗传图谱群体的核心亲本和抗性育种策略提出了建议。  相似文献   

16.
A genetic linkage map of tef was constructed with amplified fragment length polymorphism (AFLP) markers using F5 recombinant inbred lines (RILs) derived by single seed descent from the intraspecific cross of ’Kaye Murri’×’Fesho’. A total of 192 EcoRI/MseI primer combinations were screened for parental polymorphism. Around three polymorphic fragments per primer combination were detected, indicating a low polymorphism level in tef. Fifty primer combinations were selected to assay the mapping population, and 226 loci segregated among 85 F5 RILs. Most AFLP loci behaved as dominant markers (presence or absence of a band), but about 15% of the loci were codominant. Significant deviations from the expected Mendelian segregation ratio were observed for 26 loci. The genetic linkage map comprised 211 markers assembled into 25 linkage groups and covered 2,149 cM of genome. AFLP is an efficient marker system for mapping plant species with low polymorphism such as tef. This is the first genetic linkage map constructed for tef. It will facilitate the mapping of genes controlling agronomically important traits and cultivar improvement in tef. Received: 27 April 1998 / Accepted: 4 January 1999  相似文献   

17.
Evaluation of AFLP in Beta   总被引:9,自引:0,他引:9  
 AFLP markers were evaluated for their usefulness in the genetic analysis of sugarbeet and wild Beta species. Accessions of ten different sugarbeet breeding lines and five wild beets were screened using 256 primer combinations. Of the 11 309 bands investigated, 96.4% were polymorphic among the accessions. A strong positive correlation was found between the number of polymorphisms and AT content of the selective bases of the primer combinations. Random subsets of primer combinations were used to produce genetic distance trees. Permutation tests showed that, for the wild beets, 500 AFLP bands sufficed to obtain the best topology of the tree with a probability at any given node of more than 99%. Ten times as many bands were necessary to obtain support values of the same order of magnitude for the sugarbeet lines. The reproducibility of AFLP for seven primer combinations was investigated by repeated analysis of all steps from DNA isolation to data scoring. For 5088 comparisons, the overall reproducibility was 97.6%. Robustness to genotyping errors was investigated by including an artificial F1 (1 : 1 DNA mixture) of two sugarbeet lines in the screen for polymorphisms. For the 3160 cases of polymorphism between the two lines, 0.2% genotyping errors were found. The general reliability and usefulness of AFLP markers are discussed in relation to the results obtained. Received: 18 May 1998 / Accepted: 28 October 1998  相似文献   

18.
The genetic diversity among 10 Iranian bread wheat (Triticum aestivum) genotypes was analysed using 12 quality traits, 320 amplified fragment length polymorphisms (AFLP) polymorphic fragments, 491 simple sequence repeats (SSR) alleles and 294 proteome markers. The results revealed that the genotypes differed for quality traits, AFLP, SSR and proteome markers. The average genetic diversity based on quality traits (0.684 with a range of 0.266–0.997) was higher than AFLP (0.502 with a range of 0.328–0.717), SSR (0.503 with a range of 0.409–0.595) and proteome (0.464 with a range of 0.264–0.870) markers. Although there were apparent similarities between the groupings of particular genotypes, the overall correspondence between the distance matrices appeared to be rather low. In this study, the cluster analysis based on AFLP data showed the closest agreement with genotypes’ regions of origin or pedigree information. In addition to the genetic diversity assessment, specific proteins with known function were detected uniquely for the studied genotypes. Our results suggest that the classification based on quality traits and genotypic markers of these wheat genotypes will be useful for wheat breeders to plan crosses for positive traits.  相似文献   

19.
To meet various breeding objectives and to conserve the existing genetic resources of mulberry for future use, the present study was undertaken to investigate the amount of genetic diversity and to establish the relationships between mulberry genotypes using fluorescence-based AFLP markers. Genetic diversity was estimated in 45 mulberry accessions from different eco-geographic regions of Japan and other parts of the world. Five primer combinations amplified an average of 110 AFLP markers per primer combination, ranging in size from 35 to 500 bp. A high degree of polymorphism was revealed by these combinations that ranged from 69.7 to 82.3% across all the genotypes studied. Several rare genotype-specific bands were also identified which could be effectively utilized to distinguish different genotypes. The wide range in genetic similarity coefficients (0.58–0.99) indicated that the mulberry germplasm collection represents a genetically diverse popu-lation. The phenetic dendrogram generated by the UPGMA method grouped 45 accessions into four major clusters, which was in agreement with the results from conventional methods. Clustering of some genotypes into strictly separate groups was not readily apparent and no clear interrelationships could be depicted, in spite of their different geographic origin. In addition, AFLP analysis provided sufficient polymorphism for DNA typing and contributed additional insights into the genetic structure of the mulberry germplasm. These results will help in the formulation of appropriate strategies for conservation and variety improvement in mulberry, for which little or no knowledge of genetic diversity is currently available. Received: 30 December 1999 / Accepted: 14 March 2000  相似文献   

20.
Among the 400 soybean (Glycine max) landraces, we selected 3 tolerant (KAS150-9, KAS160-15, and KAS170-9) and 3 susceptible lines (KAS160-14, KAS160-20, and KAS201-6-1) by the survival percentage and injury scores. Susceptible lines showed decrease in chlorophyll content and increase in glucose and malondialdehyde (MDA) contents under waterlogging stress, while tolerant lines did not change significantly. For AFLP analysis, 8 EcoRI (+3) and 8 MseI (+3) primers used in 32 primer combinations generated a total of 2 566 bands with a mean of 80 bands per primer combination, of which 1 117 (43.5 %) were clearly polymorphic between the tolerant and susceptible lines. A genetic similarity coefficient, based on cluster analysis using an unweighted pair grouping method of average (UPGMA), was 0.79 for the tolerant group, while the susceptible landraces were genetically less related, with a genetic similarity coefficient of 0.17. The 10 reproducible polymorphic PCR products present in the 3 tolerant or susceptible lines were sequenced and converted into sequence tagged site (STS) markers. These STS primer sets were designated GmWT01-GmWT06 and GmWS01-GmWS04. Two STS primer sets, GmWT06 and GmWS02, generated a single monomorphic PCR product identical in size to the original AFLP fragments. For the broad application of these STS markers in marker-assisted selection (MAS) for soybean genotypes tolerant to waterlogging stress, two developed STS markers are being evaluated with putative waterlogging tolerant mutant lines induced by γ-radiation in soybean mutation breeding programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号