首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The overall stereochemical course of the reactions leading to the phosphorylation of methyl alpha-D-glucopyranoside by the glucose-specific enzyme II (enzyme IIGlc) of the Escherichia coli phosphotransferase system has been investigated. With [(R)-16O,17O,18O]phosphoenolpyruvate as the phosphoryl donor and in the presence of enzyme I, HPr, and enzyme IIIGlc of the phosphotransferase system, membranes from E. coli containing enzyme IIGlc catalyzed the formation of methyl alpha-D-glucopyranoside 6-phosphate with overall inversion of the configuration at phosphorus (with respect to phosphoenolpyruvate). It has previously been shown that sequential covalent transfer of the phosphoryl group of phosphoenolpyruvate to enzyme I, to HPr, and to enzyme IIIGlc occurs before the final transfer from phospho-enzyme IIIGlc to the sugar, catalyzed by enzyme IIGlc. Because overall inversion of the configuration of the chiral phospho group of phosphoenolpyruvate implies an odd number of transfer steps, the phospho group has been transferred at least five times, and transfer from phospho-enzyme IIIGlc to the sugar must occur in two steps (or a multiple thereof). On the basis that no membrane protein other than enzyme IIGlc is directly involved in the final phospho transfer steps, our results imply that a covalent phospho-enzyme IIGlc is an intermediate during transport and phosphorylation of glucose by the E. coli phosphotransferase system.  相似文献   

2.
G.M. MALIN AND G.I. BOURD. 1991. The transport system for glucose and its non-metabolizable analogue methyl-α-D-glucoside (MG) has been described in Corynebacterium glutamicum. The initial product of the transport reaction was shown to be a phosphate ester of MG (MGP). Free MG appeared inside the cells as a result of MGP dephosphorylation. The bacteria transported MG with an apparent Km of 0.08 ± 0.017 mmol/l and Vmax of 21 ± 2.3 nmol/(min × mg dry wt). Toluenized cells and crude cell extracts catalysed phosphoenolpyruvate (PEP)-dependent phosphorylation of MG and glucose. Both the membrane and the cytoplasmic fractions of bacterial extracts were required for phosphotransferase reaction. Most of the spontaneous mutants resistant to 2-deoxyglucose (DG), xylitol and 5-thioglucose were defective both in transport and in PEP-dependent phosphorylation of MG. Some strains were defective only in glucose utilization and some were also unable to grow on a number of other sugars. The phosphotransferase activity in extracts from mutant cells was restored by the addition of either membrane or cytoplasmic fraction from wild type bacteria. It was concluded that Corynebacterium glutamicum accumulated glucose and MG by means of a PEP-dependent phosphotransferase system (PTS).  相似文献   

3.
The role of the phosphoenolpyruvate-dependent phosphotransferase system (PTS) in the phenomenon of inducer exclusion was examined in whole cells of Salmonella typhimurium which carried the genes of the Escherichia coli lactose operon on an episome. In the presence of the PTS substrate methyl alpha-D-glucopyranoside, the extent of accumulation of the lactose analog methyl beta-D-thiogalactopyranoside was reduced. A strain carrying a mutation in the gene for Enzyme I was hypersensitive to the PTS effect, while a crr mutant strain was completely resistant. Influx, efflux, and exchange of galactosides via the lactose "permease" were inhibited by methyl alpha-glucoside. This inhibition occurred in the presence of metabolic energy poisons, and therefore does not involve either the generation of metabolic energy or energy-coupling to the lactose transport system. When the cellular content of the lactose permease was increased by induction with isopropyl beta-D-thiogalactopyranoside, cells gradually became less sensitive to inducer exclusion. The extent of inhibition of methyl beta-thiogalactoside accumulation by methyl alpha-glucoside was shown to be dependent on the relative cellular content of the PTS and lactose system. The data were consistent with an hypothesis involving partial inactivation of galactoside transport due to interaction between a component of the PTS and the lactose permease. By examination of the effects of the PTS and lactose uptake and melibiose permease-mediated uptake of methyl beta-thiogalactoside, it was further shown that the manner in which inducer exclusion is expressed is independent on the routes available to the non-PTS sugar for exit from the cell.  相似文献   

4.
The lactose-phosphoenolpyruvate-dependent phosphotransferase system (lac-PTS) and beta-D-phosphogalactoside galactohydrolase (P-beta-gal) mediate the metabolism of lactose by Lactobacillus casei. Starved cells of L. casei contained a high intracellular concentration of phosphoenolpyruvate, and this endogenous energy reserve facilitated characterization of phosphotransferase system activities in physiologically intact cells. Data obtained from transport studies with whole cells and from in vitro phosphotransferase system assays with permeabilized cells revealed that the lac-PTS had a high affinity for beta-galactosides (e.g., lactose, lactulose, lactobionic acid, and arabinosyl-beta-D-galactoside). lac-PTS and P-beta-gal activities were determined in wild-type strains and strains defective in the glucose-phosphoenolpyruvate-dependent phosphotransferase system after growth on various sugars and in the presence of potential inducers. We found that (i) the lac genes (i.e., the genes coding for the lac-PTS proteins and P-beta-gal) were induced by metabolizable and non-metabolizable beta-galactosides (presumably acting as their phosphorylated derivatives), (ii) galactose 6-phosphate was not an inducer in most strains, (iii) the ratio of lac-PTS activity to P-beta-gal activity in a given strain was not constant, and (iv) inhibition of lac gene expression during growth on glucose was a consequence of glucose-phosphoenolpyruvate-dependent phosphotransferase system-mediated inducer exclusion, repressive effects of a functional glucose-phosphoenolpyruvate-dependent phosphotransferase system and glucose-derived metabolites. The expression of the lac-PTS structural genes and the expression of the P-beta-gal gene are independently regulated and may be subject to both positive control and negative control.  相似文献   

5.
Most strains of Escherichia coli K-12 are unable to use the enzyme IIA/IIB (enzyme IIMan) complex of the phosphoenolpyruvate:sugar phosphotransferase system (PTS) in anaerobic growth and therefore cannot utilize glucosamine anaerobically. Introduction into these strains of a ptsG mutation, which eliminates activity of the enzyme IIIGlc/IIB' complex of the PTS, resulted in inability to grow anaerobically on glucose and mannose. Derivative strains able to grow anaerobically on glucosamine had mutations at a locus close to man, the gene coding for phosphomannose isomerase, and had higher enzyme IIA/IIB activities during anaerobic growth than did the parental strain. These results establish a locus affecting function of enzyme IIA/IIB that maps distant from ptsM, the probable structural gene for enzyme IIB.  相似文献   

6.
2-O-alpha-mannosyl-D-glycerate (MGs) has been recognized as an osmolyte in hyperthermophilic but not mesophilic prokaryotes. We report that MG is taken up and utilized as sole carbon source by Escherichia coli K12, strainMC4100. Uptake is mediated by the P-enolpyruvate-dependent phosphotransferase system with the MG-inducible HrsA (now called MngA) protein as its specific EIIABC complex. The apparent Km of MG uptake in induced cells was 10 microm, and the Vmax was 0.65 nmol/min/10(9) cells. Inverted membrane vesicles harboring plasmid-encoded MngA phosphorylated MG in a P-enolpyruvate-dependent manner. A deletion mutant in mngA was devoid of MG transport but is complemented by a plasmid harboring mngA. Uptake of MG in MC4100 also caused induction of a regulon specifying the uptake and the metabolism of galactarate and glucarate controlled by the CdaR activator. The ybgG gene (now called mngB) the gene immediately downstream of mngA encodes a protein with alpha-mannosidase activity. farR, the gene upstream of mngA (now called mngR) had previously been characterized as a fatty acyl-responsive regulator; however, deletion of mngR resulted in the up-regulation of only two genes, mngA and mngB. The mngR deletion caused constitutive MG transport that became MG-inducible after transformation with plasmid expressed mngR. Thus, MngR is the regulator (repressor) of the MG transport/metabolism system. Thus, the mngR mngA mngB gene cluster encodes an MG utilizing system.  相似文献   

7.
Copper deficiency has been reported to cause glucose intolerance in rats by interfering with normal glucose utilization. Accordingly, copper deficiency was produced in rats to study its effects on glucose-6-P phosphohydrolase and carbamyl-P: glucose phosphotransferase activities of hepatic glucose-6-phosphatase (EC 3.1.3.9), a major enzyme involved in maintaining glucose homeostasis. When measured in homogenates treated with deoxycholate, total glucose-6-P phosphohydrolase was 23% lower and total carbamyl-P:glucose phosphotransferase was 17% lower in copper-deficient rats compared to controls. Latency, or that portion of total activity that is not manifest unless the intact membranous components are disrupted with deoxycholate also was lower in copper-deficient rats. Glucose-6-P phosphohydrolase was 5% latent in copper-deficient rats compared to 24% in controls and carbamyl-P : glucose phosphotransferase was 55% latent in copper-deficient rats compared to 65% in controls. The decrease in latency appears to compensate for the lower total enzyme activities in such a manner as to allow the net expression of these activities in the intact membranous components of the homogenate to remain unaltered by copper deficiency. It thus appears unlikely that copper deficiency affects glucose homeostasis in vivo by altering the net rate of glucose-6-P hydrolysis or synthesis by glucose-6-phosphatase. These observations are interpreted on the basis of a multicomponent glucose-6-phosphatase system in which the total enzyme activity expressed in intact membranous preparation is limited by substrate specific translocases that transport substrate to the membrane-bound catalytic unit. A decrease in latency can then be interpreted as a functional increase in translocase activity and may constitute a compensating mechanism for maintaining constant glucose homeostasis when glucose-6-phosphatase catalytic activity is depressed as it is in copper deficiency.  相似文献   

8.
The phosphoglycerate transport system was employed to supply energy-depleted, lysozyme-treated Salmonella typhimurium cells with a continuous intracellular source of phosphoenolpyruvate. When the cells had been induced to high levels of the phosphoglycerate transport system, a low extracellular concentration of phosphoenolpyruvate (0.1 mM) half maximally stimulated uptake of methyl alpha-glucoside via the phosphoenolpyruvate:sugar phosphotransferase system. If the phosphoglycerate transport system was not induced before energy depletion, 100 times this concentration of phosphoenolpyruvate was required for half-maximal stimulation. Phosphoenolpyruvate could not be replaced by other energy sources if potassium fluoride (an inhibitor of enolase) was present. Inhibition of [14C]-glycerol uptake into energy-depleted cells by methyl alpha-glucoside was demonstrated. A concentration of phosphoenolpyruvate which stimulated methyl alpha-glucoside accumulation counteracted the inhibitory effect of the glucoside. In the presence of potassium fluoride, phosphoenolpyruvate could not be replaced by other energy sources. Inhibition of glycerol uptake by methyl alpha-glucoside in intact untreated cells was also counteracted by phosphoenolpyruvate, but several energy sources were equally effective; potassium fluoride was without effect. These and other results were interpreted in terms of a mechanism in which the relative proportions of the phosphorylated and nonphosphorylated forms of a cell constituent influence the activity of the glycerol transport system.  相似文献   

9.
Inhibition of cellular adenylate cyclase activity by sugar substrates of the phosphoenolpyruvate-dependent phosphotransferase system was reliant on the activities of the protein components of this enzyme system and on a gene designated crrA. In bacterial strains containing very low enzyme I activity, inhibition could be elicited by nanomolar concentrations of sugar. An antagonistic effect between methyl alpha-glucoside and phosphoenolpyruvate was observed in permeabilized Escherichia coli cells containing normal activities of the phosphotransferase system enzymes. In contrast, phosphoenolpyruvate could not overcome the inhibitory effect of this sugar in strains deficient for enzyme I or HPr. Although the in vivo sensitivity of adenylate cyclase to inhibition correlated with sensitivity of carbohydrate permease function to inhibition in most strains studied, a few mutant strains were isolated in which sensitivity of carbohydrate uptake to inhibition was lost and sensitivity of adenylate cyclase to regulation was retained. These results are consistent with the conclusions that adenylate cyclase and the carbohydrate permeases were regulated by a common mechanism involving phosphorylation of a cellular constituent by the phosphotransferase system, but that bacterial cells possess mechanisms for selectively uncoupling carbohydrate transport from regulation.  相似文献   

10.
Cyclic AMP (cAMP) synthesis in Escherichia coli is altered in cAMP receptor protein mutants and in phosphoenolpyruvate:sugar phosphotransferase transport system mutants. The stimulation of cAMP synthesis observed in cAMP receptor protein-deficient mutants is largely dependent upon enzyme III of the phosphoenolpyruvate:sugar phosphotransferase transport system. The phosphoenolpyruvate:sugar phosphotransferase transport system enzyme I is not required for elevated cAMP synthesis. These results suggest that enzyme III plays an important role in regulating adenylate cyclase activity.  相似文献   

11.
Patterns of chemotaxis by Salmonella typhimurium strain LT-2 to l-amino acids and to several sugars were quantitated by the Adler capillary procedure. Competition experiments indicated that LT-2 possesses three predominant receptors, or interacting sets of receptors, for amino acids. These were termed the aspartate, serine, and alanine classes, respectively. Studies with strains carrying point and deletion mutations affecting components of the phosphoenolpyruvate: glycose phosphotransferase system (PTS) made unlikely a role in primary reception of d-glucose by the three soluble PTS components, namely HPr, enzyme I, and factor III. A ptsG mutant defective in membrane-bound enzyme IIB' of the high-affinity glucose transport system was shown to exhibit normal chemotaxis providing pleiotropic effects of the mutation were eliminated by its genotypic combination with other pts mutations or, phenotypically, by addition of cyclic AMP and substrate. A correlation was demonstrated between chemotaxis to glucose and activity of the low-affinity glucose transport complex, membrane-bound enzymes IIB:IIA, and an enzyme IIB:IIA mutant was shown to have a preponderant defect in chemotaxis to glucose and mannose. Of four systems capable of galactose transport, only the beta-methylgalactoside transport system was implicated in chemotaxis to galactose. Some properties of a mutant possibly defective in processing of signals for chemotaxis to sugars is described.  相似文献   

12.
1. Limulus hepatopancreas, coxal glands and intestine contain a particulate enzyme which can synthesize glucose 6-phosphate from glucose and inorganic pyrophosphate or carbamyl phosphate as well as hydrolyze glucose 6-phosphate. This has been clearly differentiated from hydrolysis by lysosomal or soluble phosphatases. 2. The enzyme resembles vertebrate glucose-6-phosphatase in its specific anatomical distribution, pH optimum, kinetic properties, donor specificity and phospholipid dependence, as indicated by its satency and lability to detergent treatment. 3. A variety of other invertebrates tested exhibited little or no PPi-glucose phosphotransferase activity with these properties. A similar phosphotransferase activity of lobster hepatopancreas had somewhat different kinetic properties and pH optimum. 4. The hypothesis that a specific glucose-6-phosphatase is to be found only in those animals which utilize free glucose as an important circulating form of energy is presented and discussed. It appears that a variety of transport compounds, such as trehalose and glucose, was tried at the evolutionary level of the Arthropods.  相似文献   

13.
A P-HPr:β-glucoside phosphotransferase (enzyme IIbgl)
  • 1 The nomenclautre of the enzymes II is that suggested by Lin (1)
  • has been extracted from membranes of a β-glucoside fermenting strain of Escherichia coli K 12 using the nonionic detergent Triton X–100. The extracted enzyme was rendered virtually free of both lipid and detergent by chromatography on DEAE-cellulose. At this stage, the partially purified enzyme had negligible activity, but activity was restored effectively by the addition of (1) nonionic detergents of the Tween or Triton series and (2) crude E. coli phospholipids or an anionic lipid enriched fraction, but not phosphatidylethanolamine. Detergent activators were most effective at or near the critical micelle concentration, but were inhibitory when added at concentrations above the critical micelle concentration. In order to obtain maximal initial rates of phosphotransferase activity, it was necessary to incubate the extracted, partially purified enzyme with detergent activator and HPr prior to the addition of the other assay system components. High detergent concentration inhibited the initial rate of phosphorylation by interfering with an essential step (or steps) that occur during this preliminary incubation. The activation occuring during the preliminary incubation was also highly temperature dependent; a precipitous decrease in activation was detected below 16° when Tween 40 was employed as the detergent activator. Phosphorylation mediated by the membrane associated form of the phosphotransferase was not influenced by the physical state of the lipid components of the membrane. This is in marked contrast to the properties of the phosphorylation reaction mediated by the phosphotransferase in intact cells.  相似文献   

    14.
    crr mutants of Salmonella typhimurium are thought to be defective in the regulation of adenylate cyclase and a number of transport systems by the phosphoenolpyruvate-dependent sugar phosphotransferase system, crr mutants are also defective in the enzymatic activity of factor IIIGlc (IIIGlc), a protein component of the phosphotransferase system involved in glucose transport. Therefore, it has been proposed that IIIGlc is the primary effector of phosphotransferase system-mediated regulation of cell metabolism. We characterized crr mutants with respect to the presence and function of IIIGlc by using an immunochemical approach. All of the crr mutants tested had low (0 to 30%) levels of IIIGlc compared with wild-type cells, as determined by rocket immunoelectrophoresis. The IIIGlc isolated from one crr mutant was investigated in more detail and showed abnormal aggregation behavior, which indicated a structural change in the protein. These results supported the hypothesis that a crr mutation directly affects IIIGlc, probably by altering the structural gene of IIIGlc. Several crr strains which appeared to be devoid of IIIGlc in immunoprecipitation assays were still capable of in vitro phosphorylation and transport of methyl alpha-glucoside. This phosphorylation activity was sensitive to specific anti-IIIGlc serum. Moreover, the membranes of crr mutants, as well as those of wild-type cells, contained a protein that reacted strongly with our anti-IIIGlc serum. We propose that S. typhimurium contains a membrane-bound form of IIIGlc which may be involved in phosphotransferase system activity.  相似文献   

    15.
    16.
    There are two distinct components of the system which limits the rate at which intact cells of S. cerevisiae C hydrolyze external β-glucosides; one component requires metabolic energy and the other is stereospecific for β-glucosides. The stereospecific component is localized at the cell membrane, as shown by its sensitivity to heavy metal inhibitors which did not penetrate the cell under the conditions used. It was shown that cellobiose-grown cells were able to remove cellobiose from the medium in which they were incubated, and that the cellobiose uptake system was identical to that which limits the patent β-glucosidase activity. In order to test the hypothesis that the system in question was a transport system, for β-glucosides the ability of cellobiose-grown cells to take up 14C-labeled methyl-β-glucoside (MBG) was studied. The induced cells were able to take up MBG-14C and the label could be partially chased out by cold MBG and cellobiose; glucose-grown cells could not incorporate label. However, induced cells could not take up label when incubated with 14C-MBG, thus excluding the hypothesis of transport of intact β-glucosides. It was concluded that the stereospecific membrane component was actually a β-glucosidase, coupled to an energy-dependent transport system for the glucose moiety; the function of the latter was rate-limiting in the over-all activity of the entire system.  相似文献   

    17.
    Streptococcus lactis K1 has the capacity to grow on many sugars, including sucrose and lactose, in the presence of high levels (greater than 500 mM) of 2-deoxy-D-glucose. Initially, growth of the organism was transiently halted by the addition of comparatively low concentrations (less than 0.5 mM) of the glucose analog to the culture. Inhibition was coincident with (i) rapid accumulation of 2-deoxy-D-glucose 6-phosphate (ca. 120 mM) and preferential utilization of phosphoenolpyruvate via the mannose:phosphotransferase system, (ii) depletion of phosphorylated glycolytic intermediates, and (iii) a 60% reduction in intracellular ATP concentration. During the 5- to 10-min period of bacteriostasis the intracellular concentration of 2-deoxy-D-glucose 6-phosphate rapidly declined, and the concentrations of glycolytic intermediates were restored to near-normal levels. When growth resumed, the cell doubling time (Td) and the steady-state levels of 2-deoxy-D-glucose 6-phosphate maintained by the cells were dependent upon the medium concentration of 2-deoxy-D-glucose. Resistance of S. lactis K1 to the potentially toxic analog was a consequence of negative regulation of the mannose:phosphotransferase system by two independent mechanisms. The first, short-term response occurred immediately after the initial "overshoot" accumulation of 2-deoxy-D-glucose 6-phosphate, and this mechanism reduced the activity (fine control) of the mannose:phosphotransferase system. The second, long-term mechanism resulted in repression of synthesis (coarse control) of enzyme IImannose. The two regulatory mechanisms reduced the rate of 2-deoxy-D-glucose translocation via the mannose:phosphotransferase system and minimized the activity of the phosphoenolpyruvate-dependent futile cycle of the glucose analog (J. Thompson and B. M. Chassy, J. Bacteriol. 151:1454-1465, 1982). Phosphoenolpyruvate was thus conserved for transport of the growth sugar and for generation of ATP required for biosynthetic and work functions of the growing cell.  相似文献   

    18.
    Galactose transport systems in Streptococcus lactis   总被引:12,自引:8,他引:4       下载免费PDF全文
    Galactose-grown cells of Streptococcus lactis ML3 have the capacity to transport the growth sugar by two separate systems: (i) the phosphoenolpyruvate-dependent phosphotransferase system and (ii) an adenosine 5'-triphosphate-energized permease system. Proton-conducting uncouplers (tetrachlorosalicylanilide and carbonyl cyanide-m-chlorophenyl hydrazone) inhibited galactose uptake by the permease system, but had no effect on phosphotransferase activity. Inhibition and efflux experiments conducted using beta-galactoside analogs showed that the galactose permease had a high affinity for galactose, methyl-beta-D-thiogalactopyranoside, and methyl-beta-D-galactopyranoside, but possessed little or no affinity for glucose and lactose. The spatial configurations of hydroxyl groups at C-2, C-4, and C-6 were structurally important in facilitating interaction between the carrier and the sugar analog. Iodoacetate had no inhibitory effect on accumulation of galactose, methyl-beta-D-thiogalactopyranoside, or lactose via the phosphotransferase system. However, after exposure of the cells to p-chloromercuribenzoate, phosphoenolpyruvate-dependent uptake of lactose and methyl-beta-D-thiogalactopyranoside were reduced by 75 and 100%, respectively, whereas galactose phosphotransferase activity remained unchanged. The independent kinetic analysis of each transport system was achieved by the selective generation of the appropriate energy source (adenosine 5'-triphosphate or phosphoenolpyruvate) in vivo. The maximum rates of galactose transport by the two systems were similar, but the permease system exhibited a 10-fold greater affinity for sugar than did the phosphotransferase system.  相似文献   

    19.
    Vinylglycolate resistance in Escherichia coli.   总被引:3,自引:3,他引:0       下载免费PDF全文
    L Shaw  F Grau  H R Kaback  J S Hong    C Walsh 《Journal of bacteriology》1975,121(3):1047-1055
    Escherichia coli K-12 vinylglycolate-resistant mutants have been isolated and characterized. Two of the mutants, JSH 150 and JSH 151, have been determined to be double mutants, lacking both membrane-bound L-and D-lactate dehydrogenases. The lactate transport system is intact in all strains; both radioactive lactate and vinylglycolate are actively taken up. Likewise, the phosphoenolypyruvate-dependent phosphotransferase system for hexose uptake is active. Vinylglycolate, previously shown to inhibit the phosphoenolpyruvate-dependent phosphotransferase system, has very little effect in the double mutants. The extent of vinylglycolate inhibition in other mutants seems directly related to the activity of the lactate dehydrogenases. This indicates that vinylglycolate is oxidized to 2-keto-3-butenoate before inactivating the phosphoenolpyruvate-dependent phosphotransferase system. These results were found in whole cells and confirmed in isolated membrane vesicles.  相似文献   

    20.
    Cells of Lactobacillus casei grown in media containing galactose or a metabolizable beta-galactoside (lactose, lactulose, or arabinosyl-beta-D-galactoside) were induced for a galactose-phosphoenolpyruvate-dependent phosphotransferase system (gal-PTS). This high-affinity system (Km for galactose, 11 microM) was inducible in eight strains examined, which were representative of all five subspecies of L. casei. The gal-PTS was also induced in strains defective in glucose- and lactose-phosphoenolpyruvate-dependent phosphotransferase systems during growth on galactose. Galactose 6-phosphate appeared to be the intracellular inducer of the gal-PTS. The gal-PTS was quite specific for D-galactose, and neither glucose, lactose, nor a variety of structural analogs of galactose caused significant inhibition of phosphotransferase system-mediated galactose transport in intact cells. The phosphoenolpyruvate-dependent phosphorylation of galactose in vitro required specific membrane and cytoplasmic components (including enzyme IIIgal), which were induced only by growth of the cells on galactose or beta-galactosides. Extracts prepared from such cells also contained an ATP-dependent galactokinase which converted galactose to galactose 1-phosphate. Our results demonstrate the separate identities of the gal-PTS and the lactose-phosphoenol-pyruvate-dependent phosphotransferase system in L. casei.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号